Serveur d'exploration Stress et Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Influenza infection induces host DNA damage and dynamic DNA damage responses during tissue regeneration.

Identifieur interne : 000431 ( PubMed/Curation ); précédent : 000430; suivant : 000432

Influenza infection induces host DNA damage and dynamic DNA damage responses during tissue regeneration.

Auteurs : Na Li [Singapour] ; Marcus Parrish ; Tze Khee Chan ; Lu Yin ; Prashant Rai ; Yamada Yoshiyuki ; Nona Abolhassani ; Kong Bing Tan ; Orsolya Kiraly ; Vincent T K. Chow ; Bevin P. Engelward

Source :

RBID : pubmed:25809161

Descripteurs français

English descriptors

Abstract

Influenza viruses account for significant morbidity worldwide. Inflammatory responses, including excessive generation of reactive oxygen and nitrogen species (RONS), mediate lung injury in severe influenza infections. However, the molecular basis of inflammation-induced lung damage is not fully understood. Here, we studied influenza H1N1 infected cells in vitro, as well as H1N1 infected mice, and we monitored molecular and cellular responses over the course of 2 weeks in vivo. We show that influenza induces DNA damage to both, when cells are directly exposed to virus in vitro (measured using the comet assay) and also when cells are exposed to virus in vivo (estimated via γH2AX foci). We show that DNA damage, as well as responses to DNA damage persist in vivo until long after virus has been cleared, at times when there are inflammation associated RONS (measured by xanthine oxidase activity and oxidative products). The frequency of lung epithelial and immune cells with increased γH2AX foci is elevated in vivo, especially for dividing cells (Ki-67-positive) exposed to oxidative stress during tissue regeneration. Additionally, we observed a significant increase in apoptotic cells as well as increased levels of DNA double strand break (DSB) repair proteins Ku70, Ku86 and Rad51 during the regenerative phase. In conclusion, results show that influenza induces DNA damage both in vitro and in vivo, and that DNA damage responses are activated, raising the possibility that DNA repair capacity may be a determining factor for tissue recovery and disease outcome.

DOI: 10.1007/s00018-015-1879-1
PubMed: 25809161

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25809161

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Influenza infection induces host DNA damage and dynamic DNA damage responses during tissue regeneration.</title>
<author>
<name sortKey="Li, Na" sort="Li, Na" uniqKey="Li N" first="Na" last="Li">Na Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-10/11 Innovation Wing, #03-12/13/14 Enterprise Wing, Singapore, 138602, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-10/11 Innovation Wing, #03-12/13/14 Enterprise Wing, Singapore, 138602</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Parrish, Marcus" sort="Parrish, Marcus" uniqKey="Parrish M" first="Marcus" last="Parrish">Marcus Parrish</name>
</author>
<author>
<name sortKey="Chan, Tze Khee" sort="Chan, Tze Khee" uniqKey="Chan T" first="Tze Khee" last="Chan">Tze Khee Chan</name>
</author>
<author>
<name sortKey="Yin, Lu" sort="Yin, Lu" uniqKey="Yin L" first="Lu" last="Yin">Lu Yin</name>
</author>
<author>
<name sortKey="Rai, Prashant" sort="Rai, Prashant" uniqKey="Rai P" first="Prashant" last="Rai">Prashant Rai</name>
</author>
<author>
<name sortKey="Yoshiyuki, Yamada" sort="Yoshiyuki, Yamada" uniqKey="Yoshiyuki Y" first="Yamada" last="Yoshiyuki">Yamada Yoshiyuki</name>
</author>
<author>
<name sortKey="Abolhassani, Nona" sort="Abolhassani, Nona" uniqKey="Abolhassani N" first="Nona" last="Abolhassani">Nona Abolhassani</name>
</author>
<author>
<name sortKey="Tan, Kong Bing" sort="Tan, Kong Bing" uniqKey="Tan K" first="Kong Bing" last="Tan">Kong Bing Tan</name>
</author>
<author>
<name sortKey="Kiraly, Orsolya" sort="Kiraly, Orsolya" uniqKey="Kiraly O" first="Orsolya" last="Kiraly">Orsolya Kiraly</name>
</author>
<author>
<name sortKey="Chow, Vincent T K" sort="Chow, Vincent T K" uniqKey="Chow V" first="Vincent T K" last="Chow">Vincent T K. Chow</name>
</author>
<author>
<name sortKey="Engelward, Bevin P" sort="Engelward, Bevin P" uniqKey="Engelward B" first="Bevin P" last="Engelward">Bevin P. Engelward</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25809161</idno>
<idno type="pmid">25809161</idno>
<idno type="doi">10.1007/s00018-015-1879-1</idno>
<idno type="wicri:Area/PubMed/Corpus">000432</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000432</idno>
<idno type="wicri:Area/PubMed/Curation">000431</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000431</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Influenza infection induces host DNA damage and dynamic DNA damage responses during tissue regeneration.</title>
<author>
<name sortKey="Li, Na" sort="Li, Na" uniqKey="Li N" first="Na" last="Li">Na Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-10/11 Innovation Wing, #03-12/13/14 Enterprise Wing, Singapore, 138602, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-10/11 Innovation Wing, #03-12/13/14 Enterprise Wing, Singapore, 138602</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Parrish, Marcus" sort="Parrish, Marcus" uniqKey="Parrish M" first="Marcus" last="Parrish">Marcus Parrish</name>
</author>
<author>
<name sortKey="Chan, Tze Khee" sort="Chan, Tze Khee" uniqKey="Chan T" first="Tze Khee" last="Chan">Tze Khee Chan</name>
</author>
<author>
<name sortKey="Yin, Lu" sort="Yin, Lu" uniqKey="Yin L" first="Lu" last="Yin">Lu Yin</name>
</author>
<author>
<name sortKey="Rai, Prashant" sort="Rai, Prashant" uniqKey="Rai P" first="Prashant" last="Rai">Prashant Rai</name>
</author>
<author>
<name sortKey="Yoshiyuki, Yamada" sort="Yoshiyuki, Yamada" uniqKey="Yoshiyuki Y" first="Yamada" last="Yoshiyuki">Yamada Yoshiyuki</name>
</author>
<author>
<name sortKey="Abolhassani, Nona" sort="Abolhassani, Nona" uniqKey="Abolhassani N" first="Nona" last="Abolhassani">Nona Abolhassani</name>
</author>
<author>
<name sortKey="Tan, Kong Bing" sort="Tan, Kong Bing" uniqKey="Tan K" first="Kong Bing" last="Tan">Kong Bing Tan</name>
</author>
<author>
<name sortKey="Kiraly, Orsolya" sort="Kiraly, Orsolya" uniqKey="Kiraly O" first="Orsolya" last="Kiraly">Orsolya Kiraly</name>
</author>
<author>
<name sortKey="Chow, Vincent T K" sort="Chow, Vincent T K" uniqKey="Chow V" first="Vincent T K" last="Chow">Vincent T K. Chow</name>
</author>
<author>
<name sortKey="Engelward, Bevin P" sort="Engelward, Bevin P" uniqKey="Engelward B" first="Bevin P" last="Engelward">Bevin P. Engelward</name>
</author>
</analytic>
<series>
<title level="j">Cellular and molecular life sciences : CMLS</title>
<idno type="eISSN">1420-9071</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>DNA Damage (genetics)</term>
<term>DNA Repair (genetics)</term>
<term>Dogs</term>
<term>Influenza A Virus, H1N1 Subtype</term>
<term>Lung (physiopathology)</term>
<term>Lung (virology)</term>
<term>Madin Darby Canine Kidney Cells</term>
<term>Orthomyxoviridae Infections (genetics)</term>
<term>Orthomyxoviridae Infections (physiopathology)</term>
<term>Oxidative Stress (genetics)</term>
<term>Pneumonia (physiopathology)</term>
<term>Pneumonia (virology)</term>
<term>Regeneration (genetics)</term>
<term>Regeneration (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Altération de l'ADN (génétique)</term>
<term>Animaux</term>
<term>Cellules rénales canines Madin-Darby</term>
<term>Chiens</term>
<term>Infections à Orthomyxoviridae (génétique)</term>
<term>Infections à Orthomyxoviridae (physiopathologie)</term>
<term>Lignée cellulaire</term>
<term>Pneumopathie infectieuse (physiopathologie)</term>
<term>Pneumopathie infectieuse (virologie)</term>
<term>Poumon (physiopathologie)</term>
<term>Poumon (virologie)</term>
<term>Régénération (génétique)</term>
<term>Régénération (physiologie)</term>
<term>Réparation de l'ADN (génétique)</term>
<term>Sous-type H1N1 du virus de la grippe A</term>
<term>Stress oxydatif (génétique)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>DNA Damage</term>
<term>DNA Repair</term>
<term>Orthomyxoviridae Infections</term>
<term>Oxidative Stress</term>
<term>Regeneration</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Altération de l'ADN</term>
<term>Infections à Orthomyxoviridae</term>
<term>Régénération</term>
<term>Réparation de l'ADN</term>
<term>Stress oxydatif</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Régénération</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Regeneration</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathologie" xml:lang="fr">
<term>Infections à Orthomyxoviridae</term>
<term>Pneumopathie infectieuse</term>
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Lung</term>
<term>Orthomyxoviridae Infections</term>
<term>Pneumonia</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Pneumopathie infectieuse</term>
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Lung</term>
<term>Pneumonia</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Dogs</term>
<term>Influenza A Virus, H1N1 Subtype</term>
<term>Madin Darby Canine Kidney Cells</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules rénales canines Madin-Darby</term>
<term>Chiens</term>
<term>Lignée cellulaire</term>
<term>Sous-type H1N1 du virus de la grippe A</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Influenza viruses account for significant morbidity worldwide. Inflammatory responses, including excessive generation of reactive oxygen and nitrogen species (RONS), mediate lung injury in severe influenza infections. However, the molecular basis of inflammation-induced lung damage is not fully understood. Here, we studied influenza H1N1 infected cells in vitro, as well as H1N1 infected mice, and we monitored molecular and cellular responses over the course of 2 weeks in vivo. We show that influenza induces DNA damage to both, when cells are directly exposed to virus in vitro (measured using the comet assay) and also when cells are exposed to virus in vivo (estimated via γH2AX foci). We show that DNA damage, as well as responses to DNA damage persist in vivo until long after virus has been cleared, at times when there are inflammation associated RONS (measured by xanthine oxidase activity and oxidative products). The frequency of lung epithelial and immune cells with increased γH2AX foci is elevated in vivo, especially for dividing cells (Ki-67-positive) exposed to oxidative stress during tissue regeneration. Additionally, we observed a significant increase in apoptotic cells as well as increased levels of DNA double strand break (DSB) repair proteins Ku70, Ku86 and Rad51 during the regenerative phase. In conclusion, results show that influenza induces DNA damage both in vitro and in vivo, and that DNA damage responses are activated, raising the possibility that DNA repair capacity may be a determining factor for tissue recovery and disease outcome.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25809161</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>09</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1420-9071</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>72</Volume>
<Issue>15</Issue>
<PubDate>
<Year>2015</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Cellular and molecular life sciences : CMLS</Title>
<ISOAbbreviation>Cell. Mol. Life Sci.</ISOAbbreviation>
</Journal>
<ArticleTitle>Influenza infection induces host DNA damage and dynamic DNA damage responses during tissue regeneration.</ArticleTitle>
<Pagination>
<MedlinePgn>2973-88</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00018-015-1879-1</ELocationID>
<Abstract>
<AbstractText>Influenza viruses account for significant morbidity worldwide. Inflammatory responses, including excessive generation of reactive oxygen and nitrogen species (RONS), mediate lung injury in severe influenza infections. However, the molecular basis of inflammation-induced lung damage is not fully understood. Here, we studied influenza H1N1 infected cells in vitro, as well as H1N1 infected mice, and we monitored molecular and cellular responses over the course of 2 weeks in vivo. We show that influenza induces DNA damage to both, when cells are directly exposed to virus in vitro (measured using the comet assay) and also when cells are exposed to virus in vivo (estimated via γH2AX foci). We show that DNA damage, as well as responses to DNA damage persist in vivo until long after virus has been cleared, at times when there are inflammation associated RONS (measured by xanthine oxidase activity and oxidative products). The frequency of lung epithelial and immune cells with increased γH2AX foci is elevated in vivo, especially for dividing cells (Ki-67-positive) exposed to oxidative stress during tissue regeneration. Additionally, we observed a significant increase in apoptotic cells as well as increased levels of DNA double strand break (DSB) repair proteins Ku70, Ku86 and Rad51 during the regenerative phase. In conclusion, results show that influenza induces DNA damage both in vitro and in vivo, and that DNA damage responses are activated, raising the possibility that DNA repair capacity may be a determining factor for tissue recovery and disease outcome.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Na</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-10/11 Innovation Wing, #03-12/13/14 Enterprise Wing, Singapore, 138602, Singapore.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Parrish</LastName>
<ForeName>Marcus</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chan</LastName>
<ForeName>Tze Khee</ForeName>
<Initials>TK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Lu</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rai</LastName>
<ForeName>Prashant</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yoshiyuki</LastName>
<ForeName>Yamada</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Abolhassani</LastName>
<ForeName>Nona</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tan</LastName>
<ForeName>Kong Bing</ForeName>
<Initials>KB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kiraly</LastName>
<ForeName>Orsolya</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chow</LastName>
<ForeName>Vincent T K</ForeName>
<Initials>VT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Engelward</LastName>
<ForeName>Bevin P</ForeName>
<Initials>BP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>T32 ES007020</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>03</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Cell Mol Life Sci</MedlineTA>
<NlmUniqueID>9705402</NlmUniqueID>
<ISSNLinking>1420-682X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004249" MajorTopicYN="N">DNA Damage</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004260" MajorTopicYN="N">DNA Repair</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004285" MajorTopicYN="N">Dogs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053118" MajorTopicYN="N">Influenza A Virus, H1N1 Subtype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D061985" MajorTopicYN="N">Madin Darby Canine Kidney Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009976" MajorTopicYN="N">Orthomyxoviridae Infections</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000503" MajorTopicYN="Y">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011014" MajorTopicYN="N">Pneumonia</DescriptorName>
<QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012038" MajorTopicYN="N">Regeneration</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>09</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>03</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2015</Year>
<Month>02</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>3</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>3</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>9</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25809161</ArticleId>
<ArticleId IdType="doi">10.1007/s00018-015-1879-1</ArticleId>
<ArticleId IdType="pmc">PMC4802977</ArticleId>
<ArticleId IdType="mid">NIHMS762767</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mutat Res. 1999 Jun 7;442(1):53-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10366773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Jun 8;405(6787):697-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10864328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2000 Jul 27-Aug 10;10(15):886-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10959836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Dec 8;290(5498):1962-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11110662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Dec 21;276(51):47759-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11673449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2002 Jan 1;115(Pt 1):153-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11801733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2003 Mar 18;107(10):1418-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12642364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5057-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12679524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2003 Jul;17(10):1195-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12832285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res Commun. 1992;16(2):99-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1321077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12871-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14566050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Med. 2003 Dec;12(6):889-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14612962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2003 Dec;112(12):1887-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14679184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biotechnol. 2004 Mar;26(3):249-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15004294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Aug 27;279(35):36504-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15218023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 2005 Jan;126(1):111-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15610769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Aug 02;33(14):4404-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16077026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Aug 17;33(14):4660-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16107556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2006 Jun;36(6):1364-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16703568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2006 Nov;5(22):2671-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17106266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Jan 18;445(7125):319-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17230189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007;35(5):e36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17284459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Repair (Amst). 2007 Jul 1;6(7):923-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17363343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer Ther. 2007 Apr;6(4):1239-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17406032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(1):23-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17406208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Immunol. 1991 Oct;3(10):1025-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1756144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharmacol Exp Ther. 2007 Nov;323(2):675-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17726158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2007 Oct 15;67(20):9658-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17942895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Repair (Amst). 2008 May 3;7(5):762-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18387344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 May 16;133(4):681-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18485875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2008 Jul;118(7):2516-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18521188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2008 Sep 15;7(18):2902-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18769152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Apr;37(6):1767-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19174565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2009 Jun 15;8(12):1853-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19448405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2009 Nov;23(11):3829-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19596899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Oct 22;461(7267):1071-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19847258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Pathol. 2010 May;47(3):507-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20351357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10008-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20534572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 2010 Aug;22(4):475-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20594815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Repair (Amst). 2010 Aug 5;9(8):907-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20634148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nucleic Acids. 2010 Aug 03;2010:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20811597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nucleic Acids. 2010 Nov 01;2010:541050</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21052491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Feb 03;7(2):e1001271</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21304882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>CSH Protoc. 2008 May 01;2008:pdb.prot4986</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21356829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Cancer. 2011 May 1;128(9):1999-2009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21387284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jul;39(13):5474-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21421565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2011 Apr 18;193(2):267-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21482717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1990 Mar;85(3):739-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2155924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):12018-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21715659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2012 Feb;19(2):245-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21738214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2012 Jul;122(7):2680-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22684101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Pharmacol Sin. 2012 Dec;33(12):1533-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22941291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Future Microbiol. 2013 Feb;8(2):257-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23374130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2013 Mar 15;12(6):907-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23422001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2013 Aug;49(2):180-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23492192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Opt. 2013 Apr;18(4):046001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23545853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jul;41(12):6109-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23620287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Indian J Virol. 2010 Jun;21(1):50-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23637478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2013 Jun 21;11:73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23800173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Aug 05;8(8):e71028</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23940685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Nov;41(20):9339-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23945941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2014 Jan 15;15(1):23-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24439895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Jan;10(1):e1004086</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24453986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nutrients. 2014 Jan 27;6(2):517-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24473234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):E4878-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25349415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Dec 1;42(21):13228-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25389264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogenesis. 2014 Nov 24;3:e128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25417725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bio Protoc. 2013;3(16):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27390755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1987 Jun;7(6):2294-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3600663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 1995 Apr-May;8(3):473-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7578935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1993 Apr 22;362(6422):709-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8469282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1996 Apr;16(4):1519-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8657125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 1997 Sep;384(3):205-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9330616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Mar 6;273(10):5858-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9488723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1998 Oct;18(10):5908-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9742108</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/StressCovidV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000431 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000431 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    StressCovidV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:25809161
   |texte=   Influenza infection induces host DNA damage and dynamic DNA damage responses during tissue regeneration.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:25809161" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a StressCovidV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed May 6 16:44:09 2020. Site generation: Sun Mar 28 08:26:57 2021