Serveur d'exploration Stress et Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Early upregulation of acute respiratory distress syndrome-associated cytokines promotes lethal disease in an aged-mouse model of severe acute respiratory syndrome coronavirus infection.

Identifieur interne : 000745 ( PubMed/Corpus ); précédent : 000744; suivant : 000746

Early upregulation of acute respiratory distress syndrome-associated cytokines promotes lethal disease in an aged-mouse model of severe acute respiratory syndrome coronavirus infection.

Auteurs : Barry Rockx ; Tracey Baas ; Gregory A. Zornetzer ; Bart Haagmans ; Timothy Sheahan ; Matthew Frieman ; Matthew D. Dyer ; Thomas H. Teal ; Sean Proll ; Judith Van Den Brand ; Ralph Baric ; Michael G. Katze

Source :

RBID : pubmed:19420084

English descriptors

Abstract

Several respiratory viruses, including influenza virus and severe acute respiratory syndrome coronavirus (SARS-CoV), produce more severe disease in the elderly, yet the molecular mechanisms governing age-related susceptibility remain poorly studied. Advanced age was significantly associated with increased SARS-related deaths, primarily due to the onset of early- and late-stage acute respiratory distress syndrome (ARDS) and pulmonary fibrosis. Infection of aged, but not young, mice with recombinant viruses bearing spike glycoproteins derived from early human or palm civet isolates resulted in death accompanied by pathological changes associated with ARDS. In aged mice, a greater number of differentially expressed genes were observed than in young mice, whose responses were significantly delayed. Differences between lethal and nonlethal virus phenotypes in aged mice could be attributed to differences in host response kinetics rather than virus kinetics. SARS-CoV infection induced a range of interferon, cytokine, and pulmonary wound-healing genes, as well as several genes associated with the onset of ARDS. Mice that died also showed unique transcriptional profiles of immune response, apoptosis, cell cycle control, and stress. Cytokines associated with ARDS were significantly upregulated in animals experiencing lung pathology and lethal disease, while the same animals experienced downregulation of the ACE2 receptor. These data suggest that the magnitude and kinetics of a disproportionately strong host innate immune response contributed to severe respiratory stress and lethality. Although the molecular mechanisms governing ARDS pathophysiology remain unknown in aged animals, these studies reveal a strategy for dissecting the genetic pathways by which SARS-CoV infection induces changes in the host response, leading to death.

DOI: 10.1128/JVI.00127-09
PubMed: 19420084

Links to Exploration step

pubmed:19420084

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Early upregulation of acute respiratory distress syndrome-associated cytokines promotes lethal disease in an aged-mouse model of severe acute respiratory syndrome coronavirus infection.</title>
<author>
<name sortKey="Rockx, Barry" sort="Rockx, Barry" uniqKey="Rockx B" first="Barry" last="Rockx">Barry Rockx</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, University of North Carolina, Chapel Hill, North Carolina, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baas, Tracey" sort="Baas, Tracey" uniqKey="Baas T" first="Tracey" last="Baas">Tracey Baas</name>
</author>
<author>
<name sortKey="Zornetzer, Gregory A" sort="Zornetzer, Gregory A" uniqKey="Zornetzer G" first="Gregory A" last="Zornetzer">Gregory A. Zornetzer</name>
</author>
<author>
<name sortKey="Haagmans, Bart" sort="Haagmans, Bart" uniqKey="Haagmans B" first="Bart" last="Haagmans">Bart Haagmans</name>
</author>
<author>
<name sortKey="Sheahan, Timothy" sort="Sheahan, Timothy" uniqKey="Sheahan T" first="Timothy" last="Sheahan">Timothy Sheahan</name>
</author>
<author>
<name sortKey="Frieman, Matthew" sort="Frieman, Matthew" uniqKey="Frieman M" first="Matthew" last="Frieman">Matthew Frieman</name>
</author>
<author>
<name sortKey="Dyer, Matthew D" sort="Dyer, Matthew D" uniqKey="Dyer M" first="Matthew D" last="Dyer">Matthew D. Dyer</name>
</author>
<author>
<name sortKey="Teal, Thomas H" sort="Teal, Thomas H" uniqKey="Teal T" first="Thomas H" last="Teal">Thomas H. Teal</name>
</author>
<author>
<name sortKey="Proll, Sean" sort="Proll, Sean" uniqKey="Proll S" first="Sean" last="Proll">Sean Proll</name>
</author>
<author>
<name sortKey="Van Den Brand, Judith" sort="Van Den Brand, Judith" uniqKey="Van Den Brand J" first="Judith" last="Van Den Brand">Judith Van Den Brand</name>
</author>
<author>
<name sortKey="Baric, Ralph" sort="Baric, Ralph" uniqKey="Baric R" first="Ralph" last="Baric">Ralph Baric</name>
</author>
<author>
<name sortKey="Katze, Michael G" sort="Katze, Michael G" uniqKey="Katze M" first="Michael G" last="Katze">Michael G. Katze</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19420084</idno>
<idno type="pmid">19420084</idno>
<idno type="doi">10.1128/JVI.00127-09</idno>
<idno type="wicri:Area/PubMed/Corpus">000745</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000745</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Early upregulation of acute respiratory distress syndrome-associated cytokines promotes lethal disease in an aged-mouse model of severe acute respiratory syndrome coronavirus infection.</title>
<author>
<name sortKey="Rockx, Barry" sort="Rockx, Barry" uniqKey="Rockx B" first="Barry" last="Rockx">Barry Rockx</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, University of North Carolina, Chapel Hill, North Carolina, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baas, Tracey" sort="Baas, Tracey" uniqKey="Baas T" first="Tracey" last="Baas">Tracey Baas</name>
</author>
<author>
<name sortKey="Zornetzer, Gregory A" sort="Zornetzer, Gregory A" uniqKey="Zornetzer G" first="Gregory A" last="Zornetzer">Gregory A. Zornetzer</name>
</author>
<author>
<name sortKey="Haagmans, Bart" sort="Haagmans, Bart" uniqKey="Haagmans B" first="Bart" last="Haagmans">Bart Haagmans</name>
</author>
<author>
<name sortKey="Sheahan, Timothy" sort="Sheahan, Timothy" uniqKey="Sheahan T" first="Timothy" last="Sheahan">Timothy Sheahan</name>
</author>
<author>
<name sortKey="Frieman, Matthew" sort="Frieman, Matthew" uniqKey="Frieman M" first="Matthew" last="Frieman">Matthew Frieman</name>
</author>
<author>
<name sortKey="Dyer, Matthew D" sort="Dyer, Matthew D" uniqKey="Dyer M" first="Matthew D" last="Dyer">Matthew D. Dyer</name>
</author>
<author>
<name sortKey="Teal, Thomas H" sort="Teal, Thomas H" uniqKey="Teal T" first="Thomas H" last="Teal">Thomas H. Teal</name>
</author>
<author>
<name sortKey="Proll, Sean" sort="Proll, Sean" uniqKey="Proll S" first="Sean" last="Proll">Sean Proll</name>
</author>
<author>
<name sortKey="Van Den Brand, Judith" sort="Van Den Brand, Judith" uniqKey="Van Den Brand J" first="Judith" last="Van Den Brand">Judith Van Den Brand</name>
</author>
<author>
<name sortKey="Baric, Ralph" sort="Baric, Ralph" uniqKey="Baric R" first="Ralph" last="Baric">Ralph Baric</name>
</author>
<author>
<name sortKey="Katze, Michael G" sort="Katze, Michael G" uniqKey="Katze M" first="Michael G" last="Katze">Michael G. Katze</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aging (immunology)</term>
<term>Animals</term>
<term>Cytokines (genetics)</term>
<term>Cytokines (immunology)</term>
<term>Death</term>
<term>Disease Models, Animal</term>
<term>Female</term>
<term>Gene Expression</term>
<term>Humans</term>
<term>Lung (immunology)</term>
<term>Lung (pathology)</term>
<term>Membrane Glycoproteins (immunology)</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Respiratory Distress Syndrome, Adult (genetics)</term>
<term>Respiratory Distress Syndrome, Adult (immunology)</term>
<term>Respiratory Distress Syndrome, Adult (mortality)</term>
<term>Respiratory Distress Syndrome, Adult (virology)</term>
<term>SARS Virus (immunology)</term>
<term>SARS Virus (isolation & purification)</term>
<term>SARS Virus (physiology)</term>
<term>Severe Acute Respiratory Syndrome (complications)</term>
<term>Severe Acute Respiratory Syndrome (genetics)</term>
<term>Severe Acute Respiratory Syndrome (immunology)</term>
<term>Severe Acute Respiratory Syndrome (virology)</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Up-Regulation</term>
<term>Viral Envelope Proteins (immunology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cytokines</term>
</keywords>
<keywords scheme="MESH" qualifier="complications" xml:lang="en">
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Respiratory Distress Syndrome, Adult</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Aging</term>
<term>Cytokines</term>
<term>Lung</term>
<term>Membrane Glycoproteins</term>
<term>Respiratory Distress Syndrome, Adult</term>
<term>SARS Virus</term>
<term>Severe Acute Respiratory Syndrome</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="mortality" xml:lang="en">
<term>Respiratory Distress Syndrome, Adult</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Lung</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Respiratory Distress Syndrome, Adult</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Death</term>
<term>Disease Models, Animal</term>
<term>Female</term>
<term>Gene Expression</term>
<term>Humans</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Up-Regulation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Several respiratory viruses, including influenza virus and severe acute respiratory syndrome coronavirus (SARS-CoV), produce more severe disease in the elderly, yet the molecular mechanisms governing age-related susceptibility remain poorly studied. Advanced age was significantly associated with increased SARS-related deaths, primarily due to the onset of early- and late-stage acute respiratory distress syndrome (ARDS) and pulmonary fibrosis. Infection of aged, but not young, mice with recombinant viruses bearing spike glycoproteins derived from early human or palm civet isolates resulted in death accompanied by pathological changes associated with ARDS. In aged mice, a greater number of differentially expressed genes were observed than in young mice, whose responses were significantly delayed. Differences between lethal and nonlethal virus phenotypes in aged mice could be attributed to differences in host response kinetics rather than virus kinetics. SARS-CoV infection induced a range of interferon, cytokine, and pulmonary wound-healing genes, as well as several genes associated with the onset of ARDS. Mice that died also showed unique transcriptional profiles of immune response, apoptosis, cell cycle control, and stress. Cytokines associated with ARDS were significantly upregulated in animals experiencing lung pathology and lethal disease, while the same animals experienced downregulation of the ACE2 receptor. These data suggest that the magnitude and kinetics of a disproportionately strong host innate immune response contributed to severe respiratory stress and lethality. Although the molecular mechanisms governing ARDS pathophysiology remain unknown in aged animals, these studies reveal a strategy for dissecting the genetic pathways by which SARS-CoV infection induces changes in the host response, leading to death.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19420084</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>07</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>83</Volume>
<Issue>14</Issue>
<PubDate>
<Year>2009</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Early upregulation of acute respiratory distress syndrome-associated cytokines promotes lethal disease in an aged-mouse model of severe acute respiratory syndrome coronavirus infection.</ArticleTitle>
<Pagination>
<MedlinePgn>7062-74</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.00127-09</ELocationID>
<Abstract>
<AbstractText>Several respiratory viruses, including influenza virus and severe acute respiratory syndrome coronavirus (SARS-CoV), produce more severe disease in the elderly, yet the molecular mechanisms governing age-related susceptibility remain poorly studied. Advanced age was significantly associated with increased SARS-related deaths, primarily due to the onset of early- and late-stage acute respiratory distress syndrome (ARDS) and pulmonary fibrosis. Infection of aged, but not young, mice with recombinant viruses bearing spike glycoproteins derived from early human or palm civet isolates resulted in death accompanied by pathological changes associated with ARDS. In aged mice, a greater number of differentially expressed genes were observed than in young mice, whose responses were significantly delayed. Differences between lethal and nonlethal virus phenotypes in aged mice could be attributed to differences in host response kinetics rather than virus kinetics. SARS-CoV infection induced a range of interferon, cytokine, and pulmonary wound-healing genes, as well as several genes associated with the onset of ARDS. Mice that died also showed unique transcriptional profiles of immune response, apoptosis, cell cycle control, and stress. Cytokines associated with ARDS were significantly upregulated in animals experiencing lung pathology and lethal disease, while the same animals experienced downregulation of the ACE2 receptor. These data suggest that the magnitude and kinetics of a disproportionately strong host innate immune response contributed to severe respiratory stress and lethality. Although the molecular mechanisms governing ARDS pathophysiology remain unknown in aged animals, these studies reveal a strategy for dissecting the genetic pathways by which SARS-CoV infection induces changes in the host response, leading to death.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rockx</LastName>
<ForeName>Barry</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, University of North Carolina, Chapel Hill, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baas</LastName>
<ForeName>Tracey</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zornetzer</LastName>
<ForeName>Gregory A</ForeName>
<Initials>GA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Haagmans</LastName>
<ForeName>Bart</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sheahan</LastName>
<ForeName>Timothy</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Frieman</LastName>
<ForeName>Matthew</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dyer</LastName>
<ForeName>Matthew D</ForeName>
<Initials>MD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Teal</LastName>
<ForeName>Thomas H</ForeName>
<Initials>TH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Proll</LastName>
<ForeName>Sean</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>van den Brand</LastName>
<ForeName>Judith</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Baric</LastName>
<ForeName>Ralph</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Katze</LastName>
<ForeName>Michael G</ForeName>
<Initials>MG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P01 AI059443</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL080621</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01-HL080621</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01-AI059443</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI059136</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI059136</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>05</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016207">Cytokines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>J Virol. 2009 Sep;83(17):9022</RefSource>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000375" MajorTopicYN="N">Aging</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016207" MajorTopicYN="N">Cytokines</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003643" MajorTopicYN="N">Death</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008807" MajorTopicYN="N">Mice, Inbred BALB C</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012128" MajorTopicYN="N">Respiratory Distress Syndrome, Adult</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000401" MajorTopicYN="Y">mortality</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000150" MajorTopicYN="Y">complications</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015854" MajorTopicYN="Y">Up-Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>5</Month>
<Day>8</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>5</Month>
<Day>8</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>7</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19420084</ArticleId>
<ArticleId IdType="pii">JVI.00127-09</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.00127-09</ArticleId>
<ArticleId IdType="pmc">PMC2704758</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Intensive Care Med. 2005 Sep-Oct;20(5):302-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16206417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16199517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Chem. 2005 Dec;51(12):2333-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16195357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Dec;79(24):15511-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2006 Apr 15;193(8):1078-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16544248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2006 Jun;6(3):271-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16581295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2006 Jun;12(6):682-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16715088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Pharm Des. 2006;12(24):3161-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16918441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Oct 5;443(7111):578-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17006449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2006 Nov;210(3):288-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17031779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2006 Nov 1;174(9):1011-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16917113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jan;81(2):991-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17079327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jan;81(2):548-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Mar;81(5):2221-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17166899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2007 Apr;170(4):1136-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17392154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jul;81(14):7410-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17507479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Aug;81(16):8692-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17537853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Sep;81(18):9812-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17596301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2007 Aug 10;3(8):e112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17696609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2007 Oct;171(4):1215-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17717141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2007;8:290</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17683603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Jul 26;362(9380):263-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Apr;82(7):3220-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18199635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2008 Apr;133(1):13-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17374415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2008 Apr;133(1):101-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17451827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Oct;82(19):9465-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18632870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 Dec;4(12):e1000240</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19079579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Drug Targets. 2008 Feb;9(2):165-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18288968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Formos Med Assoc. 1999 Nov;98(11):778-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10705696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2000 May;25(1):25-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10802651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Res. 2001 Apr;77(2):123-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11355567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2001 Dec;29(4):365-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11726920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2002 Sep 1;166(5):646-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12204859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2002 Dec 1;100(12):4001-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12433697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 May 24;361(9371):1767-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12781535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2003 Jul;200(3):282-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12845623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Travel Med. 2002 Nov-Dec;9(6):326-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12962589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Pathol. 2003 Aug;34(8):743-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14506633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12995-3000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14569023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 30;425(6961):915</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14586458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2004 Feb;202(2):145-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14743496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Apr;78(7):3572-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15016880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respirology. 2003 Nov;8 Suppl:S9-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15018127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2004 Jun;203(2):631-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15141377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Sep;78(17):9499-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15308742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med J Aust. 1983 Apr 30;1(9):430-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6835164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Exp Immunol. 1990 Feb;79(2):151-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2311295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chest. 1995 Apr;107(4):1062-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7705118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Paediatr Child Health. 1999 Apr;35(2):207-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10365363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2005 Jan;288(1):L3-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15591040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Jan;79(1):503-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15596843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2005 Feb;75(2):185-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15602737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2005 Apr 15;171(8):850-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15657466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 May;79(9):5833-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15827197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2005 Jun;205:285-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15882361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Apr 20;24(8):1634-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15791205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jul 7;436(7047):112-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16001071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2005 Aug;11(8):875-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16007097</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/StressCovidV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000745 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000745 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    StressCovidV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19420084
   |texte=   Early upregulation of acute respiratory distress syndrome-associated cytokines promotes lethal disease in an aged-mouse model of severe acute respiratory syndrome coronavirus infection.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:19420084" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a StressCovidV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed May 6 16:44:09 2020. Site generation: Sun Mar 28 08:26:57 2021