Serveur d'exploration Stress et Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Influenza induces endoplasmic reticulum stress, caspase-12-dependent apoptosis, and c-Jun N-terminal kinase-mediated transforming growth factor-β release in lung epithelial cells.

Identifieur interne : 000617 ( PubMed/Corpus ); précédent : 000616; suivant : 000618

Influenza induces endoplasmic reticulum stress, caspase-12-dependent apoptosis, and c-Jun N-terminal kinase-mediated transforming growth factor-β release in lung epithelial cells.

Auteurs : Elle C. Roberson ; Jane E. Tully ; Amy S. Guala ; Jessica N. Reiss ; Karolyn E. Godburn ; Derek A. Pociask ; John F. Alcorn ; David W H. Riches ; Oliver Dienz ; Yvonne M W. Janssen-Heininger ; Vikas Anathy

Source :

RBID : pubmed:21799120

English descriptors

Abstract

Influenza A virus (IAV) infection is known to induce endoplasmic reticulum (ER) stress, Fas-dependent apoptosis, and TGF-β production in a variety of cells. However, the relationship between these events in murine primary tracheal epithelial cells (MTECS), which are considered one of the primary sites of IAV infection and replication, is unclear. We show that IAV infection induced ER stress marker activating transcription factor-6 and endoplasmic reticulum protein 57-kD (ERp57), but not C/EBP homologous protein (CHOP). In contrast, the ER stress inducer thapsigargin (THP) increased CHOP. IAV infection activated caspases and apoptosis, independently of Fas and caspase-8, in MTECs. Instead, apoptosis was mediated by caspase-12. A decrease in ERp57 attenuated the IAV burden and decreased caspase-12 activation and apoptosis in epithelial cells. TGF-β production was enhanced in IAV-infected MTECs, compared with THP or staurosporine. IAV infection caused the activation of c-Jun N-terminal kinase (JNK). Furthermore, IAV-induced TGF-β production required the presence of JNK1, a finding that suggests a role for JNK1 in IAV-induced epithelial injury and subsequent TGF-β production. These novel findings suggest a potential mechanistic role for a distinct ER stress response induced by IAV, and a profibrogenic/repair response in contrast to other pharmacological inducers of ER stress. These responses may also have a potential role in acute lung injury, fibroproliferative acute respiratory distress syndrome, and the recently identified H1N1 influenza-induced exacerbations of chronic obstructive pulmonary disease (Wedzicha JA. Proc Am Thorac Soc 2004;1:115-120) and idiopathic pulmonary fibrosis (Umeda Y, et al. Int Med 2010;49:2333-2336).

DOI: 10.1165/rcmb.2010-0460OC
PubMed: 21799120

Links to Exploration step

pubmed:21799120

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Influenza induces endoplasmic reticulum stress, caspase-12-dependent apoptosis, and c-Jun N-terminal kinase-mediated transforming growth factor-β release in lung epithelial cells.</title>
<author>
<name sortKey="Roberson, Elle C" sort="Roberson, Elle C" uniqKey="Roberson E" first="Elle C" last="Roberson">Elle C. Roberson</name>
<affiliation>
<nlm:affiliation>Department of Pathology, University of Vermont, Burlington, VT 05405, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tully, Jane E" sort="Tully, Jane E" uniqKey="Tully J" first="Jane E" last="Tully">Jane E. Tully</name>
</author>
<author>
<name sortKey="Guala, Amy S" sort="Guala, Amy S" uniqKey="Guala A" first="Amy S" last="Guala">Amy S. Guala</name>
</author>
<author>
<name sortKey="Reiss, Jessica N" sort="Reiss, Jessica N" uniqKey="Reiss J" first="Jessica N" last="Reiss">Jessica N. Reiss</name>
</author>
<author>
<name sortKey="Godburn, Karolyn E" sort="Godburn, Karolyn E" uniqKey="Godburn K" first="Karolyn E" last="Godburn">Karolyn E. Godburn</name>
</author>
<author>
<name sortKey="Pociask, Derek A" sort="Pociask, Derek A" uniqKey="Pociask D" first="Derek A" last="Pociask">Derek A. Pociask</name>
</author>
<author>
<name sortKey="Alcorn, John F" sort="Alcorn, John F" uniqKey="Alcorn J" first="John F" last="Alcorn">John F. Alcorn</name>
</author>
<author>
<name sortKey="Riches, David W H" sort="Riches, David W H" uniqKey="Riches D" first="David W H" last="Riches">David W H. Riches</name>
</author>
<author>
<name sortKey="Dienz, Oliver" sort="Dienz, Oliver" uniqKey="Dienz O" first="Oliver" last="Dienz">Oliver Dienz</name>
</author>
<author>
<name sortKey="Janssen Heininger, Yvonne M W" sort="Janssen Heininger, Yvonne M W" uniqKey="Janssen Heininger Y" first="Yvonne M W" last="Janssen-Heininger">Yvonne M W. Janssen-Heininger</name>
</author>
<author>
<name sortKey="Anathy, Vikas" sort="Anathy, Vikas" uniqKey="Anathy V" first="Vikas" last="Anathy">Vikas Anathy</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:21799120</idno>
<idno type="pmid">21799120</idno>
<idno type="doi">10.1165/rcmb.2010-0460OC</idno>
<idno type="wicri:Area/PubMed/Corpus">000617</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000617</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Influenza induces endoplasmic reticulum stress, caspase-12-dependent apoptosis, and c-Jun N-terminal kinase-mediated transforming growth factor-β release in lung epithelial cells.</title>
<author>
<name sortKey="Roberson, Elle C" sort="Roberson, Elle C" uniqKey="Roberson E" first="Elle C" last="Roberson">Elle C. Roberson</name>
<affiliation>
<nlm:affiliation>Department of Pathology, University of Vermont, Burlington, VT 05405, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tully, Jane E" sort="Tully, Jane E" uniqKey="Tully J" first="Jane E" last="Tully">Jane E. Tully</name>
</author>
<author>
<name sortKey="Guala, Amy S" sort="Guala, Amy S" uniqKey="Guala A" first="Amy S" last="Guala">Amy S. Guala</name>
</author>
<author>
<name sortKey="Reiss, Jessica N" sort="Reiss, Jessica N" uniqKey="Reiss J" first="Jessica N" last="Reiss">Jessica N. Reiss</name>
</author>
<author>
<name sortKey="Godburn, Karolyn E" sort="Godburn, Karolyn E" uniqKey="Godburn K" first="Karolyn E" last="Godburn">Karolyn E. Godburn</name>
</author>
<author>
<name sortKey="Pociask, Derek A" sort="Pociask, Derek A" uniqKey="Pociask D" first="Derek A" last="Pociask">Derek A. Pociask</name>
</author>
<author>
<name sortKey="Alcorn, John F" sort="Alcorn, John F" uniqKey="Alcorn J" first="John F" last="Alcorn">John F. Alcorn</name>
</author>
<author>
<name sortKey="Riches, David W H" sort="Riches, David W H" uniqKey="Riches D" first="David W H" last="Riches">David W H. Riches</name>
</author>
<author>
<name sortKey="Dienz, Oliver" sort="Dienz, Oliver" uniqKey="Dienz O" first="Oliver" last="Dienz">Oliver Dienz</name>
</author>
<author>
<name sortKey="Janssen Heininger, Yvonne M W" sort="Janssen Heininger, Yvonne M W" uniqKey="Janssen Heininger Y" first="Yvonne M W" last="Janssen-Heininger">Yvonne M W. Janssen-Heininger</name>
</author>
<author>
<name sortKey="Anathy, Vikas" sort="Anathy, Vikas" uniqKey="Anathy V" first="Vikas" last="Anathy">Vikas Anathy</name>
</author>
</analytic>
<series>
<title level="j">American journal of respiratory cell and molecular biology</title>
<idno type="eISSN">1535-4989</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Apoptosis</term>
<term>Caspase 12 (metabolism)</term>
<term>Cells, Cultured</term>
<term>Endoplasmic Reticulum (drug effects)</term>
<term>Endoplasmic Reticulum (metabolism)</term>
<term>Endoplasmic Reticulum (virology)</term>
<term>Endoplasmic Reticulum Stress</term>
<term>Enzyme Activation</term>
<term>Enzyme-Linked Immunosorbent Assay</term>
<term>Influenza A Virus, H1N1 Subtype (physiology)</term>
<term>JNK Mitogen-Activated Protein Kinases (metabolism)</term>
<term>Lung (metabolism)</term>
<term>Lung (pathology)</term>
<term>Lung (virology)</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Orthomyxoviridae Infections (metabolism)</term>
<term>Orthomyxoviridae Infections (pathology)</term>
<term>Respiratory Mucosa (metabolism)</term>
<term>Respiratory Mucosa (pathology)</term>
<term>Respiratory Mucosa (virology)</term>
<term>Staurosporine (pharmacology)</term>
<term>Thapsigargin (pharmacology)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
<term>Transforming Growth Factor beta (metabolism)</term>
<term>Viral Load</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Caspase 12</term>
<term>JNK Mitogen-Activated Protein Kinases</term>
<term>Transcription Factors</term>
<term>Transforming Growth Factor beta</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Endoplasmic Reticulum</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Endoplasmic Reticulum</term>
<term>Lung</term>
<term>Orthomyxoviridae Infections</term>
<term>Respiratory Mucosa</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Lung</term>
<term>Orthomyxoviridae Infections</term>
<term>Respiratory Mucosa</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Staurosporine</term>
<term>Thapsigargin</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Influenza A Virus, H1N1 Subtype</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Endoplasmic Reticulum</term>
<term>Lung</term>
<term>Respiratory Mucosa</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Apoptosis</term>
<term>Cells, Cultured</term>
<term>Endoplasmic Reticulum Stress</term>
<term>Enzyme Activation</term>
<term>Enzyme-Linked Immunosorbent Assay</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Viral Load</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Influenza A virus (IAV) infection is known to induce endoplasmic reticulum (ER) stress, Fas-dependent apoptosis, and TGF-β production in a variety of cells. However, the relationship between these events in murine primary tracheal epithelial cells (MTECS), which are considered one of the primary sites of IAV infection and replication, is unclear. We show that IAV infection induced ER stress marker activating transcription factor-6 and endoplasmic reticulum protein 57-kD (ERp57), but not C/EBP homologous protein (CHOP). In contrast, the ER stress inducer thapsigargin (THP) increased CHOP. IAV infection activated caspases and apoptosis, independently of Fas and caspase-8, in MTECs. Instead, apoptosis was mediated by caspase-12. A decrease in ERp57 attenuated the IAV burden and decreased caspase-12 activation and apoptosis in epithelial cells. TGF-β production was enhanced in IAV-infected MTECs, compared with THP or staurosporine. IAV infection caused the activation of c-Jun N-terminal kinase (JNK). Furthermore, IAV-induced TGF-β production required the presence of JNK1, a finding that suggests a role for JNK1 in IAV-induced epithelial injury and subsequent TGF-β production. These novel findings suggest a potential mechanistic role for a distinct ER stress response induced by IAV, and a profibrogenic/repair response in contrast to other pharmacological inducers of ER stress. These responses may also have a potential role in acute lung injury, fibroproliferative acute respiratory distress syndrome, and the recently identified H1N1 influenza-induced exacerbations of chronic obstructive pulmonary disease (Wedzicha JA. Proc Am Thorac Soc 2004;1:115-120) and idiopathic pulmonary fibrosis (Umeda Y, et al. Int Med 2010;49:2333-2336).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21799120</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>06</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1535-4989</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>46</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2012</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>American journal of respiratory cell and molecular biology</Title>
<ISOAbbreviation>Am. J. Respir. Cell Mol. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Influenza induces endoplasmic reticulum stress, caspase-12-dependent apoptosis, and c-Jun N-terminal kinase-mediated transforming growth factor-β release in lung epithelial cells.</ArticleTitle>
<Pagination>
<MedlinePgn>573-81</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1165/rcmb.2010-0460OC</ELocationID>
<Abstract>
<AbstractText>Influenza A virus (IAV) infection is known to induce endoplasmic reticulum (ER) stress, Fas-dependent apoptosis, and TGF-β production in a variety of cells. However, the relationship between these events in murine primary tracheal epithelial cells (MTECS), which are considered one of the primary sites of IAV infection and replication, is unclear. We show that IAV infection induced ER stress marker activating transcription factor-6 and endoplasmic reticulum protein 57-kD (ERp57), but not C/EBP homologous protein (CHOP). In contrast, the ER stress inducer thapsigargin (THP) increased CHOP. IAV infection activated caspases and apoptosis, independently of Fas and caspase-8, in MTECs. Instead, apoptosis was mediated by caspase-12. A decrease in ERp57 attenuated the IAV burden and decreased caspase-12 activation and apoptosis in epithelial cells. TGF-β production was enhanced in IAV-infected MTECs, compared with THP or staurosporine. IAV infection caused the activation of c-Jun N-terminal kinase (JNK). Furthermore, IAV-induced TGF-β production required the presence of JNK1, a finding that suggests a role for JNK1 in IAV-induced epithelial injury and subsequent TGF-β production. These novel findings suggest a potential mechanistic role for a distinct ER stress response induced by IAV, and a profibrogenic/repair response in contrast to other pharmacological inducers of ER stress. These responses may also have a potential role in acute lung injury, fibroproliferative acute respiratory distress syndrome, and the recently identified H1N1 influenza-induced exacerbations of chronic obstructive pulmonary disease (Wedzicha JA. Proc Am Thorac Soc 2004;1:115-120) and idiopathic pulmonary fibrosis (Umeda Y, et al. Int Med 2010;49:2333-2336).</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Roberson</LastName>
<ForeName>Elle C</ForeName>
<Initials>EC</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, University of Vermont, Burlington, VT 05405, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tully</LastName>
<ForeName>Jane E</ForeName>
<Initials>JE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Guala</LastName>
<ForeName>Amy S</ForeName>
<Initials>AS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Reiss</LastName>
<ForeName>Jessica N</ForeName>
<Initials>JN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Godburn</LastName>
<ForeName>Karolyn E</ForeName>
<Initials>KE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pociask</LastName>
<ForeName>Derek A</ForeName>
<Initials>DA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Alcorn</LastName>
<ForeName>John F</ForeName>
<Initials>JF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Riches</LastName>
<ForeName>David W H</ForeName>
<Initials>DW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dienz</LastName>
<ForeName>Oliver</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Janssen-Heininger</LastName>
<ForeName>Yvonne M W</ForeName>
<Initials>YM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Anathy</LastName>
<ForeName>Vikas</ForeName>
<Initials>V</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P20 RR021905</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P20 RR021905-05</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL079331</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL079331</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P20 GM103496</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>07</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Am J Respir Cell Mol Biol</MedlineTA>
<NlmUniqueID>8917225</NlmUniqueID>
<ISSNLinking>1044-1549</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016212">Transforming Growth Factor beta</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>67526-95-8</RegistryNumber>
<NameOfSubstance UI="D019284">Thapsigargin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.24</RegistryNumber>
<NameOfSubstance UI="D048031">JNK Mitogen-Activated Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="D053454">Caspase 12</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>H88EPA0A3N</RegistryNumber>
<NameOfSubstance UI="D019311">Staurosporine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017209" MajorTopicYN="Y">Apoptosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053454" MajorTopicYN="N">Caspase 12</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004721" MajorTopicYN="N">Endoplasmic Reticulum</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059865" MajorTopicYN="Y">Endoplasmic Reticulum Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004789" MajorTopicYN="N">Enzyme Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004797" MajorTopicYN="N">Enzyme-Linked Immunosorbent Assay</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053118" MajorTopicYN="N">Influenza A Virus, H1N1 Subtype</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048031" MajorTopicYN="N">JNK Mitogen-Activated Protein Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009976" MajorTopicYN="N">Orthomyxoviridae Infections</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020545" MajorTopicYN="N">Respiratory Mucosa</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019311" MajorTopicYN="N">Staurosporine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019284" MajorTopicYN="N">Thapsigargin</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016212" MajorTopicYN="N">Transforming Growth Factor beta</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019562" MajorTopicYN="N">Viral Load</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>7</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>7</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21799120</ArticleId>
<ArticleId IdType="pii">2010-0460OC</ArticleId>
<ArticleId IdType="doi">10.1165/rcmb.2010-0460OC</ArticleId>
<ArticleId IdType="pmc">PMC3359902</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Oncogene. 1999 Nov 1;18(45):6158-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10557107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1996 Dec;70(12):8624-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8970987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Apoptosis. 2000 Apr;5(2):107-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11232238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Dec 1;17(23):6888-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2005 Sep;29(4):837-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16102605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Mar 10;281(10):6219-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16407314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Aug;80(16):8060-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16873262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 Nov;4(11):e374</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17090218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Mar;81(5):2221-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17166899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pathol. 2008;3:499-522</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18039138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2008 Apr 1;121(Pt 7):1036-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18334556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2008 May;8(5):337-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18408735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2008 Sep;136(1-2):91-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18550190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Jul 24;454(7203):455-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18650916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2008 Sep 1;181(5):3575-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18714031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2009 Jan;227(1):75-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19120477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jun 18;459(7249):931-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19525932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2009 Aug;9(8):537-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19629069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2009 Oct;119(10):2925-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2009 Dec 15;183(12):8244-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20007588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2010 Jan 1;181(1):72-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19875682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Dec 24;139(7):1255-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20064372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2010 Mar 15;207(3):535-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20176803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2010 Aug 5;73(9):1680-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20470912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2010 Aug;11(8):656-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20644571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>South Med J. 2010 Aug;103(8):786-90; quiz 791-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20622733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Nov;84(21):11359-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20702616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010;6(10):e1001136</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20949074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2011 Mar;44(3):404-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20463293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Jan 6;403(6765):98-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10638761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Apr 27;276(17):13935-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11278723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci STKE. 2001 Jul 3;2001(89):re2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2002 Nov;161(5):1783-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12414525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2002 Nov;110(10):1389-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12438434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Care Med. 2003 Apr;31(4 Suppl):S258-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12682450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2003 May 10;309(2):181-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12758165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2003 Sep;84(Pt 9):2389-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Aug;24(15):6763-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15254243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2011 Apr;44(4):571-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20581097</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/StressCovidV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000617 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000617 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    StressCovidV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:21799120
   |texte=   Influenza induces endoplasmic reticulum stress, caspase-12-dependent apoptosis, and c-Jun N-terminal kinase-mediated transforming growth factor-β release in lung epithelial cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:21799120" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a StressCovidV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed May 6 16:44:09 2020. Site generation: Sun Mar 28 08:26:57 2021