Serveur d'exploration Stress et Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Lipid charge regulation of non-specific biological ion channels.

Identifieur interne : 000490 ( PubMed/Corpus ); précédent : 000489; suivant : 000491

Lipid charge regulation of non-specific biological ion channels.

Auteurs : Vicente M. Aguilella ; Carmina Verdiá-Báguena ; Antonio Alcaraz

Source :

RBID : pubmed:24452437

English descriptors

Abstract

Ion channels are specialized proteins that enable the movement of charges through otherwise impermeable lipidic membranes. Their action is essential in living organisms facilitating electric signaling, muscle contraction or osmotic stress response among other effects. The protein and the lipid charges configure a polarized interface that yields local ionic concentrations and electric potentials that are very different from those of the bulk electrolyte. The combined effect of gradients of ionic concentration and electric potential causes the transport of ions through channels. Here we analyze charge regulation effects in different protein-lipid conformations, stressing how important is the role of electrostatic interactions in the ion channel function that traditionally has been rationalized paying attention mainly to changes in pore size. Tuning lipid charge combined with conductance and selectivity measurements is shown to be a complementary method to evidence lipid involvement in the structure of a biological ion channel.

DOI: 10.1039/c3cp54690j
PubMed: 24452437

Links to Exploration step

pubmed:24452437

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Lipid charge regulation of non-specific biological ion channels.</title>
<author>
<name sortKey="Aguilella, Vicente M" sort="Aguilella, Vicente M" uniqKey="Aguilella V" first="Vicente M" last="Aguilella">Vicente M. Aguilella</name>
<affiliation>
<nlm:affiliation>Dept. Physics, Lab. Molecular Biophysics, Universitat Jaume I, 12080 Castellón, Spain. aguilell@uji.es.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Verdia Baguena, Carmina" sort="Verdia Baguena, Carmina" uniqKey="Verdia Baguena C" first="Carmina" last="Verdiá-Báguena">Carmina Verdiá-Báguena</name>
</author>
<author>
<name sortKey="Alcaraz, Antonio" sort="Alcaraz, Antonio" uniqKey="Alcaraz A" first="Antonio" last="Alcaraz">Antonio Alcaraz</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24452437</idno>
<idno type="pmid">24452437</idno>
<idno type="doi">10.1039/c3cp54690j</idno>
<idno type="wicri:Area/PubMed/Corpus">000490</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000490</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Lipid charge regulation of non-specific biological ion channels.</title>
<author>
<name sortKey="Aguilella, Vicente M" sort="Aguilella, Vicente M" uniqKey="Aguilella V" first="Vicente M" last="Aguilella">Vicente M. Aguilella</name>
<affiliation>
<nlm:affiliation>Dept. Physics, Lab. Molecular Biophysics, Universitat Jaume I, 12080 Castellón, Spain. aguilell@uji.es.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Verdia Baguena, Carmina" sort="Verdia Baguena, Carmina" uniqKey="Verdia Baguena C" first="Carmina" last="Verdiá-Báguena">Carmina Verdiá-Báguena</name>
</author>
<author>
<name sortKey="Alcaraz, Antonio" sort="Alcaraz, Antonio" uniqKey="Alcaraz A" first="Antonio" last="Alcaraz">Antonio Alcaraz</name>
</author>
</analytic>
<series>
<title level="j">Physical chemistry chemical physics : PCCP</title>
<idno type="eISSN">1463-9084</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alamethicin (chemistry)</term>
<term>Alamethicin (metabolism)</term>
<term>Anti-Bacterial Agents (chemistry)</term>
<term>Anti-Bacterial Agents (pharmacology)</term>
<term>Bacterial Proteins (chemistry)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Electric Conductivity</term>
<term>Hemolysin Proteins (chemistry)</term>
<term>Hemolysin Proteins (metabolism)</term>
<term>Ion Channels (chemistry)</term>
<term>Ion Channels (metabolism)</term>
<term>Ion Transport (drug effects)</term>
<term>Ions (chemistry)</term>
<term>Ions (metabolism)</term>
<term>Lipids (chemistry)</term>
<term>SARS Virus (metabolism)</term>
<term>Static Electricity</term>
<term>Viral Envelope Proteins (chemistry)</term>
<term>Viral Envelope Proteins (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Alamethicin</term>
<term>Anti-Bacterial Agents</term>
<term>Bacterial Proteins</term>
<term>Hemolysin Proteins</term>
<term>Ion Channels</term>
<term>Ions</term>
<term>Lipids</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alamethicin</term>
<term>Bacterial Proteins</term>
<term>Hemolysin Proteins</term>
<term>Ion Channels</term>
<term>Ions</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Anti-Bacterial Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Ion Transport</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Electric Conductivity</term>
<term>Static Electricity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ion channels are specialized proteins that enable the movement of charges through otherwise impermeable lipidic membranes. Their action is essential in living organisms facilitating electric signaling, muscle contraction or osmotic stress response among other effects. The protein and the lipid charges configure a polarized interface that yields local ionic concentrations and electric potentials that are very different from those of the bulk electrolyte. The combined effect of gradients of ionic concentration and electric potential causes the transport of ions through channels. Here we analyze charge regulation effects in different protein-lipid conformations, stressing how important is the role of electrostatic interactions in the ion channel function that traditionally has been rationalized paying attention mainly to changes in pore size. Tuning lipid charge combined with conductance and selectivity measurements is shown to be a complementary method to evidence lipid involvement in the structure of a biological ion channel. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24452437</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>09</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>02</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1463-9084</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2014</Year>
<Month>Mar</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Physical chemistry chemical physics : PCCP</Title>
<ISOAbbreviation>Phys Chem Chem Phys</ISOAbbreviation>
</Journal>
<ArticleTitle>Lipid charge regulation of non-specific biological ion channels.</ArticleTitle>
<Pagination>
<MedlinePgn>3881-93</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1039/c3cp54690j</ELocationID>
<Abstract>
<AbstractText>Ion channels are specialized proteins that enable the movement of charges through otherwise impermeable lipidic membranes. Their action is essential in living organisms facilitating electric signaling, muscle contraction or osmotic stress response among other effects. The protein and the lipid charges configure a polarized interface that yields local ionic concentrations and electric potentials that are very different from those of the bulk electrolyte. The combined effect of gradients of ionic concentration and electric potential causes the transport of ions through channels. Here we analyze charge regulation effects in different protein-lipid conformations, stressing how important is the role of electrostatic interactions in the ion channel function that traditionally has been rationalized paying attention mainly to changes in pore size. Tuning lipid charge combined with conductance and selectivity measurements is shown to be a complementary method to evidence lipid involvement in the structure of a biological ion channel. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Aguilella</LastName>
<ForeName>Vicente M</ForeName>
<Initials>VM</Initials>
<AffiliationInfo>
<Affiliation>Dept. Physics, Lab. Molecular Biophysics, Universitat Jaume I, 12080 Castellón, Spain. aguilell@uji.es.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Verdiá-Báguena</LastName>
<ForeName>Carmina</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Alcaraz</LastName>
<ForeName>Antonio</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Phys Chem Chem Phys</MedlineTA>
<NlmUniqueID>100888160</NlmUniqueID>
<ISSNLinking>1463-9076</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000900">Anti-Bacterial Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C501689">E protein, SARS coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006460">Hemolysin Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007473">Ion Channels</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007477">Ions</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008055">Lipids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>27061-78-5</RegistryNumber>
<NameOfSubstance UI="D000408">Alamethicin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000408" MajorTopicYN="N">Alamethicin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000900" MajorTopicYN="N">Anti-Bacterial Agents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004553" MajorTopicYN="N">Electric Conductivity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006460" MajorTopicYN="N">Hemolysin Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007473" MajorTopicYN="N">Ion Channels</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017136" MajorTopicYN="N">Ion Transport</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007477" MajorTopicYN="N">Ions</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008055" MajorTopicYN="N">Lipids</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055672" MajorTopicYN="N">Static Electricity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24452437</ArticleId>
<ArticleId IdType="doi">10.1039/c3cp54690j</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/StressCovidV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000490 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000490 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    StressCovidV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24452437
   |texte=   Lipid charge regulation of non-specific biological ion channels.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24452437" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a StressCovidV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed May 6 16:44:09 2020. Site generation: Sun Mar 28 08:26:57 2021