Serveur d'exploration Stress et Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Lifespan extension in a semelparous chordate occurs via developmental growth arrest just prior to meiotic entry.

Identifieur interne : 000479 ( PubMed/Corpus ); précédent : 000478; suivant : 000480

Lifespan extension in a semelparous chordate occurs via developmental growth arrest just prior to meiotic entry.

Auteurs : Gunasekaran Subramaniam ; Coen Campsteijn ; Eric M. Thompson

Source :

RBID : pubmed:24695788

English descriptors

Abstract

It is proposed that the ageing process is linked to signaling from the germline such that the rate of ageing can be adjusted to the state of the reproductive system, allowing these two processes to co-evolve. Mechanistic insight into this link has been primarily derived from iteroparous reproductive models, the nematode C. elegans, and the arthropod Drosophila. Here, we examined to what extent these mechanisms are evolutionarily conserved in a semelparous chordate, Oikopleura dioica, where we identify a developmental growth arrest (GA) in response to crowded, diet-restricted conditions, which can extend its lifespan at least three-fold. Under nutritional stress, the iteroparative models sacrifice germ cells that have entered meiosis, while maintaining a reduced pool of active germline stem cells (GSCs). In contrast, O. dioica only entered GA prior to meiotic entry. Stress conditions encountered after this point led to maturation in a normal time frame but with reduced reproductive output. During GA, TOR signaling was inhibited, whereas MAPK, ERK1/2 and p38 pathways were activated, and under such conditions, activation of these pathways was shown to be critical for survival. Direct inhibition of TOR signaling alone was sufficient to prevent meiotic entry and germline differentiation. This inhibition activated the p38 pathway, but did not activate the ERK1/2 pathway. Thus, the link between reproductive status and lifespan extension in response to nutrient-limited conditions is interpreted in a significantly different manner in these iteroparative versus semelparous models. In the latter case, meiotic entry is a definitive signal that lifespan extension can no longer occur, whereas in the former, meiotic entry is not a unique chronological event, and can be largely erased during lifespan extension in response to nutrient stress, and reactivated from a pool of maintained GSCs when conditions improve.

DOI: 10.1371/journal.pone.0093787
PubMed: 24695788

Links to Exploration step

pubmed:24695788

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Lifespan extension in a semelparous chordate occurs via developmental growth arrest just prior to meiotic entry.</title>
<author>
<name sortKey="Subramaniam, Gunasekaran" sort="Subramaniam, Gunasekaran" uniqKey="Subramaniam G" first="Gunasekaran" last="Subramaniam">Gunasekaran Subramaniam</name>
<affiliation>
<nlm:affiliation>Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Campsteijn, Coen" sort="Campsteijn, Coen" uniqKey="Campsteijn C" first="Coen" last="Campsteijn">Coen Campsteijn</name>
<affiliation>
<nlm:affiliation>Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Thompson, Eric M" sort="Thompson, Eric M" uniqKey="Thompson E" first="Eric M" last="Thompson">Eric M. Thompson</name>
<affiliation>
<nlm:affiliation>Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway; Department of Biology, University of Bergen, Bergen, Norway.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24695788</idno>
<idno type="pmid">24695788</idno>
<idno type="doi">10.1371/journal.pone.0093787</idno>
<idno type="wicri:Area/PubMed/Corpus">000479</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000479</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Lifespan extension in a semelparous chordate occurs via developmental growth arrest just prior to meiotic entry.</title>
<author>
<name sortKey="Subramaniam, Gunasekaran" sort="Subramaniam, Gunasekaran" uniqKey="Subramaniam G" first="Gunasekaran" last="Subramaniam">Gunasekaran Subramaniam</name>
<affiliation>
<nlm:affiliation>Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Campsteijn, Coen" sort="Campsteijn, Coen" uniqKey="Campsteijn C" first="Coen" last="Campsteijn">Coen Campsteijn</name>
<affiliation>
<nlm:affiliation>Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Thompson, Eric M" sort="Thompson, Eric M" uniqKey="Thompson E" first="Eric M" last="Thompson">Eric M. Thompson</name>
<affiliation>
<nlm:affiliation>Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway; Department of Biology, University of Bergen, Bergen, Norway.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aging (physiology)</term>
<term>Animals</term>
<term>Enzyme Inhibitors (pharmacology)</term>
<term>Longevity (physiology)</term>
<term>Meiosis (physiology)</term>
<term>Signal Transduction (drug effects)</term>
<term>Signal Transduction (physiology)</term>
<term>Urochordata (drug effects)</term>
<term>Urochordata (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Enzyme Inhibitors</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Signal Transduction</term>
<term>Urochordata</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Aging</term>
<term>Longevity</term>
<term>Meiosis</term>
<term>Signal Transduction</term>
<term>Urochordata</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">It is proposed that the ageing process is linked to signaling from the germline such that the rate of ageing can be adjusted to the state of the reproductive system, allowing these two processes to co-evolve. Mechanistic insight into this link has been primarily derived from iteroparous reproductive models, the nematode C. elegans, and the arthropod Drosophila. Here, we examined to what extent these mechanisms are evolutionarily conserved in a semelparous chordate, Oikopleura dioica, where we identify a developmental growth arrest (GA) in response to crowded, diet-restricted conditions, which can extend its lifespan at least three-fold. Under nutritional stress, the iteroparative models sacrifice germ cells that have entered meiosis, while maintaining a reduced pool of active germline stem cells (GSCs). In contrast, O. dioica only entered GA prior to meiotic entry. Stress conditions encountered after this point led to maturation in a normal time frame but with reduced reproductive output. During GA, TOR signaling was inhibited, whereas MAPK, ERK1/2 and p38 pathways were activated, and under such conditions, activation of these pathways was shown to be critical for survival. Direct inhibition of TOR signaling alone was sufficient to prevent meiotic entry and germline differentiation. This inhibition activated the p38 pathway, but did not activate the ERK1/2 pathway. Thus, the link between reproductive status and lifespan extension in response to nutrient-limited conditions is interpreted in a significantly different manner in these iteroparative versus semelparous models. In the latter case, meiotic entry is a definitive signal that lifespan extension can no longer occur, whereas in the former, meiotic entry is not a unique chronological event, and can be largely erased during lifespan extension in response to nutrient stress, and reactivated from a pool of maintained GSCs when conditions improve. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24695788</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>01</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Lifespan extension in a semelparous chordate occurs via developmental growth arrest just prior to meiotic entry.</ArticleTitle>
<Pagination>
<MedlinePgn>e93787</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0093787</ELocationID>
<Abstract>
<AbstractText>It is proposed that the ageing process is linked to signaling from the germline such that the rate of ageing can be adjusted to the state of the reproductive system, allowing these two processes to co-evolve. Mechanistic insight into this link has been primarily derived from iteroparous reproductive models, the nematode C. elegans, and the arthropod Drosophila. Here, we examined to what extent these mechanisms are evolutionarily conserved in a semelparous chordate, Oikopleura dioica, where we identify a developmental growth arrest (GA) in response to crowded, diet-restricted conditions, which can extend its lifespan at least three-fold. Under nutritional stress, the iteroparative models sacrifice germ cells that have entered meiosis, while maintaining a reduced pool of active germline stem cells (GSCs). In contrast, O. dioica only entered GA prior to meiotic entry. Stress conditions encountered after this point led to maturation in a normal time frame but with reduced reproductive output. During GA, TOR signaling was inhibited, whereas MAPK, ERK1/2 and p38 pathways were activated, and under such conditions, activation of these pathways was shown to be critical for survival. Direct inhibition of TOR signaling alone was sufficient to prevent meiotic entry and germline differentiation. This inhibition activated the p38 pathway, but did not activate the ERK1/2 pathway. Thus, the link between reproductive status and lifespan extension in response to nutrient-limited conditions is interpreted in a significantly different manner in these iteroparative versus semelparous models. In the latter case, meiotic entry is a definitive signal that lifespan extension can no longer occur, whereas in the former, meiotic entry is not a unique chronological event, and can be largely erased during lifespan extension in response to nutrient stress, and reactivated from a pool of maintained GSCs when conditions improve. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Subramaniam</LastName>
<ForeName>Gunasekaran</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Campsteijn</LastName>
<ForeName>Coen</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thompson</LastName>
<ForeName>Eric M</ForeName>
<Initials>EM</Initials>
<AffiliationInfo>
<Affiliation>Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway; Department of Biology, University of Bergen, Bergen, Norway.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>04</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004791">Enzyme Inhibitors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000375" MajorTopicYN="N">Aging</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004791" MajorTopicYN="N">Enzyme Inhibitors</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008136" MajorTopicYN="N">Longevity</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008540" MajorTopicYN="N">Meiosis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014561" MajorTopicYN="N">Urochordata</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>01</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>03</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>4</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>4</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24695788</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0093787</ArticleId>
<ArticleId IdType="pii">PONE-D-14-00630</ArticleId>
<ArticleId IdType="pmc">PMC3973624</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2012;7(7):e40172</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22792236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Mar 15;277(11):8810-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11777913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2010 Jan;30(2):481-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19917724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2000 Dec;20(24):9138-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11094066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2004 Aug;131(16):3897-906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15253933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1992 Dec;12(12):5620-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1448092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2007 Feb 15;302(2):577-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17123503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Nov 14;278(5341):1319-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9360933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Feb 5;457(7230):726-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19079239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2013 Jul;194(3):539-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23824969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2010 Jul;137(13):2117-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20504961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Open. 2012 Oct 15;1(10):929-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23213370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2012 Feb;29(2):487-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21734012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2006 Nov 10;2(11):e183</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17096597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2006 Apr 18;16(8):780-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16631585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Feb 18;286(7):5003-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21106525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Oct 1;20(19):5421-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11574474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer Ther. 2011 Dec;10(12):2244-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21911485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2001 Mar 1;231(1):265-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11180967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2011 Jun;138(11):2223-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21558371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Bull. 2002 Aug;203(1):58-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12200256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2008 Jun 20;30(6):701-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18570873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Behav Immun. 2011 Oct;25(7):1305-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21704151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1996 Dec;16(12):6744-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8943329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Sep 24;285(39):30274-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20624915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Cancer. 2004 Jan 10;108(2):200-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14639603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2010 Aug 1;137(15):2461-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20573703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2007 Nov;9(11):1263-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17952063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plankton Res. 2009 Apr;31(4):359-370</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19461862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2012 May;32(5):1228-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22345170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Dec 8;23(24):4709-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15538380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2002 Jan;16(1):114-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11709495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2000 Nov 1;14(21):2712-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11069888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 May 27;399(6734):362-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10360574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2008 Apr 1;7(7):892-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18414028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1997 Jun 1;11(11):1464-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9192873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2008 Nov;20(11):1986-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18664382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Dec 8;372(6506):570-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7990932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2004 Nov;5(11):1058-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15514678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Nov 13;326(5955):954-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19713489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Oct 2;19(19):5148-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11013217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biochem. 2005 Aug 1;95(5):885-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15937898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2008 Dec 15;324(2):266-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18845138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genesis. 2008 Nov;46(11):592-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19003928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3070-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9096347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Dec 1;480(7375):123-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22037307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2008 Oct;9(10):747-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18813292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2009 Jun;19(6):260-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19419870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2007 Feb 15;302(2):591-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17126826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2012 May 2;15(5):713-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22560223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Mar 25;464(7288):504-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20336132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Cell. 2006 Jul;98(7):389-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16478443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2008 Sep;118(9):3065-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18725988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2008 Dec;15(6):890-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19081076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Mar 15;13(6):666-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10090723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1997 Oct 30;389(6654):994-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9353126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(12):e28074</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22164230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1993 Dec 2;366(6454):461-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8247153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2002 Dec 1;252(1):59-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12453460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 Jun 9;11(6):453-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20519118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Oct 13;290(5490):328-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11030649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2000 Nov 1;14(21):2689-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11069885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1988 Jan;118(1):75-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8608934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2004 Apr 1;379(Pt 1):79-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14715082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2005 Jan;1(1):15-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16054041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 Nov 19;75(4):805-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8242751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 2001 May 1;265(2):234-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11302688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosome Res. 2007;15(2):189-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17333540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1998 Jun;125(11):2149-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9570778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Sep 3;12(17):1448-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12225660</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/StressCovidV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000479 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000479 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    StressCovidV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24695788
   |texte=   Lifespan extension in a semelparous chordate occurs via developmental growth arrest just prior to meiotic entry.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24695788" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a StressCovidV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed May 6 16:44:09 2020. Site generation: Sun Mar 28 08:26:57 2021