Serveur d'exploration Stress et Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

cDREM: inferring dynamic combinatorial gene regulation.

Identifieur interne : 000430 ( PubMed/Corpus ); précédent : 000429; suivant : 000431

cDREM: inferring dynamic combinatorial gene regulation.

Auteurs : Aaron Wise ; Ziv Bar-Joseph

Source :

RBID : pubmed:25844671

English descriptors

Abstract

Genes are often combinatorially regulated by multiple transcription factors (TFs). Such combinatorial regulation plays an important role in development and facilitates the ability of cells to respond to different stresses. While a number of approaches have utilized sequence and ChIP-based datasets to study combinational regulation, these have often ignored the combinational logic and the dynamics associated with such regulation. Here we present cDREM, a new method for reconstructing dynamic models of combinatorial regulation. cDREM integrates time series gene expression data with (static) protein interaction data. The method is based on a hidden Markov model and utilizes the sparse group Lasso to identify small subsets of combinatorially active TFs, their time of activation, and the logical function they implement. We tested cDREM on yeast and human data sets. Using yeast we show that the predicted combinatorial sets agree with other high throughput genomic datasets and improve upon prior methods developed to infer combinatorial regulation. Applying cDREM to study human response to flu, we were able to identify several combinatorial TF sets, some of which were known to regulate immune response while others represent novel combinations of important TFs.

DOI: 10.1089/cmb.2015.0010
PubMed: 25844671

Links to Exploration step

pubmed:25844671

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">cDREM: inferring dynamic combinatorial gene regulation.</title>
<author>
<name sortKey="Wise, Aaron" sort="Wise, Aaron" uniqKey="Wise A" first="Aaron" last="Wise">Aaron Wise</name>
<affiliation>
<nlm:affiliation>Lane Center for Computational Biology, Carnegie Mellon University , Pittsburgh, Pennsylvania.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bar Joseph, Ziv" sort="Bar Joseph, Ziv" uniqKey="Bar Joseph Z" first="Ziv" last="Bar-Joseph">Ziv Bar-Joseph</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25844671</idno>
<idno type="pmid">25844671</idno>
<idno type="doi">10.1089/cmb.2015.0010</idno>
<idno type="wicri:Area/PubMed/Corpus">000430</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000430</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">cDREM: inferring dynamic combinatorial gene regulation.</title>
<author>
<name sortKey="Wise, Aaron" sort="Wise, Aaron" uniqKey="Wise A" first="Aaron" last="Wise">Aaron Wise</name>
<affiliation>
<nlm:affiliation>Lane Center for Computational Biology, Carnegie Mellon University , Pittsburgh, Pennsylvania.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bar Joseph, Ziv" sort="Bar Joseph, Ziv" uniqKey="Bar Joseph Z" first="Ziv" last="Bar-Joseph">Ziv Bar-Joseph</name>
</author>
</analytic>
<series>
<title level="j">Journal of computational biology : a journal of computational molecular cell biology</title>
<idno type="eISSN">1557-8666</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chromatin Immunoprecipitation</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation</term>
<term>Gene Ontology</term>
<term>Gene Regulatory Networks</term>
<term>Humans</term>
<term>Influenza, Human (immunology)</term>
<term>Influenza, Human (metabolism)</term>
<term>Markov Chains</term>
<term>Models, Genetic</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Software</term>
<term>Stress, Physiological</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Influenza, Human</term>
<term>Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromatin Immunoprecipitation</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation</term>
<term>Gene Ontology</term>
<term>Gene Regulatory Networks</term>
<term>Humans</term>
<term>Markov Chains</term>
<term>Models, Genetic</term>
<term>Software</term>
<term>Stress, Physiological</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Genes are often combinatorially regulated by multiple transcription factors (TFs). Such combinatorial regulation plays an important role in development and facilitates the ability of cells to respond to different stresses. While a number of approaches have utilized sequence and ChIP-based datasets to study combinational regulation, these have often ignored the combinational logic and the dynamics associated with such regulation. Here we present cDREM, a new method for reconstructing dynamic models of combinatorial regulation. cDREM integrates time series gene expression data with (static) protein interaction data. The method is based on a hidden Markov model and utilizes the sparse group Lasso to identify small subsets of combinatorially active TFs, their time of activation, and the logical function they implement. We tested cDREM on yeast and human data sets. Using yeast we show that the predicted combinatorial sets agree with other high throughput genomic datasets and improve upon prior methods developed to infer combinatorial regulation. Applying cDREM to study human response to flu, we were able to identify several combinatorial TF sets, some of which were known to regulate immune response while others represent novel combinations of important TFs. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25844671</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>01</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1557-8666</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>22</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2015</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Journal of computational biology : a journal of computational molecular cell biology</Title>
<ISOAbbreviation>J. Comput. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>cDREM: inferring dynamic combinatorial gene regulation.</ArticleTitle>
<Pagination>
<MedlinePgn>324-33</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1089/cmb.2015.0010</ELocationID>
<Abstract>
<AbstractText>Genes are often combinatorially regulated by multiple transcription factors (TFs). Such combinatorial regulation plays an important role in development and facilitates the ability of cells to respond to different stresses. While a number of approaches have utilized sequence and ChIP-based datasets to study combinational regulation, these have often ignored the combinational logic and the dynamics associated with such regulation. Here we present cDREM, a new method for reconstructing dynamic models of combinatorial regulation. cDREM integrates time series gene expression data with (static) protein interaction data. The method is based on a hidden Markov model and utilizes the sparse group Lasso to identify small subsets of combinatorially active TFs, their time of activation, and the logical function they implement. We tested cDREM on yeast and human data sets. Using yeast we show that the predicted combinatorial sets agree with other high throughput genomic datasets and improve upon prior methods developed to infer combinatorial regulation. Applying cDREM to study human response to flu, we were able to identify several combinatorial TF sets, some of which were known to regulate immune response while others represent novel combinations of important TFs. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wise</LastName>
<ForeName>Aaron</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Lane Center for Computational Biology, Carnegie Mellon University , Pittsburgh, Pennsylvania.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bar-Joseph</LastName>
<ForeName>Ziv</ForeName>
<Initials>Z</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>U54 HL127624</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>1 U54 HL127624-01</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Comput Biol</MedlineTA>
<NlmUniqueID>9433358</NlmUniqueID>
<ISSNLinking>1066-5277</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D047369" MajorTopicYN="N">Chromatin Immunoprecipitation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="Y">Gene Expression Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063990" MajorTopicYN="N">Gene Ontology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053263" MajorTopicYN="N">Gene Regulatory Networks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007251" MajorTopicYN="N">Influenza, Human</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008390" MajorTopicYN="N">Markov Chains</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012984" MajorTopicYN="Y">Software</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">HMM</Keyword>
<Keyword MajorTopicYN="N">computational molecular biology</Keyword>
<Keyword MajorTopicYN="N">gene chips</Keyword>
<Keyword MajorTopicYN="N">gene expression</Keyword>
<Keyword MajorTopicYN="N">gene networks</Keyword>
<Keyword MajorTopicYN="N">machine learning</Keyword>
<Keyword MajorTopicYN="N">regulatory networks</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>4</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>4</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>1</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25844671</ArticleId>
<ArticleId IdType="doi">10.1089/cmb.2015.0010</ArticleId>
<ArticleId IdType="pmc">PMC4394168</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>RNA. 2009 Jun;15(6):1110-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19369426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2008 Mar;4(3):e1000044</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18369434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Aug;38(14):4768-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20385592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 24;330(6012):1787-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21177974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(7):e22401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21789257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Aug;7(8):e1002234</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21901105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2011;7:538</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21988834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2012 Mar;32(6):1032-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22252317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Sep 6;489(7414):57-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22955616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Syst Biol. 2012;6:104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22897824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2013 Feb;23(2):365-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23064748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2013 Jul;14(7):756-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23708252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2013 Jul 1;29(13):i227-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23812988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15686-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23986498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jan 8;457(7226):215-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19029883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Jul;11(7):2335-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10888672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jul 7;275(27):20406-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10764778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Dec;11(12):4241-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11102521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Dec 22;290(5500):2306-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11125145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2001 Oct;29(2):153-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11547334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Oct 10;333(1):75-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14516744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2004 Jun;14(3):283-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15193307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Sep 2;431(7004):99-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15343339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1985 Dec;43(3 Pt 2):729-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3907859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1989 Aug 25;58(4):729-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2475256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Mar 20;279(5358):1896-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9506933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Oct;10(10):3389-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10512874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005;33(15):4828-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16126847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D535-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006;34(3):917-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16464824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 Jul;26(13):4794-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16782869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2006 Jun 16;2(6):e70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16789814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006;34(17):4925-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16982645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2007;3:74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17224918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Jul;27(13):4815-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17452446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Mar;18(3):477-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18256240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Nov 5;462(7269):65-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19890324</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/StressCovidV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000430 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000430 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    StressCovidV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25844671
   |texte=   cDREM: inferring dynamic combinatorial gene regulation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25844671" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a StressCovidV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed May 6 16:44:09 2020. Site generation: Sun Mar 28 08:26:57 2021