Serveur d'exploration Stress et Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Viral Infection Identifies Micropeptides Differentially Regulated in smORF-Containing lncRNAs.

Identifieur interne : 000313 ( PubMed/Corpus ); précédent : 000312; suivant : 000314

Viral Infection Identifies Micropeptides Differentially Regulated in smORF-Containing lncRNAs.

Auteurs : Brandon S. Razooky ; Benedikt Obermayer ; Joshua Biggs O'May ; Alexander Tarakhovsky

Source :

RBID : pubmed:28825667

Abstract

Viral infection leads to a robust cellular response whereby the infected cell produces hundreds of molecular regulators to combat infection. Currently, non-canonical components, e.g., long noncoding RNAs (lncRNAs) have been added to the repertoire of immune regulators involved in the antiviral program. Interestingly, studies utilizing next-generation sequencing technologies show that a subset of the >10,000 lncRNAs in the mammalian genome contain small open reading frames (smORFs) associated with active translation, i.e., many lncRNAs are not noncoding. Here, we use genome-wide high-throughput methods to identify potential micropeptides in smORF-containing lncRNAs involved in the immune response. Using influenza as a viral infection model, we performed RNA-seq and ribosome profiling to track expression and translation of putative lncRNAs that may encode for peptides and identify tens of potential candidates. Interestingly, many of these peptides are highly conserved at the protein level, strongly suggesting biological relevance and activity. By perusing publicly available data sets, four potential peptides of interest seem common to stress induction and/or are highly conserved; potential peptides from the MMP24-AS1, ZFAS1, RP11-622K12.1, and MIR22HG genes. Interestingly, using an antibody against the potential peptide encoded by MIR22HG RNA, we show that the peptide is stably expressed in the absence of infection, and upregulated in response to infection, corroborating the prediction of the ribosome profiling results. These data show the utility of perturbation approaches in identifying potentially relevant novel molecules encoded in the genome.

DOI: 10.3390/genes8080206
PubMed: 28825667

Links to Exploration step

pubmed:28825667

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Viral Infection Identifies Micropeptides Differentially Regulated in smORF-Containing lncRNAs.</title>
<author>
<name sortKey="Razooky, Brandon S" sort="Razooky, Brandon S" uniqKey="Razooky B" first="Brandon S" last="Razooky">Brandon S. Razooky</name>
<affiliation>
<nlm:affiliation>Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, NY 10065, USA. brazooky@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Obermayer, Benedikt" sort="Obermayer, Benedikt" uniqKey="Obermayer B" first="Benedikt" last="Obermayer">Benedikt Obermayer</name>
<affiliation>
<nlm:affiliation>Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany. benedikt.obermayer@mdc-berlin.de.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="O May, Joshua Biggs" sort="O May, Joshua Biggs" uniqKey="O May J" first="Joshua Biggs" last="O'May">Joshua Biggs O'May</name>
<affiliation>
<nlm:affiliation>Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, NY 10065, USA. brazooky@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tarakhovsky, Alexander" sort="Tarakhovsky, Alexander" uniqKey="Tarakhovsky A" first="Alexander" last="Tarakhovsky">Alexander Tarakhovsky</name>
<affiliation>
<nlm:affiliation>Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY 10065, USA. tarakho@mail.rockefeller.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28825667</idno>
<idno type="pmid">28825667</idno>
<idno type="doi">10.3390/genes8080206</idno>
<idno type="wicri:Area/PubMed/Corpus">000313</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000313</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Viral Infection Identifies Micropeptides Differentially Regulated in smORF-Containing lncRNAs.</title>
<author>
<name sortKey="Razooky, Brandon S" sort="Razooky, Brandon S" uniqKey="Razooky B" first="Brandon S" last="Razooky">Brandon S. Razooky</name>
<affiliation>
<nlm:affiliation>Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, NY 10065, USA. brazooky@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Obermayer, Benedikt" sort="Obermayer, Benedikt" uniqKey="Obermayer B" first="Benedikt" last="Obermayer">Benedikt Obermayer</name>
<affiliation>
<nlm:affiliation>Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany. benedikt.obermayer@mdc-berlin.de.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="O May, Joshua Biggs" sort="O May, Joshua Biggs" uniqKey="O May J" first="Joshua Biggs" last="O'May">Joshua Biggs O'May</name>
<affiliation>
<nlm:affiliation>Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, NY 10065, USA. brazooky@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tarakhovsky, Alexander" sort="Tarakhovsky, Alexander" uniqKey="Tarakhovsky A" first="Alexander" last="Tarakhovsky">Alexander Tarakhovsky</name>
<affiliation>
<nlm:affiliation>Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY 10065, USA. tarakho@mail.rockefeller.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Genes</title>
<idno type="ISSN">2073-4425</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Viral infection leads to a robust cellular response whereby the infected cell produces hundreds of molecular regulators to combat infection. Currently, non-canonical components, e.g., long noncoding RNAs (lncRNAs) have been added to the repertoire of immune regulators involved in the antiviral program. Interestingly, studies utilizing next-generation sequencing technologies show that a subset of the >10,000 lncRNAs in the mammalian genome contain small open reading frames (smORFs) associated with active translation, i.e., many lncRNAs are not noncoding. Here, we use genome-wide high-throughput methods to identify potential micropeptides in smORF-containing lncRNAs involved in the immune response. Using influenza as a viral infection model, we performed RNA-seq and ribosome profiling to track expression and translation of putative lncRNAs that may encode for peptides and identify tens of potential candidates. Interestingly, many of these peptides are highly conserved at the protein level, strongly suggesting biological relevance and activity. By perusing publicly available data sets, four potential peptides of interest seem common to stress induction and/or are highly conserved; potential peptides from the MMP24-AS1, ZFAS1, RP11-622K12.1, and MIR22HG genes. Interestingly, using an antibody against the potential peptide encoded by MIR22HG RNA, we show that the peptide is stably expressed in the absence of infection, and upregulated in response to infection, corroborating the prediction of the ribosome profiling results. These data show the utility of perturbation approaches in identifying potentially relevant novel molecules encoded in the genome.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">28825667</PMID>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">2073-4425</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2017</Year>
<Month>Aug</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>Genes</Title>
<ISOAbbreviation>Genes (Basel)</ISOAbbreviation>
</Journal>
<ArticleTitle>Viral Infection Identifies Micropeptides Differentially Regulated in smORF-Containing lncRNAs.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E206</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/genes8080206</ELocationID>
<Abstract>
<AbstractText>Viral infection leads to a robust cellular response whereby the infected cell produces hundreds of molecular regulators to combat infection. Currently, non-canonical components, e.g., long noncoding RNAs (lncRNAs) have been added to the repertoire of immune regulators involved in the antiviral program. Interestingly, studies utilizing next-generation sequencing technologies show that a subset of the >10,000 lncRNAs in the mammalian genome contain small open reading frames (smORFs) associated with active translation, i.e., many lncRNAs are not noncoding. Here, we use genome-wide high-throughput methods to identify potential micropeptides in smORF-containing lncRNAs involved in the immune response. Using influenza as a viral infection model, we performed RNA-seq and ribosome profiling to track expression and translation of putative lncRNAs that may encode for peptides and identify tens of potential candidates. Interestingly, many of these peptides are highly conserved at the protein level, strongly suggesting biological relevance and activity. By perusing publicly available data sets, four potential peptides of interest seem common to stress induction and/or are highly conserved; potential peptides from the MMP24-AS1, ZFAS1, RP11-622K12.1, and MIR22HG genes. Interestingly, using an antibody against the potential peptide encoded by MIR22HG RNA, we show that the peptide is stably expressed in the absence of infection, and upregulated in response to infection, corroborating the prediction of the ribosome profiling results. These data show the utility of perturbation approaches in identifying potentially relevant novel molecules encoded in the genome.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Razooky</LastName>
<ForeName>Brandon S</ForeName>
<Initials>BS</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, NY 10065, USA. brazooky@gmail.com.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY 10065, USA. brazooky@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Obermayer</LastName>
<ForeName>Benedikt</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany. benedikt.obermayer@mdc-berlin.de.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>O'May</LastName>
<ForeName>Joshua Biggs</ForeName>
<Initials>JB</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, NY 10065, USA. brazooky@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tarakhovsky</LastName>
<ForeName>Alexander</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY 10065, USA. tarakho@mail.rockefeller.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM112811</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 AI122093</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>08</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Genes (Basel)</MedlineTA>
<NlmUniqueID>101551097</NlmUniqueID>
<ISSNLinking>2073-4425</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">micropeptides</Keyword>
<Keyword MajorTopicYN="N">ribosome profiling</Keyword>
<Keyword MajorTopicYN="N">small open reading frames</Keyword>
<Keyword MajorTopicYN="N">viral infection</Keyword>
</KeywordList>
<CoiStatement>The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>07</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>08</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>08</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>8</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>8</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>8</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28825667</ArticleId>
<ArticleId IdType="pii">genes8080206</ArticleId>
<ArticleId IdType="doi">10.3390/genes8080206</ArticleId>
<ArticleId IdType="pmc">PMC5575669</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell. 2013 Jul 3;154(1):26-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23827673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Apr 10;324(5924):218-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19213877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2004 Oct;5(10):971-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15454919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2014 Sep;35(9):408-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25113636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2016 Apr 5;88(7):3967-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27010111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2004 Nov;5(11):1109-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15496950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Jan 16;8:14016</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28091529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Sep 23;14:648</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24059539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26553804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Jan 12;541(7636):228-232</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28024296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Aug 15;5:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27525483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D324-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26527729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Aug 16;341(6147):789-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23907535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2013 Jul;140(13):2828-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23698349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23193283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2013 Oct 4;439(4):547-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24036268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2013 Jan;9(1):59-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23160002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2010 Oct 26;1(5):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20978541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2017 Sep;18(9):575-589</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28698598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Aug 29;9(8):e106282</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25171338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2015 Sep 14;16:179</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26364619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2014 Aug 21;3:e03528</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25144939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 Feb 12;160(4):595-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25640239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2014 May 2;33(9):981-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24705786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2015 May 19;42(5):792-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25992856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 Nov 24;11(11):e1005288</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26599541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2017 Feb;13(2):174-180</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27918561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Jul 1;27(13):i275-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21685081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Jun 15;31(12):2032-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25697820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Jan;20(1):110-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19858363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Jun 01;8:15664</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28569745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Apr 1;30(7):923-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24227677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Jan 15;351(6270):271-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26816378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Cell Biol. 2015 Mar;93(3):277-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25776990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Symp Quant Biol. 1989;54 Pt 1:1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2700931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biology (Basel). 2012 Dec 14;1(3):895-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24832523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Mar 14;483(7390):428-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22419161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2000 May;25(1):25-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10802651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Sep;74(17):7989-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10933707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Sep 6;341(6150):1116-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23970561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(12):550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516281</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/StressCovidV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000313 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000313 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    StressCovidV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28825667
   |texte=   Viral Infection Identifies Micropeptides Differentially Regulated in smORF-Containing lncRNAs.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:28825667" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a StressCovidV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed May 6 16:44:09 2020. Site generation: Sun Mar 28 08:26:57 2021