Serveur d'exploration Stress et Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Anti-influenza A virus activity of rhein through regulating oxidative stress, TLR4, Akt, MAPK, and NF-κB signal pathways.

Identifieur interne : 000281 ( PubMed/Corpus ); précédent : 000280; suivant : 000282

Anti-influenza A virus activity of rhein through regulating oxidative stress, TLR4, Akt, MAPK, and NF-κB signal pathways.

Auteurs : Qian-Wen Wang ; Yun Su ; Jiang-Tao Sheng ; Li-Ming Gu ; Ying Zhao ; Xiao-Xuan Chen ; Cheng Chen ; Wei-Zhong Li ; Kang-Sheng Li ; Jian-Ping Dai

Source :

RBID : pubmed:29385192

English descriptors

Abstract

Rhein, an anthraquinone compound existing in many traditional herbal medicines, has anti-inflammatory, antioxidant, antitumor, antiviral, hepatoprotective, and nephroprotective activities, but its anti-influenza A virus (IAV) activity is ambiguous. In the present study, through plaque inhibition assay, time-of-addition assay, antioxidant assay, qRT-PCR, ELISA, and western blotting assays, we investigated the anti-IAV effect and mechanism of action of rhein in vitro and in vivo. The results showed that rhein could significantly inhibit IAV adsorption and replication, decrease IAV-induced oxidative stress, activations of TLR4, Akt, p38, JNK MAPK, and NF-κB pathways, and production of inflammatory cytokines and matrix metalloproteinases in vitro. Oxidant H2O2 and agonists of TLR4, Akt, p38/JNK and IKK/NF-κB could significantly antagonize the inhibitory effects of rhein on IAV-induced cytopathic effect (CPE) and IAV replication. Through an in vivo test in mice, we also found that rhein could significantly improve the survival rate, lung index, pulmonary cytokines, and pulmonary histopathological changes. Rhein also significantly decreased pulmonary viral load at a high dose. In conclusion, rhein can inhibit IAV adsorption and replication, and the mechanism of action to inhibit IAV replication may be due to its ability to suppress IAV-induced oxidative stress and activations of TLR4, Akt, p38, JNK MAPK, and NF-κB signal pathways.

DOI: 10.1371/journal.pone.0191793
PubMed: 29385192

Links to Exploration step

pubmed:29385192

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Anti-influenza A virus activity of rhein through regulating oxidative stress, TLR4, Akt, MAPK, and NF-κB signal pathways.</title>
<author>
<name sortKey="Wang, Qian Wen" sort="Wang, Qian Wen" uniqKey="Wang Q" first="Qian-Wen" last="Wang">Qian-Wen Wang</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Su, Yun" sort="Su, Yun" uniqKey="Su Y" first="Yun" last="Su">Yun Su</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sheng, Jiang Tao" sort="Sheng, Jiang Tao" uniqKey="Sheng J" first="Jiang-Tao" last="Sheng">Jiang-Tao Sheng</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gu, Li Ming" sort="Gu, Li Ming" uniqKey="Gu L" first="Li-Ming" last="Gu">Li-Ming Gu</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Ying" sort="Zhao, Ying" uniqKey="Zhao Y" first="Ying" last="Zhao">Ying Zhao</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Xiao Xuan" sort="Chen, Xiao Xuan" uniqKey="Chen X" first="Xiao-Xuan" last="Chen">Xiao-Xuan Chen</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Cheng" sort="Chen, Cheng" uniqKey="Chen C" first="Cheng" last="Chen">Cheng Chen</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Wei Zhong" sort="Li, Wei Zhong" uniqKey="Li W" first="Wei-Zhong" last="Li">Wei-Zhong Li</name>
<affiliation>
<nlm:affiliation>Department of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Kang Sheng" sort="Li, Kang Sheng" uniqKey="Li K" first="Kang-Sheng" last="Li">Kang-Sheng Li</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dai, Jian Ping" sort="Dai, Jian Ping" uniqKey="Dai J" first="Jian-Ping" last="Dai">Jian-Ping Dai</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29385192</idno>
<idno type="pmid">29385192</idno>
<idno type="doi">10.1371/journal.pone.0191793</idno>
<idno type="wicri:Area/PubMed/Corpus">000281</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000281</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Anti-influenza A virus activity of rhein through regulating oxidative stress, TLR4, Akt, MAPK, and NF-κB signal pathways.</title>
<author>
<name sortKey="Wang, Qian Wen" sort="Wang, Qian Wen" uniqKey="Wang Q" first="Qian-Wen" last="Wang">Qian-Wen Wang</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Su, Yun" sort="Su, Yun" uniqKey="Su Y" first="Yun" last="Su">Yun Su</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sheng, Jiang Tao" sort="Sheng, Jiang Tao" uniqKey="Sheng J" first="Jiang-Tao" last="Sheng">Jiang-Tao Sheng</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gu, Li Ming" sort="Gu, Li Ming" uniqKey="Gu L" first="Li-Ming" last="Gu">Li-Ming Gu</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Ying" sort="Zhao, Ying" uniqKey="Zhao Y" first="Ying" last="Zhao">Ying Zhao</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Xiao Xuan" sort="Chen, Xiao Xuan" uniqKey="Chen X" first="Xiao-Xuan" last="Chen">Xiao-Xuan Chen</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Cheng" sort="Chen, Cheng" uniqKey="Chen C" first="Cheng" last="Chen">Cheng Chen</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Wei Zhong" sort="Li, Wei Zhong" uniqKey="Li W" first="Wei-Zhong" last="Li">Wei-Zhong Li</name>
<affiliation>
<nlm:affiliation>Department of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Kang Sheng" sort="Li, Kang Sheng" uniqKey="Li K" first="Kang-Sheng" last="Li">Kang-Sheng Li</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dai, Jian Ping" sort="Dai, Jian Ping" uniqKey="Dai J" first="Jian-Ping" last="Dai">Jian-Ping Dai</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>A549 Cells</term>
<term>Animals</term>
<term>Anthraquinones (pharmacology)</term>
<term>Antiviral Agents (pharmacology)</term>
<term>Cytokines (biosynthesis)</term>
<term>Dogs</term>
<term>Female</term>
<term>Humans</term>
<term>Influenza A Virus, H1N1 Subtype (drug effects)</term>
<term>Influenza A Virus, H1N1 Subtype (pathogenicity)</term>
<term>Influenza A Virus, H1N1 Subtype (physiology)</term>
<term>Lung (drug effects)</term>
<term>Lung (pathology)</term>
<term>MAP Kinase Signaling System (drug effects)</term>
<term>Madin Darby Canine Kidney Cells</term>
<term>Male</term>
<term>Matrix Metalloproteinases (biosynthesis)</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>NF-kappa B (metabolism)</term>
<term>Orthomyxoviridae Infections (drug therapy)</term>
<term>Orthomyxoviridae Infections (metabolism)</term>
<term>Orthomyxoviridae Infections (virology)</term>
<term>Oxidative Stress (drug effects)</term>
<term>Pneumonia, Viral (drug therapy)</term>
<term>Pneumonia, Viral (pathology)</term>
<term>Pneumonia, Viral (physiopathology)</term>
<term>Proto-Oncogene Proteins c-akt (metabolism)</term>
<term>Signal Transduction (drug effects)</term>
<term>Toll-Like Receptor 4 (metabolism)</term>
<term>Virus Attachment (drug effects)</term>
<term>Virus Replication (drug effects)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Cytokines</term>
<term>Matrix Metalloproteinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>NF-kappa B</term>
<term>Proto-Oncogene Proteins c-akt</term>
<term>Toll-Like Receptor 4</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Anthraquinones</term>
<term>Antiviral Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Influenza A Virus, H1N1 Subtype</term>
<term>Lung</term>
<term>MAP Kinase Signaling System</term>
<term>Oxidative Stress</term>
<term>Signal Transduction</term>
<term>Virus Attachment</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Orthomyxoviridae Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Orthomyxoviridae Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Influenza A Virus, H1N1 Subtype</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Lung</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Influenza A Virus, H1N1 Subtype</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Orthomyxoviridae Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>A549 Cells</term>
<term>Animals</term>
<term>Dogs</term>
<term>Female</term>
<term>Humans</term>
<term>Madin Darby Canine Kidney Cells</term>
<term>Male</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Rhein, an anthraquinone compound existing in many traditional herbal medicines, has anti-inflammatory, antioxidant, antitumor, antiviral, hepatoprotective, and nephroprotective activities, but its anti-influenza A virus (IAV) activity is ambiguous. In the present study, through plaque inhibition assay, time-of-addition assay, antioxidant assay, qRT-PCR, ELISA, and western blotting assays, we investigated the anti-IAV effect and mechanism of action of rhein in vitro and in vivo. The results showed that rhein could significantly inhibit IAV adsorption and replication, decrease IAV-induced oxidative stress, activations of TLR4, Akt, p38, JNK MAPK, and NF-κB pathways, and production of inflammatory cytokines and matrix metalloproteinases in vitro. Oxidant H2O2 and agonists of TLR4, Akt, p38/JNK and IKK/NF-κB could significantly antagonize the inhibitory effects of rhein on IAV-induced cytopathic effect (CPE) and IAV replication. Through an in vivo test in mice, we also found that rhein could significantly improve the survival rate, lung index, pulmonary cytokines, and pulmonary histopathological changes. Rhein also significantly decreased pulmonary viral load at a high dose. In conclusion, rhein can inhibit IAV adsorption and replication, and the mechanism of action to inhibit IAV replication may be due to its ability to suppress IAV-induced oxidative stress and activations of TLR4, Akt, p38, JNK MAPK, and NF-κB signal pathways.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29385192</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>03</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Anti-influenza A virus activity of rhein through regulating oxidative stress, TLR4, Akt, MAPK, and NF-κB signal pathways.</ArticleTitle>
<Pagination>
<MedlinePgn>e0191793</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0191793</ELocationID>
<Abstract>
<AbstractText>Rhein, an anthraquinone compound existing in many traditional herbal medicines, has anti-inflammatory, antioxidant, antitumor, antiviral, hepatoprotective, and nephroprotective activities, but its anti-influenza A virus (IAV) activity is ambiguous. In the present study, through plaque inhibition assay, time-of-addition assay, antioxidant assay, qRT-PCR, ELISA, and western blotting assays, we investigated the anti-IAV effect and mechanism of action of rhein in vitro and in vivo. The results showed that rhein could significantly inhibit IAV adsorption and replication, decrease IAV-induced oxidative stress, activations of TLR4, Akt, p38, JNK MAPK, and NF-κB pathways, and production of inflammatory cytokines and matrix metalloproteinases in vitro. Oxidant H2O2 and agonists of TLR4, Akt, p38/JNK and IKK/NF-κB could significantly antagonize the inhibitory effects of rhein on IAV-induced cytopathic effect (CPE) and IAV replication. Through an in vivo test in mice, we also found that rhein could significantly improve the survival rate, lung index, pulmonary cytokines, and pulmonary histopathological changes. Rhein also significantly decreased pulmonary viral load at a high dose. In conclusion, rhein can inhibit IAV adsorption and replication, and the mechanism of action to inhibit IAV replication may be due to its ability to suppress IAV-induced oxidative stress and activations of TLR4, Akt, p38, JNK MAPK, and NF-κB signal pathways.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Qian-Wen</ForeName>
<Initials>QW</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Su</LastName>
<ForeName>Yun</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sheng</LastName>
<ForeName>Jiang-Tao</ForeName>
<Initials>JT</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gu</LastName>
<ForeName>Li-Ming</ForeName>
<Initials>LM</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Ying</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Xiao-Xuan</ForeName>
<Initials>XX</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Cheng</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Wei-Zhong</ForeName>
<Initials>WZ</Initials>
<AffiliationInfo>
<Affiliation>Department of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Kang-Sheng</ForeName>
<Initials>KS</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dai</LastName>
<ForeName>Jian-Ping</ForeName>
<Initials>JP</Initials>
<Identifier Source="ORCID">0000-0002-8304-8207</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>01</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000880">Anthraquinones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016207">Cytokines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016328">NF-kappa B</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051197">Toll-Like Receptor 4</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D051057">Proto-Oncogene Proteins c-akt</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.24.-</RegistryNumber>
<NameOfSubstance UI="D020782">Matrix Metalloproteinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>YM64C2P6UX</RegistryNumber>
<NameOfSubstance UI="C020491">rhein</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000072283" MajorTopicYN="N">A549 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000880" MajorTopicYN="N">Anthraquinones</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016207" MajorTopicYN="N">Cytokines</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004285" MajorTopicYN="N">Dogs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053118" MajorTopicYN="N">Influenza A Virus, H1N1 Subtype</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020935" MajorTopicYN="N">MAP Kinase Signaling System</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D061985" MajorTopicYN="N">Madin Darby Canine Kidney Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020782" MajorTopicYN="N">Matrix Metalloproteinases</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016328" MajorTopicYN="N">NF-kappa B</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009976" MajorTopicYN="N">Orthomyxoviridae Infections</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011024" MajorTopicYN="N">Pneumonia, Viral</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
<QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051057" MajorTopicYN="N">Proto-Oncogene Proteins c-akt</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051197" MajorTopicYN="N">Toll-Like Receptor 4</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053585" MajorTopicYN="N">Virus Attachment</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>09</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>01</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>2</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>2</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29385192</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0191793</ArticleId>
<ArticleId IdType="pii">PONE-D-17-33110</ArticleId>
<ArticleId IdType="pmc">PMC5791991</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2005 Feb 18;280(7):5571-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15579900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytomedicine. 2009 Jan;16(1):35-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19097770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2003 Apr 1;34(7):928-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12654482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Mar 15;288(11):7572-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23386616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2001 Jan;280(1):L69-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11133496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Clin Exp Med. 2014 Dec 15;7(12):4975-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25663995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Apr 18;133(2):235-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18423196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Stress Chaperones. 2014 Mar;19(2):289-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24068346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Exp Rheumatol. 2007 Jul-Aug;25(4):546-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17888210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2013 Mar 15;304(6):L445-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23333803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Oral Pathol Med. 2009 Mar;38(3):276-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19267840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Inflammation. 2012 Jun;35(3):1031-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22095404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2006 Jun;2(6):e53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16789835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2015 Sep 15;16(9):22350-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26389892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Oct;82(20):9880-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18701591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharmacol. 2014 Dec;86(6):747-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25301784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol Screen. 2012 Jun;17 (5):605-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22286278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Med Rep. 2015 Sep;12(3):4415-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26081522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2010 May 1;48(9):1121-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20083193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metab Syndr Relat Disord. 2016 Jun;14 (5):239-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27105077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nutr Biochem. 2016 Oct;36:42-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27567591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cerebrovasc Dis Extra. 2016;6(2):50-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27560521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Inflammation. 2010 Jun;33(3):166-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19957025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e42706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22900043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Med Sci. 2009;6(1):9-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19159011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Apr 16;8(4):e61026</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23613775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Indian J Clin Biochem. 2007 Sep;22(2):132-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23105700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2007 Dec 05;4:134</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18053252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Nov;84(21):11359-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20702616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jun 15;6:27768</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27302738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2013 Jan;48(1):17-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23002098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2012 May;393(6):525-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22628315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2013 Sep;57(9):4433-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23836164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2014 Jul;58(7):3689-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24752266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oral Oncol. 2009 Jun;45(6):531-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18804415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(5):e19705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21611183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2004 Aug;85(Pt 8):2347-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15269376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2015 Apr 17;459(4):699-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25769947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2015 May 20;13(5):e1002151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25992600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Data. 2004 May 27;(343):1-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15188733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vascul Pharmacol. 2010 Jul-Aug;53(1-2):28-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20298810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2015 Jan;17(1):131-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25154738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacology. 1993 Oct;47 Suppl 1:77-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8234446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Jul 07;5:11822</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26149595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Trace Elem Med Biol. 2016 Mar;34:62-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26854247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol. 2011 Mar;162(6):1259-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21091655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Pharmacol. 2016 Aug 17;7:247</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27582705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 2011 Jul 15;192(3):220-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21457705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2014 Jul 18;450(1):891-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24971535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Mol Pathol. 2012 Jun;92(3):287-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22421441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Funct. 2011 Dec;2(12):747-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22080158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Intern Med. 2008 Jun;23(6):854-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18415652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Med Rep. 2012 May;5(5):1261-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22344690</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/StressCovidV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000281 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000281 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    StressCovidV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:29385192
   |texte=   Anti-influenza A virus activity of rhein through regulating oxidative stress, TLR4, Akt, MAPK, and NF-κB signal pathways.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:29385192" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a StressCovidV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed May 6 16:44:09 2020. Site generation: Sun Mar 28 08:26:57 2021