Serveur d'exploration Stress et Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Targeting Nrf2 signaling improves bacterial clearance by alveolar macrophages in patients with COPD and in a mouse model.

Identifieur interne : 000600 ( PubMed/Checkpoint ); précédent : 000599; suivant : 000601

Targeting Nrf2 signaling improves bacterial clearance by alveolar macrophages in patients with COPD and in a mouse model.

Auteurs : Christopher J. Harvey [États-Unis] ; Rajesh K. Thimmulappa ; Sanjay Sethi ; Xiaoni Kong ; Lonny Yarmus ; Robert H. Brown ; David Feller-Kopman ; Robert Wise ; Shyam Biswal

Source :

RBID : pubmed:21490276

Descripteurs français

English descriptors

Abstract

Patients with chronic obstructive pulmonary disease (COPD) have innate immune dysfunction in the lung largely due to defective macrophage phagocytosis. This deficiency results in periodic bacterial infections that cause acute exacerbations of COPD, a major source of morbidity and mortality. Recent studies indicate that a decrease in Nrf2 (nuclear erythroid-related factor 2) signaling in patients with COPD may hamper their ability to defend against oxidative stress, although the role of Nrf2 in COPD exacerbations has not been determined. Here, we test whether activation of Nrf2 by the phytochemical sulforaphane restores phagocytosis of clinical isolates of nontypeable Haemophilus influenza (NTHI) and Pseudomonas aeruginosa (PA) by alveolar macrophages from patients with COPD. Sulforaphane treatment restored bacteria recognition and phagocytosis in alveolar macrophages from COPD patients. Furthermore, sulforaphane treatment enhanced pulmonary bacterial clearance by alveolar macrophages and reduced inflammation in wild-type mice but not in Nrf2-deficient mice exposed to cigarette smoke for 6 months. Gene expression and promoter analysis revealed that Nrf2 increased phagocytic ability of macrophages by direct transcriptional up-regulation of the scavenger receptor MARCO. Disruption of Nrf2 or MARCO abrogated sulforaphane-mediated bacterial phagocytosis by COPD alveolar macrophages. Our findings demonstrate the importance of Nrf2 and its downstream target MARCO in improving antibacterial defenses and provide a rationale for targeting this pathway, via pharmacological agents such as sulforaphane, to prevent exacerbations of COPD caused by bacterial infection.

DOI: 10.1126/scitranslmed.3002042
PubMed: 21490276


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21490276

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Targeting Nrf2 signaling improves bacterial clearance by alveolar macrophages in patients with COPD and in a mouse model.</title>
<author>
<name sortKey="Harvey, Christopher J" sort="Harvey, Christopher J" uniqKey="Harvey C" first="Christopher J" last="Harvey">Christopher J. Harvey</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, MD 21205, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, MD 21205</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thimmulappa, Rajesh K" sort="Thimmulappa, Rajesh K" uniqKey="Thimmulappa R" first="Rajesh K" last="Thimmulappa">Rajesh K. Thimmulappa</name>
</author>
<author>
<name sortKey="Sethi, Sanjay" sort="Sethi, Sanjay" uniqKey="Sethi S" first="Sanjay" last="Sethi">Sanjay Sethi</name>
</author>
<author>
<name sortKey="Kong, Xiaoni" sort="Kong, Xiaoni" uniqKey="Kong X" first="Xiaoni" last="Kong">Xiaoni Kong</name>
</author>
<author>
<name sortKey="Yarmus, Lonny" sort="Yarmus, Lonny" uniqKey="Yarmus L" first="Lonny" last="Yarmus">Lonny Yarmus</name>
</author>
<author>
<name sortKey="Brown, Robert H" sort="Brown, Robert H" uniqKey="Brown R" first="Robert H" last="Brown">Robert H. Brown</name>
</author>
<author>
<name sortKey="Feller Kopman, David" sort="Feller Kopman, David" uniqKey="Feller Kopman D" first="David" last="Feller-Kopman">David Feller-Kopman</name>
</author>
<author>
<name sortKey="Wise, Robert" sort="Wise, Robert" uniqKey="Wise R" first="Robert" last="Wise">Robert Wise</name>
</author>
<author>
<name sortKey="Biswal, Shyam" sort="Biswal, Shyam" uniqKey="Biswal S" first="Shyam" last="Biswal">Shyam Biswal</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21490276</idno>
<idno type="pmid">21490276</idno>
<idno type="doi">10.1126/scitranslmed.3002042</idno>
<idno type="wicri:Area/PubMed/Corpus">000638</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000638</idno>
<idno type="wicri:Area/PubMed/Curation">000636</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000636</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000600</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000600</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Targeting Nrf2 signaling improves bacterial clearance by alveolar macrophages in patients with COPD and in a mouse model.</title>
<author>
<name sortKey="Harvey, Christopher J" sort="Harvey, Christopher J" uniqKey="Harvey C" first="Christopher J" last="Harvey">Christopher J. Harvey</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, MD 21205, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, MD 21205</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thimmulappa, Rajesh K" sort="Thimmulappa, Rajesh K" uniqKey="Thimmulappa R" first="Rajesh K" last="Thimmulappa">Rajesh K. Thimmulappa</name>
</author>
<author>
<name sortKey="Sethi, Sanjay" sort="Sethi, Sanjay" uniqKey="Sethi S" first="Sanjay" last="Sethi">Sanjay Sethi</name>
</author>
<author>
<name sortKey="Kong, Xiaoni" sort="Kong, Xiaoni" uniqKey="Kong X" first="Xiaoni" last="Kong">Xiaoni Kong</name>
</author>
<author>
<name sortKey="Yarmus, Lonny" sort="Yarmus, Lonny" uniqKey="Yarmus L" first="Lonny" last="Yarmus">Lonny Yarmus</name>
</author>
<author>
<name sortKey="Brown, Robert H" sort="Brown, Robert H" uniqKey="Brown R" first="Robert H" last="Brown">Robert H. Brown</name>
</author>
<author>
<name sortKey="Feller Kopman, David" sort="Feller Kopman, David" uniqKey="Feller Kopman D" first="David" last="Feller-Kopman">David Feller-Kopman</name>
</author>
<author>
<name sortKey="Wise, Robert" sort="Wise, Robert" uniqKey="Wise R" first="Robert" last="Wise">Robert Wise</name>
</author>
<author>
<name sortKey="Biswal, Shyam" sort="Biswal, Shyam" uniqKey="Biswal S" first="Shyam" last="Biswal">Shyam Biswal</name>
</author>
</analytic>
<series>
<title level="j">Science translational medicine</title>
<idno type="eISSN">1946-6242</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aged</term>
<term>Animals</term>
<term>Cells, Cultured</term>
<term>Female</term>
<term>Haemophilus influenzae (pathogenicity)</term>
<term>Humans</term>
<term>Isothiocyanates</term>
<term>Macrophages, Alveolar (drug effects)</term>
<term>Macrophages, Alveolar (metabolism)</term>
<term>Macrophages, Alveolar (microbiology)</term>
<term>Male</term>
<term>Mice</term>
<term>Middle Aged</term>
<term>NF-E2-Related Factor 2 (genetics)</term>
<term>NF-E2-Related Factor 2 (metabolism)</term>
<term>Phagocytosis (drug effects)</term>
<term>Pseudomonas aeruginosa (pathogenicity)</term>
<term>Pulmonary Disease, Chronic Obstructive (genetics)</term>
<term>Pulmonary Disease, Chronic Obstructive (metabolism)</term>
<term>Pulmonary Disease, Chronic Obstructive (microbiology)</term>
<term>Receptors, Immunologic (metabolism)</term>
<term>Thiocyanates (therapeutic use)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adulte d'âge moyen</term>
<term>Animaux</term>
<term>Broncho-pneumopathie chronique obstructive (génétique)</term>
<term>Broncho-pneumopathie chronique obstructive (microbiologie)</term>
<term>Broncho-pneumopathie chronique obstructive (métabolisme)</term>
<term>Cellules cultivées</term>
<term>Facteur-2 apparenté à NF-E2 (génétique)</term>
<term>Facteur-2 apparenté à NF-E2 (métabolisme)</term>
<term>Femelle</term>
<term>Haemophilus influenzae (pathogénicité)</term>
<term>Humains</term>
<term>Isothiocyanates</term>
<term>Macrophages alvéolaires ()</term>
<term>Macrophages alvéolaires (microbiologie)</term>
<term>Macrophages alvéolaires (métabolisme)</term>
<term>Mâle</term>
<term>Phagocytose ()</term>
<term>Pseudomonas aeruginosa (pathogénicité)</term>
<term>Récepteurs immunologiques (métabolisme)</term>
<term>Souris</term>
<term>Sujet âgé</term>
<term>Thiocyanates (usage thérapeutique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>NF-E2-Related Factor 2</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>NF-E2-Related Factor 2</term>
<term>Receptors, Immunologic</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Thiocyanates</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Isothiocyanates</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Macrophages, Alveolar</term>
<term>Phagocytosis</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Pulmonary Disease, Chronic Obstructive</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Broncho-pneumopathie chronique obstructive</term>
<term>Facteur-2 apparenté à NF-E2</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Macrophages, Alveolar</term>
<term>Pulmonary Disease, Chronic Obstructive</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Broncho-pneumopathie chronique obstructive</term>
<term>Macrophages alvéolaires</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Macrophages, Alveolar</term>
<term>Pulmonary Disease, Chronic Obstructive</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Broncho-pneumopathie chronique obstructive</term>
<term>Facteur-2 apparenté à NF-E2</term>
<term>Macrophages alvéolaires</term>
<term>Récepteurs immunologiques</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Haemophilus influenzae</term>
<term>Pseudomonas aeruginosa</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Haemophilus influenzae</term>
<term>Pseudomonas aeruginosa</term>
</keywords>
<keywords scheme="MESH" qualifier="usage thérapeutique" xml:lang="fr">
<term>Thiocyanates</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Aged</term>
<term>Animals</term>
<term>Cells, Cultured</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Mice</term>
<term>Middle Aged</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adulte d'âge moyen</term>
<term>Animaux</term>
<term>Cellules cultivées</term>
<term>Femelle</term>
<term>Humains</term>
<term>Isothiocyanates</term>
<term>Macrophages alvéolaires</term>
<term>Mâle</term>
<term>Phagocytose</term>
<term>Souris</term>
<term>Sujet âgé</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Patients with chronic obstructive pulmonary disease (COPD) have innate immune dysfunction in the lung largely due to defective macrophage phagocytosis. This deficiency results in periodic bacterial infections that cause acute exacerbations of COPD, a major source of morbidity and mortality. Recent studies indicate that a decrease in Nrf2 (nuclear erythroid-related factor 2) signaling in patients with COPD may hamper their ability to defend against oxidative stress, although the role of Nrf2 in COPD exacerbations has not been determined. Here, we test whether activation of Nrf2 by the phytochemical sulforaphane restores phagocytosis of clinical isolates of nontypeable Haemophilus influenza (NTHI) and Pseudomonas aeruginosa (PA) by alveolar macrophages from patients with COPD. Sulforaphane treatment restored bacteria recognition and phagocytosis in alveolar macrophages from COPD patients. Furthermore, sulforaphane treatment enhanced pulmonary bacterial clearance by alveolar macrophages and reduced inflammation in wild-type mice but not in Nrf2-deficient mice exposed to cigarette smoke for 6 months. Gene expression and promoter analysis revealed that Nrf2 increased phagocytic ability of macrophages by direct transcriptional up-regulation of the scavenger receptor MARCO. Disruption of Nrf2 or MARCO abrogated sulforaphane-mediated bacterial phagocytosis by COPD alveolar macrophages. Our findings demonstrate the importance of Nrf2 and its downstream target MARCO in improving antibacterial defenses and provide a rationale for targeting this pathway, via pharmacological agents such as sulforaphane, to prevent exacerbations of COPD caused by bacterial infection.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21490276</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>08</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1946-6242</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>3</Volume>
<Issue>78</Issue>
<PubDate>
<Year>2011</Year>
<Month>Apr</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>Science translational medicine</Title>
<ISOAbbreviation>Sci Transl Med</ISOAbbreviation>
</Journal>
<ArticleTitle>Targeting Nrf2 signaling improves bacterial clearance by alveolar macrophages in patients with COPD and in a mouse model.</ArticleTitle>
<Pagination>
<MedlinePgn>78ra32</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1126/scitranslmed.3002042</ELocationID>
<Abstract>
<AbstractText>Patients with chronic obstructive pulmonary disease (COPD) have innate immune dysfunction in the lung largely due to defective macrophage phagocytosis. This deficiency results in periodic bacterial infections that cause acute exacerbations of COPD, a major source of morbidity and mortality. Recent studies indicate that a decrease in Nrf2 (nuclear erythroid-related factor 2) signaling in patients with COPD may hamper their ability to defend against oxidative stress, although the role of Nrf2 in COPD exacerbations has not been determined. Here, we test whether activation of Nrf2 by the phytochemical sulforaphane restores phagocytosis of clinical isolates of nontypeable Haemophilus influenza (NTHI) and Pseudomonas aeruginosa (PA) by alveolar macrophages from patients with COPD. Sulforaphane treatment restored bacteria recognition and phagocytosis in alveolar macrophages from COPD patients. Furthermore, sulforaphane treatment enhanced pulmonary bacterial clearance by alveolar macrophages and reduced inflammation in wild-type mice but not in Nrf2-deficient mice exposed to cigarette smoke for 6 months. Gene expression and promoter analysis revealed that Nrf2 increased phagocytic ability of macrophages by direct transcriptional up-regulation of the scavenger receptor MARCO. Disruption of Nrf2 or MARCO abrogated sulforaphane-mediated bacterial phagocytosis by COPD alveolar macrophages. Our findings demonstrate the importance of Nrf2 and its downstream target MARCO in improving antibacterial defenses and provide a rationale for targeting this pathway, via pharmacological agents such as sulforaphane, to prevent exacerbations of COPD caused by bacterial infection.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Harvey</LastName>
<ForeName>Christopher J</ForeName>
<Initials>CJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, MD 21205, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thimmulappa</LastName>
<ForeName>Rajesh K</ForeName>
<Initials>RK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sethi</LastName>
<ForeName>Sanjay</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kong</LastName>
<ForeName>Xiaoni</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yarmus</LastName>
<ForeName>Lonny</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Brown</LastName>
<ForeName>Robert H</ForeName>
<Initials>RH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Feller-Kopman</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wise</LastName>
<ForeName>Robert</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Biswal</LastName>
<ForeName>Shyam</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P50ES015903</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P50 ES015903</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 HL010342</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL10342</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>ES07141</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL081205</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P50 HL084945</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P50HL084945</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>ES03819</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL081205</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 ES007141</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 ES003819</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Sci Transl Med</MedlineTA>
<NlmUniqueID>101505086</NlmUniqueID>
<ISSNLinking>1946-6234</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017879">Isothiocyanates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051267">NF-E2-Related Factor 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011971">Receptors, Immunologic</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013861">Thiocyanates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GA49J4310U</RegistryNumber>
<NameOfSubstance UI="C016766">sulforafan</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006193" MajorTopicYN="N">Haemophilus influenzae</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017879" MajorTopicYN="N">Isothiocyanates</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016676" MajorTopicYN="N">Macrophages, Alveolar</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051267" MajorTopicYN="N">NF-E2-Related Factor 2</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010587" MajorTopicYN="N">Phagocytosis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011550" MajorTopicYN="N">Pseudomonas aeruginosa</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029424" MajorTopicYN="N">Pulmonary Disease, Chronic Obstructive</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011971" MajorTopicYN="N">Receptors, Immunologic</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013861" MajorTopicYN="N">Thiocyanates</DescriptorName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21490276</ArticleId>
<ArticleId IdType="pii">3/78/78ra32</ArticleId>
<ArticleId IdType="doi">10.1126/scitranslmed.3002042</ArticleId>
<ArticleId IdType="pmc">PMC4927975</ArticleId>
<ArticleId IdType="mid">NIHMS795085</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2008 Dec;39(6):673-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18566336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2008 Sep 15;178(6):592-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18556627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2004 Nov;114(9):1248-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15520857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2004 Jul 19;200(2):267-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15263032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Sci. 2007 Jun;97(2):398-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17361018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Am Thorac Soc. 2004;1(2):109-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16113422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2004 Aug 1;170(3):266-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15117742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2009 Feb 1;46(3):376-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19027064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Immunol. 2009 Mar;130(3):244-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19028145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2005 Dec;10(12):1113-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16324149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2008 Apr 15;177(8):853-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18202344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Thorax. 2008 Oct;63(10 ):916-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18559366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Lett. 1997 Jun 1;57(1-3):203-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9232452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009 Jul 10;4(7):e6209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19593389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2008 Nov 27;359(22):2355-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19038881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Am Thorac Soc. 2009 Sep 15;6(6):532-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Rev. 2004 Dec;56(4):515-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15602009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Biol (Noisy-le-grand). 2004;50 Online Pub:OL627-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15579256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2009 Oct;77(10):4232-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19620348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2002 Aug 15;347(7):465-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12181400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2008 May;14(5):558-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18438414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2009 Dec 15;180(12):1196-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19797762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Am Thorac Soc. 2004;1(2):115-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16113423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):250-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19104057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10367-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9294217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Thorax. 2003 Aug;58(8):680-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12885984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2006 Dec;35(6):639-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16794261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2009 Jan 15;179(2):138-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18931336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2002 Sep 15;62(18):5196-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12234984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2007 Aug 15;176(4):356-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17478618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nutr Cancer. 2006;55(1):53-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16965241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Feb 20;273(8):4530-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9468508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chest. 2003 Apr;123(4):1054-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12684293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1974 Sep;54(3):519-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4853956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2009 Jun 1;179(11):1011-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19264974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2009 Feb 15;46(4):443-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19028565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Sep 3;99(18):11908-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12193649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2006 Jul 1;174(1):31-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16574934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2006 Nov 15;194(10):1375-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17054066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Respir J. 2005 Apr;25(4):647-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15802338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respir Care. 2003 Dec;48(12):1204-13; discussion 1213-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14651761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>COPD. 2006 Jun;3(2):109-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17175674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Immunol Immunother. 2010 Jun;59(6):875-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20054688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Respir J. 2010 May;35(5):1039-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19897561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pharmacol Toxicol. 2007;47:89-116</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16968214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2006 Apr;116(4):984-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16585964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2004 Dec 1;170(11):1164-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15317669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Epidemiol Biomarkers Prev. 2005 Nov;14(11 Pt 1):2605-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16284385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2010 May;42(5):524-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19520915</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Biswal, Shyam" sort="Biswal, Shyam" uniqKey="Biswal S" first="Shyam" last="Biswal">Shyam Biswal</name>
<name sortKey="Brown, Robert H" sort="Brown, Robert H" uniqKey="Brown R" first="Robert H" last="Brown">Robert H. Brown</name>
<name sortKey="Feller Kopman, David" sort="Feller Kopman, David" uniqKey="Feller Kopman D" first="David" last="Feller-Kopman">David Feller-Kopman</name>
<name sortKey="Kong, Xiaoni" sort="Kong, Xiaoni" uniqKey="Kong X" first="Xiaoni" last="Kong">Xiaoni Kong</name>
<name sortKey="Sethi, Sanjay" sort="Sethi, Sanjay" uniqKey="Sethi S" first="Sanjay" last="Sethi">Sanjay Sethi</name>
<name sortKey="Thimmulappa, Rajesh K" sort="Thimmulappa, Rajesh K" uniqKey="Thimmulappa R" first="Rajesh K" last="Thimmulappa">Rajesh K. Thimmulappa</name>
<name sortKey="Wise, Robert" sort="Wise, Robert" uniqKey="Wise R" first="Robert" last="Wise">Robert Wise</name>
<name sortKey="Yarmus, Lonny" sort="Yarmus, Lonny" uniqKey="Yarmus L" first="Lonny" last="Yarmus">Lonny Yarmus</name>
</noCountry>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Harvey, Christopher J" sort="Harvey, Christopher J" uniqKey="Harvey C" first="Christopher J" last="Harvey">Christopher J. Harvey</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/StressCovidV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000600 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000600 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    StressCovidV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:21490276
   |texte=   Targeting Nrf2 signaling improves bacterial clearance by alveolar macrophages in patients with COPD and in a mouse model.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:21490276" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a StressCovidV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed May 6 16:44:09 2020. Site generation: Sun Mar 28 08:26:57 2021