Serveur d'exploration Stress et Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

FABP5 deficiency enhances susceptibility to H1N1 influenza A virus-induced lung inflammation.

Identifieur interne : 000528 ( PubMed/Checkpoint ); précédent : 000527; suivant : 000529

FABP5 deficiency enhances susceptibility to H1N1 influenza A virus-induced lung inflammation.

Auteurs : Fabienne Gally [États-Unis] ; Beata Kosmider ; Michael R. Weaver ; Kathryn M. Pate ; Kevan L. Hartshorn ; Rebecca E. Oberley-Deegan

Source :

RBID : pubmed:23624787

Descripteurs français

English descriptors

Abstract

The early inflammatory response to influenza A virus infection contributes to severe lung disease and continues to pose a serious threat to human health. The mechanisms by which inflammatory cells invade the respiratory tract remain unclear. Uncontrolled inflammation and oxidative stress cause lung damage in response to influenza A infection. We have previously shown that the fatty acid binding protein 5 (FABP5) has anti-inflammatory properties. We speculate that, as a transporter of fatty acids, FABP5 plays an important protective role against oxidative damage to lipids during infection as well. Using FABP5-/- and wild-type (WT) mice infected with influenza A virus, we showed that FABP5-/- mice had increased cell infiltration of macrophages and neutrophils compared with WT mice. FABP5-/- mice presented lower viral burden but lost as much weight as WT mice. The adaptive immune response was also increased in FABP5-/- mice as illustrated by the accumulation of T and B cells in the lung tissues and increased levels of H1N1-specific IgG antibodies. FABP5 deficiency greatly enhanced oxidative damage and lipid peroxidation following influenza A infection and presented with sustained tissue inflammation. Interestingly, FABP5 expression decreased following influenza A infection in WT lung tissues that corresponded to a decrease in the anti-inflammatory molecule PPAR-γ activity. In conclusion, our results demonstrate a previously unknown contribution of FABP5 to influenza A virus pathogenesis by controlling excessive oxidative damage and inflammation. This property could be exploited for therapeutic purposes.

DOI: 10.1152/ajplung.00276.2012
PubMed: 23624787


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23624787

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">FABP5 deficiency enhances susceptibility to H1N1 influenza A virus-induced lung inflammation.</title>
<author>
<name sortKey="Gally, Fabienne" sort="Gally, Fabienne" uniqKey="Gally F" first="Fabienne" last="Gally">Fabienne Gally</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, National Jewish Health, Denver, CO 80206, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, National Jewish Health, Denver, CO 80206</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kosmider, Beata" sort="Kosmider, Beata" uniqKey="Kosmider B" first="Beata" last="Kosmider">Beata Kosmider</name>
</author>
<author>
<name sortKey="Weaver, Michael R" sort="Weaver, Michael R" uniqKey="Weaver M" first="Michael R" last="Weaver">Michael R. Weaver</name>
</author>
<author>
<name sortKey="Pate, Kathryn M" sort="Pate, Kathryn M" uniqKey="Pate K" first="Kathryn M" last="Pate">Kathryn M. Pate</name>
</author>
<author>
<name sortKey="Hartshorn, Kevan L" sort="Hartshorn, Kevan L" uniqKey="Hartshorn K" first="Kevan L" last="Hartshorn">Kevan L. Hartshorn</name>
</author>
<author>
<name sortKey="Oberley Deegan, Rebecca E" sort="Oberley Deegan, Rebecca E" uniqKey="Oberley Deegan R" first="Rebecca E" last="Oberley-Deegan">Rebecca E. Oberley-Deegan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23624787</idno>
<idno type="pmid">23624787</idno>
<idno type="doi">10.1152/ajplung.00276.2012</idno>
<idno type="wicri:Area/PubMed/Corpus">000528</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000528</idno>
<idno type="wicri:Area/PubMed/Curation">000526</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000526</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000528</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000528</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">FABP5 deficiency enhances susceptibility to H1N1 influenza A virus-induced lung inflammation.</title>
<author>
<name sortKey="Gally, Fabienne" sort="Gally, Fabienne" uniqKey="Gally F" first="Fabienne" last="Gally">Fabienne Gally</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, National Jewish Health, Denver, CO 80206, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, National Jewish Health, Denver, CO 80206</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kosmider, Beata" sort="Kosmider, Beata" uniqKey="Kosmider B" first="Beata" last="Kosmider">Beata Kosmider</name>
</author>
<author>
<name sortKey="Weaver, Michael R" sort="Weaver, Michael R" uniqKey="Weaver M" first="Michael R" last="Weaver">Michael R. Weaver</name>
</author>
<author>
<name sortKey="Pate, Kathryn M" sort="Pate, Kathryn M" uniqKey="Pate K" first="Kathryn M" last="Pate">Kathryn M. Pate</name>
</author>
<author>
<name sortKey="Hartshorn, Kevan L" sort="Hartshorn, Kevan L" uniqKey="Hartshorn K" first="Kevan L" last="Hartshorn">Kevan L. Hartshorn</name>
</author>
<author>
<name sortKey="Oberley Deegan, Rebecca E" sort="Oberley Deegan, Rebecca E" uniqKey="Oberley Deegan R" first="Rebecca E" last="Oberley-Deegan">Rebecca E. Oberley-Deegan</name>
</author>
</analytic>
<series>
<title level="j">American journal of physiology. Lung cellular and molecular physiology</title>
<idno type="eISSN">1522-1504</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptive Immunity</term>
<term>Animals</term>
<term>Blotting, Western</term>
<term>Cells, Cultured</term>
<term>Disease Susceptibility</term>
<term>Enzyme-Linked Immunosorbent Assay</term>
<term>Fatty Acid-Binding Proteins (physiology)</term>
<term>Fluorescent Antibody Technique</term>
<term>Humans</term>
<term>Immunoenzyme Techniques</term>
<term>Immunoprecipitation</term>
<term>Influenza A Virus, H1N1 Subtype (pathogenicity)</term>
<term>Influenza, Human (complications)</term>
<term>Influenza, Human (immunology)</term>
<term>Influenza, Human (virology)</term>
<term>Lipid Peroxidation</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Knockout</term>
<term>Neoplasm Proteins (physiology)</term>
<term>Oxidative Stress</term>
<term>PPAR gamma (metabolism)</term>
<term>Pneumonia (etiology)</term>
<term>Pneumonia (metabolism)</term>
<term>Pneumonia (pathology)</term>
<term>RNA, Messenger (genetics)</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>Animaux</term>
<term>Cellules cultivées</term>
<term>Grippe humaine ()</term>
<term>Grippe humaine (immunologie)</term>
<term>Grippe humaine (virologie)</term>
<term>Humains</term>
<term>Immunité acquise</term>
<term>Immunoprécipitation</term>
<term>Peroxydation lipidique</term>
<term>Pneumopathie infectieuse (anatomopathologie)</term>
<term>Pneumopathie infectieuse (métabolisme)</term>
<term>Pneumopathie infectieuse (étiologie)</term>
<term>Protéines de liaison aux acides gras (physiologie)</term>
<term>Protéines tumorales (physiologie)</term>
<term>RT-PCR</term>
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Récepteur PPAR gamma (métabolisme)</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
<term>Souris knockout</term>
<term>Sous-type H1N1 du virus de la grippe A (pathogénicité)</term>
<term>Stress oxydatif</term>
<term>Susceptibilité à une maladie</term>
<term>Technique d'immunofluorescence</term>
<term>Technique de Western</term>
<term>Techniques immunoenzymatiques</term>
<term>Test ELISA</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>PPAR gamma</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Fatty Acid-Binding Proteins</term>
<term>Neoplasm Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Pneumopathie infectieuse</term>
</keywords>
<keywords scheme="MESH" qualifier="complications" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="etiology" xml:lang="en">
<term>Pneumonia</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Grippe humaine</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Pneumonia</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Pneumopathie infectieuse</term>
<term>Récepteur PPAR gamma</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Influenza A Virus, H1N1 Subtype</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Sous-type H1N1 du virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Pneumonia</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Protéines de liaison aux acides gras</term>
<term>Protéines tumorales</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Grippe humaine</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="étiologie" xml:lang="fr">
<term>Pneumopathie infectieuse</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptive Immunity</term>
<term>Animals</term>
<term>Blotting, Western</term>
<term>Cells, Cultured</term>
<term>Disease Susceptibility</term>
<term>Enzyme-Linked Immunosorbent Assay</term>
<term>Fluorescent Antibody Technique</term>
<term>Humans</term>
<term>Immunoenzyme Techniques</term>
<term>Immunoprecipitation</term>
<term>Lipid Peroxidation</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Knockout</term>
<term>Oxidative Stress</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules cultivées</term>
<term>Grippe humaine</term>
<term>Humains</term>
<term>Immunité acquise</term>
<term>Immunoprécipitation</term>
<term>Peroxydation lipidique</term>
<term>RT-PCR</term>
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
<term>Souris knockout</term>
<term>Stress oxydatif</term>
<term>Susceptibilité à une maladie</term>
<term>Technique d'immunofluorescence</term>
<term>Technique de Western</term>
<term>Techniques immunoenzymatiques</term>
<term>Test ELISA</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The early inflammatory response to influenza A virus infection contributes to severe lung disease and continues to pose a serious threat to human health. The mechanisms by which inflammatory cells invade the respiratory tract remain unclear. Uncontrolled inflammation and oxidative stress cause lung damage in response to influenza A infection. We have previously shown that the fatty acid binding protein 5 (FABP5) has anti-inflammatory properties. We speculate that, as a transporter of fatty acids, FABP5 plays an important protective role against oxidative damage to lipids during infection as well. Using FABP5-/- and wild-type (WT) mice infected with influenza A virus, we showed that FABP5-/- mice had increased cell infiltration of macrophages and neutrophils compared with WT mice. FABP5-/- mice presented lower viral burden but lost as much weight as WT mice. The adaptive immune response was also increased in FABP5-/- mice as illustrated by the accumulation of T and B cells in the lung tissues and increased levels of H1N1-specific IgG antibodies. FABP5 deficiency greatly enhanced oxidative damage and lipid peroxidation following influenza A infection and presented with sustained tissue inflammation. Interestingly, FABP5 expression decreased following influenza A infection in WT lung tissues that corresponded to a decrease in the anti-inflammatory molecule PPAR-γ activity. In conclusion, our results demonstrate a previously unknown contribution of FABP5 to influenza A virus pathogenesis by controlling excessive oxidative damage and inflammation. This property could be exploited for therapeutic purposes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23624787</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>09</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1522-1504</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>305</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jul</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>American journal of physiology. Lung cellular and molecular physiology</Title>
<ISOAbbreviation>Am. J. Physiol. Lung Cell Mol. Physiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>FABP5 deficiency enhances susceptibility to H1N1 influenza A virus-induced lung inflammation.</ArticleTitle>
<Pagination>
<MedlinePgn>L64-72</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1152/ajplung.00276.2012</ELocationID>
<Abstract>
<AbstractText>The early inflammatory response to influenza A virus infection contributes to severe lung disease and continues to pose a serious threat to human health. The mechanisms by which inflammatory cells invade the respiratory tract remain unclear. Uncontrolled inflammation and oxidative stress cause lung damage in response to influenza A infection. We have previously shown that the fatty acid binding protein 5 (FABP5) has anti-inflammatory properties. We speculate that, as a transporter of fatty acids, FABP5 plays an important protective role against oxidative damage to lipids during infection as well. Using FABP5-/- and wild-type (WT) mice infected with influenza A virus, we showed that FABP5-/- mice had increased cell infiltration of macrophages and neutrophils compared with WT mice. FABP5-/- mice presented lower viral burden but lost as much weight as WT mice. The adaptive immune response was also increased in FABP5-/- mice as illustrated by the accumulation of T and B cells in the lung tissues and increased levels of H1N1-specific IgG antibodies. FABP5 deficiency greatly enhanced oxidative damage and lipid peroxidation following influenza A infection and presented with sustained tissue inflammation. Interestingly, FABP5 expression decreased following influenza A infection in WT lung tissues that corresponded to a decrease in the anti-inflammatory molecule PPAR-γ activity. In conclusion, our results demonstrate a previously unknown contribution of FABP5 to influenza A virus pathogenesis by controlling excessive oxidative damage and inflammation. This property could be exploited for therapeutic purposes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gally</LastName>
<ForeName>Fabienne</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine, National Jewish Health, Denver, CO 80206, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kosmider</LastName>
<ForeName>Beata</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Weaver</LastName>
<ForeName>Michael R</ForeName>
<Initials>MR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pate</LastName>
<ForeName>Kathryn M</ForeName>
<Initials>KM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hartshorn</LastName>
<ForeName>Kevan L</ForeName>
<Initials>KL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Oberley-Deegan</LastName>
<ForeName>Rebecca E</ForeName>
<Initials>RE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 HL069031</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>04</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Am J Physiol Lung Cell Mol Physiol</MedlineTA>
<NlmUniqueID>100901229</NlmUniqueID>
<ISSNLinking>1040-0605</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C082667">Fabp5 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050556">Fatty Acid-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009363">Neoplasm Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D047495">PPAR gamma</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D056704" MajorTopicYN="N">Adaptive Immunity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015153" MajorTopicYN="N">Blotting, Western</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004198" MajorTopicYN="N">Disease Susceptibility</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004797" MajorTopicYN="N">Enzyme-Linked Immunosorbent Assay</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050556" MajorTopicYN="N">Fatty Acid-Binding Proteins</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005455" MajorTopicYN="N">Fluorescent Antibody Technique</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007124" MajorTopicYN="N">Immunoenzyme Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047468" MajorTopicYN="N">Immunoprecipitation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053118" MajorTopicYN="N">Influenza A Virus, H1N1 Subtype</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007251" MajorTopicYN="N">Influenza, Human</DescriptorName>
<QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015227" MajorTopicYN="N">Lipid Peroxidation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009363" MajorTopicYN="N">Neoplasm Proteins</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="Y">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047495" MajorTopicYN="N">PPAR gamma</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011014" MajorTopicYN="N">Pneumonia</DescriptorName>
<QualifierName UI="Q000209" MajorTopicYN="Y">etiology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">FABP5</Keyword>
<Keyword MajorTopicYN="N">inflammation</Keyword>
<Keyword MajorTopicYN="N">influenza A</Keyword>
<Keyword MajorTopicYN="N">lipid peroxidation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>4</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>4</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23624787</ArticleId>
<ArticleId IdType="pii">ajplung.00276.2012</ArticleId>
<ArticleId IdType="doi">10.1152/ajplung.00276.2012</ArticleId>
<ArticleId IdType="pmc">PMC4888543</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Blood. 2000 Sep 1;96(5):1961-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10961901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Jun 12;137(6):1112-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19524513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2003 Feb;52(2):300-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12540600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 1995 May 4;332(18):1198-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7700313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(1):e51784</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23349676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>APMIS. 2010 Oct;118(10):791-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20854474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1996;21(5):641-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8891667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1996 Sep;271(3 Pt 1):L383-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8843786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2002 Dec;43(12 ):2105-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12454272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Med Virol. 2001 Mar-Apr;11(2):87-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11262528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 2011 Aug;23(4):481-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21840185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1998 Apr 15;253(2):430-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9654093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2002 Apr 15;168(8):3974-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11937554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 1997 Mar 1;89(5):1748-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9057659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res Commun. 1992;16(2):99-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1321077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 May 2;320(5876):674-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18403674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1992 Sep;263(3 Pt 2):H660-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1415588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Contrib Microbiol. 2008;15:164-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18511861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2000 Jun;49(6):904-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10866041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2011 Jun;31(6):1283-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21474828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Virol. 2009;53(4):233-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19941386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2011 Jul;179(1):199-210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21703402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009 Aug 31;4(8):e6860</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19718433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2006 Oct;12(10):1203-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16964257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2011 Apr 1;186(7):3823-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21422252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Dec;79(23):14933-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16282492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2770-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19196953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1994 Sep 1;302 ( Pt 2):363-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8092987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2003 Jun 15;170(12 ):6224-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12794154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Cell Biol. 2007 Feb-Mar;85(2):85-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17213831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Jan 1;391(6662):82-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9422509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1991 Jun;260(6 Pt 1):L481-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2058691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Vaccines. 2008 Nov;7(9):1435-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18980544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Jan 1;391(6662):79-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9422508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1997 Jan 20;185(2):207-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9016870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Histochem J. 2001 Aug;33(8):453-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11931385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biochem. 2002 Oct;239(1-2):83-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12479572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2006 May 15;176(10):5720-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16670275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1995 Feb;9(2):202-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7719350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2001 Nov 15;360(Pt 1):159-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11696003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 May;79(10):6441-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15858027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2003 Jan 8;289(2):179-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12517228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Jan 15;327(5963):291-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20075244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2012 Feb 15;205(4):621-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22219346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Dec 27;277(52):50693-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12386159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Physiol (1985). 1994 Dec;77(6):2912-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7896640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 1999 Feb;65(2):196-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10088602</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Colorado</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Hartshorn, Kevan L" sort="Hartshorn, Kevan L" uniqKey="Hartshorn K" first="Kevan L" last="Hartshorn">Kevan L. Hartshorn</name>
<name sortKey="Kosmider, Beata" sort="Kosmider, Beata" uniqKey="Kosmider B" first="Beata" last="Kosmider">Beata Kosmider</name>
<name sortKey="Oberley Deegan, Rebecca E" sort="Oberley Deegan, Rebecca E" uniqKey="Oberley Deegan R" first="Rebecca E" last="Oberley-Deegan">Rebecca E. Oberley-Deegan</name>
<name sortKey="Pate, Kathryn M" sort="Pate, Kathryn M" uniqKey="Pate K" first="Kathryn M" last="Pate">Kathryn M. Pate</name>
<name sortKey="Weaver, Michael R" sort="Weaver, Michael R" uniqKey="Weaver M" first="Michael R" last="Weaver">Michael R. Weaver</name>
</noCountry>
<country name="États-Unis">
<region name="Colorado">
<name sortKey="Gally, Fabienne" sort="Gally, Fabienne" uniqKey="Gally F" first="Fabienne" last="Gally">Fabienne Gally</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/StressCovidV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000528 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000528 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    StressCovidV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:23624787
   |texte=   FABP5 deficiency enhances susceptibility to H1N1 influenza A virus-induced lung inflammation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:23624787" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a StressCovidV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed May 6 16:44:09 2020. Site generation: Sun Mar 28 08:26:57 2021