Serveur d'exploration Stress et Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Strategies to Optimize Protein Expression in E. coli

Identifieur interne : 000547 ( Pmc/Curation ); précédent : 000546; suivant : 000548

Strategies to Optimize Protein Expression in E. coli

Auteurs : Dana M. Francis ; Rebecca Page

Source :

RBID : PMC:7162232

Abstract

Abstract

Recombinant protein expression in Escherichia coli (E. coli) is simple, fast, inexpensive, and robust, with the expressed protein comprising up to 50 percent of the total cellular protein. However, it also has disadvantages. For example, the rapidity of bacterial protein expression often results in unfolded/misfolded proteins, especially for heterologous proteins that require longer times and/or molecular chaperones to fold correctly. In addition, the highly reductive environment of the bacterial cytosol and the inability of E. coli to perform several eukaryotic post‐translational modifications results in the insoluble expression of proteins that require these modifications for folding and activity. Fortunately, multiple, novel reagents and techniques have been developed that allow for the efficient, soluble production of a diverse range of heterologous proteins in E. coli. This overview describes variables at each stage of a protein expression experiment that can influence solubility and offers a summary of strategies used to optimize soluble expression in E. coli. Curr. Protoc. Protein Sci. 61:5.24.1‐5.24.29. © 2010 by John Wiley & Sons, Inc.


Url:
DOI: 10.1002/0471140864.ps0524s61
PubMed: 20814932
PubMed Central: 7162232

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:7162232

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Strategies to Optimize Protein Expression in
<named-content content-type="genus-species">
<italic>E. coli</italic>
</named-content>
</title>
<author>
<name sortKey="Francis, Dana M" sort="Francis, Dana M" uniqKey="Francis D" first="Dana M." last="Francis">Dana M. Francis</name>
<affiliation>
<nlm:aff id="cpps0524-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Page, Rebecca" sort="Page, Rebecca" uniqKey="Page R" first="Rebecca" last="Page">Rebecca Page</name>
<affiliation>
<nlm:aff id="cpps0524-aff-0001"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">20814932</idno>
<idno type="pmc">7162232</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7162232</idno>
<idno type="RBID">PMC:7162232</idno>
<idno type="doi">10.1002/0471140864.ps0524s61</idno>
<date when="2010">2010</date>
<idno type="wicri:Area/Pmc/Corpus">000547</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000547</idno>
<idno type="wicri:Area/Pmc/Curation">000547</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000547</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Strategies to Optimize Protein Expression in
<named-content content-type="genus-species">
<italic>E. coli</italic>
</named-content>
</title>
<author>
<name sortKey="Francis, Dana M" sort="Francis, Dana M" uniqKey="Francis D" first="Dana M." last="Francis">Dana M. Francis</name>
<affiliation>
<nlm:aff id="cpps0524-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Page, Rebecca" sort="Page, Rebecca" uniqKey="Page R" first="Rebecca" last="Page">Rebecca Page</name>
<affiliation>
<nlm:aff id="cpps0524-aff-0001"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Current Protocols in Protein Science</title>
<idno type="ISSN">1934-3655</idno>
<idno type="eISSN">1934-3663</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Abstract</title>
<p>Recombinant protein expression in
<named-content content-type="genus-species">
<italic>Escherichia coli</italic>
</named-content>
(
<named-content content-type="genus-species">
<italic>E. coli</italic>
</named-content>
) is simple, fast, inexpensive, and robust, with the expressed protein comprising up to 50 percent of the total cellular protein. However, it also has disadvantages. For example, the rapidity of bacterial protein expression often results in unfolded/misfolded proteins, especially for heterologous proteins that require longer times and/or molecular chaperones to fold correctly. In addition, the highly reductive environment of the bacterial cytosol and the inability of
<named-content content-type="genus-species">
<italic>E. coli</italic>
</named-content>
to perform several eukaryotic post‐translational modifications results in the insoluble expression of proteins that require these modifications for folding and activity. Fortunately, multiple, novel reagents and techniques have been developed that allow for the efficient, soluble production of a diverse range of heterologous proteins in
<named-content content-type="genus-species">
<italic>E. coli</italic>
</named-content>
. This overview describes variables at each stage of a protein expression experiment that can influence solubility and offers a summary of strategies used to optimize soluble expression in
<named-content content-type="genus-species">
<italic>E. coli</italic>
</named-content>
.
<italic>Curr. Protoc. Protein Sci</italic>
. 61:5.24.1‐5.24.29. © 2010 by John Wiley & Sons, Inc.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="other">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Curr Protoc Protein Sci</journal-id>
<journal-id journal-id-type="iso-abbrev">Curr Protoc Protein Sci</journal-id>
<journal-id journal-id-type="doi">10.1002/(ISSN)1934-3663</journal-id>
<journal-id journal-id-type="publisher-id">CPPS</journal-id>
<journal-title-group>
<journal-title>Current Protocols in Protein Science</journal-title>
</journal-title-group>
<issn pub-type="ppub">1934-3655</issn>
<issn pub-type="epub">1934-3663</issn>
<publisher>
<publisher-name>John Wiley and Sons Inc.</publisher-name>
<publisher-loc>Hoboken</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">20814932</article-id>
<article-id pub-id-type="pmc">7162232</article-id>
<article-id pub-id-type="doi">10.1002/0471140864.ps0524s61</article-id>
<article-id pub-id-type="publisher-id">CPPS0524</article-id>
<article-categories>
<subj-group subj-group-type="article-subject-classification">
<subject>Biochemistry</subject>
</subj-group>
<subj-group subj-group-type="article-subject-classification">
<subject>Biochemistry and Molecular Cell Biology</subject>
</subj-group>
<subj-group subj-group-type="article-subject-classification">
<subject>Protein Production, Purification, and Analysis</subject>
</subj-group>
<subj-group subj-group-type="article-subject-classification">
<subject>Production of Recombinant Proteins</subject>
</subj-group>
<subj-group subj-group-type="article-subject-classification">
<subject>Purification of Recombinant Proteins</subject>
</subj-group>
<subj-group subj-group-type="article-subject-classification">
<subject>Molecular Biology</subject>
</subj-group>
<subj-group subj-group-type="article-subject-classification">
<subject>E. coli, Plasmids, and Bacteriophages</subject>
</subj-group>
<subj-group subj-group-type="article-subject-classification">
<subject>Cell Culture</subject>
</subj-group>
<subj-group subj-group-type="article-subject-classification">
<subject>Bacteria</subject>
</subj-group>
<subj-group subj-group-type="article-subject-classification">
<subject>Bioinformatics</subject>
</subj-group>
<subj-group subj-group-type="article-subject-classification">
<subject>Protein Analysis</subject>
</subj-group>
<subj-group subj-group-type="overline">
<subject>Unit</subject>
</subj-group>
<subj-group subj-group-type="heading">
<subject>Unit</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Strategies to Optimize Protein Expression in
<named-content content-type="genus-species">
<italic>E. coli</italic>
</named-content>
</article-title>
</title-group>
<contrib-group>
<contrib id="cpps0524-cr-0005" contrib-type="author">
<name>
<surname>Francis</surname>
<given-names>Dana M.</given-names>
</name>
<xref ref-type="aff" rid="cpps0524-aff-0001">
<sup>1</sup>
</xref>
</contrib>
<contrib id="cpps0524-cr-0006" contrib-type="author">
<name>
<surname>Page</surname>
<given-names>Rebecca</given-names>
</name>
<xref ref-type="aff" rid="cpps0524-aff-0001">
<sup>1</sup>
</xref>
</contrib>
</contrib-group>
<aff id="cpps0524-aff-0001">
<label>
<sup>1</sup>
</label>
<institution>Brown University</institution>
<city>Providence</city>
<named-content content-type="country-part">Rhode Island</named-content>
</aff>
<pub-date pub-type="epub">
<day>01</day>
<month>8</month>
<year>2010</year>
</pub-date>
<pub-date pub-type="ppub">
<month>8</month>
<year>2010</year>
</pub-date>
<volume>61</volume>
<issue>1</issue>
<issue-id pub-id-type="doi">10.1002/0471140864.2010.61.issue-1</issue-id>
<issue-title>Production of Recombinant Proteins</issue-title>
<fpage>5241</fpage>
<lpage>52429</lpage>
<permissions>
<pmc-comment> © John Wiley and Sons </pmc-comment>
<copyright-statement content-type="article-copyright">Copyright © 2010 John Wiley & Sons, Inc.</copyright-statement>
<license>
<license-p>This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:href="file:CPPS-61-5241.pdf"></self-uri>
<abstract>
<title>Abstract</title>
<p>Recombinant protein expression in
<named-content content-type="genus-species">
<italic>Escherichia coli</italic>
</named-content>
(
<named-content content-type="genus-species">
<italic>E. coli</italic>
</named-content>
) is simple, fast, inexpensive, and robust, with the expressed protein comprising up to 50 percent of the total cellular protein. However, it also has disadvantages. For example, the rapidity of bacterial protein expression often results in unfolded/misfolded proteins, especially for heterologous proteins that require longer times and/or molecular chaperones to fold correctly. In addition, the highly reductive environment of the bacterial cytosol and the inability of
<named-content content-type="genus-species">
<italic>E. coli</italic>
</named-content>
to perform several eukaryotic post‐translational modifications results in the insoluble expression of proteins that require these modifications for folding and activity. Fortunately, multiple, novel reagents and techniques have been developed that allow for the efficient, soluble production of a diverse range of heterologous proteins in
<named-content content-type="genus-species">
<italic>E. coli</italic>
</named-content>
. This overview describes variables at each stage of a protein expression experiment that can influence solubility and offers a summary of strategies used to optimize soluble expression in
<named-content content-type="genus-species">
<italic>E. coli</italic>
</named-content>
.
<italic>Curr. Protoc. Protein Sci</italic>
. 61:5.24.1‐5.24.29. © 2010 by John Wiley & Sons, Inc.</p>
</abstract>
<kwd-group kwd-group-type="author-generated">
<kwd id="cpps0524-kwd-0001">protein expression</kwd>
<kwd id="cpps0524-kwd-0002">
<named-content content-type="genus-species">
<italic>E. coli</italic>
</named-content>
</kwd>
<kwd id="cpps0524-kwd-0003">fusion proteins</kwd>
<kwd id="cpps0524-kwd-0004">proteases</kwd>
<kwd id="cpps0524-kwd-0005">heterologous protein</kwd>
<kwd id="cpps0524-kwd-0006">purification tags</kwd>
<kwd id="cpps0524-kwd-0007">expression tags</kwd>
<kwd id="cpps0524-kwd-0008">expression strains and vectors</kwd>
<kwd id="cpps0524-kwd-0009">folded protein</kwd>
<kwd id="cpps0524-kwd-0010">active protein</kwd>
</kwd-group>
<counts>
<fig-count count="3"></fig-count>
<table-count count="4"></table-count>
<page-count count="29"></page-count>
<word-count count="17501"></word-count>
</counts>
<custom-meta-group>
<custom-meta>
<meta-name>source-schema-version-number</meta-name>
<meta-value>2.0</meta-value>
</custom-meta>
<custom-meta>
<meta-name>cover-date</meta-name>
<meta-value>August 2010</meta-value>
</custom-meta>
<custom-meta>
<meta-name>details-of-publishers-convertor</meta-name>
<meta-value>Converter:WILEY_ML3GV2_TO_JATSPMC version:5.8.0 mode:remove_FC converted:15.04.2020</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/StressCovidV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000547 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 000547 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    StressCovidV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:7162232
   |texte=   Strategies to Optimize Protein Expression in E. coli
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:20814932" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a StressCovidV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed May 6 16:44:09 2020. Site generation: Sun Mar 28 08:26:57 2021