Serveur d'exploration Stress et Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mathematical prediction of the time evolution of the COVID-19 pandemic in Italy by a Gauss error function and Monte Carlo simulations

Identifieur interne : 000115 ( Pmc/Curation ); précédent : 000114; suivant : 000116

Mathematical prediction of the time evolution of the COVID-19 pandemic in Italy by a Gauss error function and Monte Carlo simulations

Auteurs : Ignazio Ciufolini [Italie] ; Antonio Paolozzi [Italie]

Source :

RBID : PMC:7156796

Abstract

In this paper are presented mathematical predictions on the evolution in time of the number of positive cases in Italy of the COVID-19 pandemic based on official data and on the use of a function of the type of a Gauss error function, with four parameters, as a cumulative distribution function. We have analyzed the available data for China and Italy. The evolution in time of the number of cumulative diagnosed positive cases of COVID-19 in China very well approximates a distribution of the type of the error function, that is, the integral of a normal, Gaussian distribution. We have then used such a function to study the potential evolution in time of the number of positive cases in Italy by performing a number of fits of the official data so far available. We then found a statistical prediction for the day in which the peak of the number of daily positive cases in Italy occurs, corresponding to the flex of the fit, that is, to the change in sign of its second derivative (i.e., the change from acceleration to deceleration), as well as of the day in which a substantial attenuation of such number of daily cases is reached. We have also analyzed the predictions of the cumulative number of fatalities in both China and Italy, obtaining consistent results. We have then performed 150 Monte Carlo simulations to have a more robust prediction of the day of the above-mentioned peak and of the day of the substantial decrease in the number of daily positive cases and fatalities. Although official data have been used, those predictions are obtained with a heuristic approach since they are based on a statistical approach and do not take into account either a number of relevant issues (such as number of daily nasopharyngeal swabs, medical, social distancing, virological and epidemiological) or models of contamination diffusion.


Url:
DOI: 10.1140/epjp/s13360-020-00383-y
PubMed: 32309108
PubMed Central: 7156796

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:7156796

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mathematical prediction of the time evolution of the COVID-19 pandemic in Italy by a Gauss error function and Monte Carlo simulations</title>
<author>
<name sortKey="Ciufolini, Ignazio" sort="Ciufolini, Ignazio" uniqKey="Ciufolini I" first="Ignazio" last="Ciufolini">Ignazio Ciufolini</name>
<affiliation wicri:level="1">
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.9906.6</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 2289 7785</institution-id>
<institution>Dipartimento di Ingegneria dell’Innovazione,</institution>
<institution>University of Salento, Lecce, and Centro Fermi,</institution>
</institution-wrap>
Rome, Italy</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Rome</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Paolozzi, Antonio" sort="Paolozzi, Antonio" uniqKey="Paolozzi A" first="Antonio" last="Paolozzi">Antonio Paolozzi</name>
<affiliation wicri:level="1">
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.7841.a</institution-id>
<institution>Scuola di Ingegneria Aerospaziale, Sapienza,</institution>
<institution>University of Rome,</institution>
</institution-wrap>
Rome, Italy</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Rome</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">32309108</idno>
<idno type="pmc">7156796</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156796</idno>
<idno type="RBID">PMC:7156796</idno>
<idno type="doi">10.1140/epjp/s13360-020-00383-y</idno>
<date when="2020">2020</date>
<idno type="wicri:Area/Pmc/Corpus">000115</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000115</idno>
<idno type="wicri:Area/Pmc/Curation">000115</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000115</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Mathematical prediction of the time evolution of the COVID-19 pandemic in Italy by a Gauss error function and Monte Carlo simulations</title>
<author>
<name sortKey="Ciufolini, Ignazio" sort="Ciufolini, Ignazio" uniqKey="Ciufolini I" first="Ignazio" last="Ciufolini">Ignazio Ciufolini</name>
<affiliation wicri:level="1">
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.9906.6</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 2289 7785</institution-id>
<institution>Dipartimento di Ingegneria dell’Innovazione,</institution>
<institution>University of Salento, Lecce, and Centro Fermi,</institution>
</institution-wrap>
Rome, Italy</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Rome</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Paolozzi, Antonio" sort="Paolozzi, Antonio" uniqKey="Paolozzi A" first="Antonio" last="Paolozzi">Antonio Paolozzi</name>
<affiliation wicri:level="1">
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.7841.a</institution-id>
<institution>Scuola di Ingegneria Aerospaziale, Sapienza,</institution>
<institution>University of Rome,</institution>
</institution-wrap>
Rome, Italy</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Rome</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">European Physical Journal plus</title>
<idno type="eISSN">2190-5444</idno>
<imprint>
<date when="2020">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="Par1">In this paper are presented mathematical predictions on the evolution in time of the number of positive cases in Italy of the COVID-19 pandemic based on official data and on the use of a function of the type of a Gauss error function, with four parameters, as a cumulative distribution function. We have analyzed the available data for China and Italy. The evolution in time of the number of cumulative diagnosed positive cases of COVID-19 in China very well approximates a distribution of the type of the error function, that is, the integral of a normal, Gaussian distribution. We have then used such a function to study the potential evolution in time of the number of positive cases in Italy by performing a number of fits of the official data so far available. We then found a statistical prediction for the day in which the peak of the number of daily positive cases in Italy occurs, corresponding to the flex of the fit, that is, to the change in sign of its second derivative (i.e., the change from acceleration to deceleration), as well as of the day in which a substantial attenuation of such number of daily cases is reached. We have also analyzed the predictions of the cumulative number of fatalities in both China and Italy, obtaining consistent results. We have then performed 150 Monte Carlo simulations to have a more robust prediction of the day of the above-mentioned peak and of the day of the substantial decrease in the number of daily positive cases and fatalities. Although official data have been used, those predictions are obtained with a heuristic approach since they are based on a statistical approach and do not take into account either a number of relevant issues (such as number of daily nasopharyngeal swabs, medical, social distancing, virological and epidemiological) or models of contamination diffusion. </p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, R" uniqKey="Li R">R Li</name>
</author>
<author>
<name sortKey="Pei, S" uniqKey="Pei S">S Pei</name>
</author>
<author>
<name sortKey="Chen, B" uniqKey="Chen B">B Chen</name>
</author>
<author>
<name sortKey="Song, Y" uniqKey="Song Y">Y Song</name>
</author>
<author>
<name sortKey="Zhang, T" uniqKey="Zhang T">T Zhang</name>
</author>
<author>
<name sortKey="Yang, W" uniqKey="Yang W">W Yang</name>
</author>
<author>
<name sortKey="Shaman, J" uniqKey="Shaman J">J Shaman</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lessler, J" uniqKey="Lessler J">J Lessler</name>
</author>
<author>
<name sortKey="Reich, Ng" uniqKey="Reich N">NG Reich</name>
</author>
<author>
<name sortKey="Brookmeyer, R" uniqKey="Brookmeyer R">R Brookmeyer</name>
</author>
<author>
<name sortKey="Perl, Tm" uniqKey="Perl T">TM Perl</name>
</author>
<author>
<name sortKey="Nelson, Ke" uniqKey="Nelson K">KE Nelson</name>
</author>
<author>
<name sortKey="Cummings, Da" uniqKey="Cummings D">DA Cummings</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Press, Wh" uniqKey="Press W">WH Press</name>
</author>
<author>
<name sortKey="Flannery, Bp" uniqKey="Flannery B">BP Flannery</name>
</author>
<author>
<name sortKey="Teukolsky, Sa" uniqKey="Teukolsky S">SA Teukolsky</name>
</author>
<author>
<name sortKey="Vetterling, Wt" uniqKey="Vetterling W">WT Vetterling</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bevington, Pr" uniqKey="Bevington P">PR Bevington</name>
</author>
<author>
<name sortKey="Robinson, D Keith" uniqKey="Robinson D">D Keith Robinson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ciufolini, I" uniqKey="Ciufolini I">I Ciufolini</name>
</author>
<author>
<name sortKey="Monge, Bm" uniqKey="Monge B">BM Monge</name>
</author>
<author>
<name sortKey="Paolozzi, A" uniqKey="Paolozzi A">A Paolozzi</name>
</author>
<author>
<name sortKey="Konig, R" uniqKey="Konig R">R König</name>
</author>
<author>
<name sortKey="Sindoni, G" uniqKey="Sindoni G">G Sindoni</name>
</author>
<author>
<name sortKey="Michalak, G" uniqKey="Michalak G">G Michalak</name>
</author>
<author>
<name sortKey="Pavlis, Ec" uniqKey="Pavlis E">EC Pavlis</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Eur Phys J Plus</journal-id>
<journal-id journal-id-type="iso-abbrev">Eur Phys J Plus</journal-id>
<journal-title-group>
<journal-title>European Physical Journal plus</journal-title>
</journal-title-group>
<issn pub-type="epub">2190-5444</issn>
<publisher>
<publisher-name>Springer Berlin Heidelberg</publisher-name>
<publisher-loc>Berlin/Heidelberg</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">32309108</article-id>
<article-id pub-id-type="pmc">7156796</article-id>
<article-id pub-id-type="publisher-id">383</article-id>
<article-id pub-id-type="doi">10.1140/epjp/s13360-020-00383-y</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Regular Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Mathematical prediction of the time evolution of the COVID-19 pandemic in Italy by a Gauss error function and Monte Carlo simulations</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Ciufolini</surname>
<given-names>Ignazio</given-names>
</name>
<address>
<email>ignazio.ciufolini@gmail.com</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Paolozzi</surname>
<given-names>Antonio</given-names>
</name>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<aff id="Aff1">
<label>1</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.9906.6</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 2289 7785</institution-id>
<institution>Dipartimento di Ingegneria dell’Innovazione,</institution>
<institution>University of Salento, Lecce, and Centro Fermi,</institution>
</institution-wrap>
Rome, Italy</aff>
<aff id="Aff2">
<label>2</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.7841.a</institution-id>
<institution>Scuola di Ingegneria Aerospaziale, Sapienza,</institution>
<institution>University of Rome,</institution>
</institution-wrap>
Rome, Italy</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>15</day>
<month>4</month>
<year>2020</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>15</day>
<month>4</month>
<year>2020</year>
</pub-date>
<pub-date pub-type="ppub">
<year>2020</year>
</pub-date>
<volume>135</volume>
<issue>4</issue>
<elocation-id>355</elocation-id>
<history>
<date date-type="received">
<day>30</day>
<month>3</month>
<year>2020</year>
</date>
<date date-type="accepted">
<day>3</day>
<month>4</month>
<year>2020</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s) 2020</copyright-statement>
<license license-type="OpenAccess">
<license-p>
<bold>Open Access</bold>
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<p id="Par1">In this paper are presented mathematical predictions on the evolution in time of the number of positive cases in Italy of the COVID-19 pandemic based on official data and on the use of a function of the type of a Gauss error function, with four parameters, as a cumulative distribution function. We have analyzed the available data for China and Italy. The evolution in time of the number of cumulative diagnosed positive cases of COVID-19 in China very well approximates a distribution of the type of the error function, that is, the integral of a normal, Gaussian distribution. We have then used such a function to study the potential evolution in time of the number of positive cases in Italy by performing a number of fits of the official data so far available. We then found a statistical prediction for the day in which the peak of the number of daily positive cases in Italy occurs, corresponding to the flex of the fit, that is, to the change in sign of its second derivative (i.e., the change from acceleration to deceleration), as well as of the day in which a substantial attenuation of such number of daily cases is reached. We have also analyzed the predictions of the cumulative number of fatalities in both China and Italy, obtaining consistent results. We have then performed 150 Monte Carlo simulations to have a more robust prediction of the day of the above-mentioned peak and of the day of the substantial decrease in the number of daily positive cases and fatalities. Although official data have been used, those predictions are obtained with a heuristic approach since they are based on a statistical approach and do not take into account either a number of relevant issues (such as number of daily nasopharyngeal swabs, medical, social distancing, virological and epidemiological) or models of contamination diffusion. </p>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2020</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/StressCovidV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000115 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 000115 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    StressCovidV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:7156796
   |texte=   Mathematical prediction of the time evolution of the COVID-19 pandemic in Italy by a Gauss error function and Monte Carlo simulations
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:32309108" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a StressCovidV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed May 6 16:44:09 2020. Site generation: Sun Mar 28 08:26:57 2021