Serveur d'exploration Stress et Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000951 ( Pmc/Corpus ); précédent : 0009509; suivant : 0009520 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Potential interventions for novel coronavirus in China: A systematic review</title>
<author>
<name sortKey="Zhang, Lei" sort="Zhang, Lei" uniqKey="Zhang L" first="Lei" last="Zhang">Lei Zhang</name>
<affiliation>
<nlm:aff id="jmv25707-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yunhui" sort="Liu, Yunhui" uniqKey="Liu Y" first="Yunhui" last="Liu">Yunhui Liu</name>
<affiliation>
<nlm:aff id="jmv25707-aff-0001"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">32052466</idno>
<idno type="pmc">7166986</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7166986</idno>
<idno type="RBID">PMC:7166986</idno>
<idno type="doi">10.1002/jmv.25707</idno>
<date when="2020">2020</date>
<idno type="wicri:Area/Pmc/Corpus">000951</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000951</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Potential interventions for novel coronavirus in China: A systematic review</title>
<author>
<name sortKey="Zhang, Lei" sort="Zhang, Lei" uniqKey="Zhang L" first="Lei" last="Zhang">Lei Zhang</name>
<affiliation>
<nlm:aff id="jmv25707-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yunhui" sort="Liu, Yunhui" uniqKey="Liu Y" first="Yunhui" last="Liu">Yunhui Liu</name>
<affiliation>
<nlm:aff id="jmv25707-aff-0001"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Medical Virology</title>
<idno type="ISSN">0146-6615</idno>
<idno type="eISSN">1096-9071</idno>
<imprint>
<date when="2020">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Abstract</title>
<p>An outbreak of a novel coronavirus (COVID‐19 or 2019‐CoV) infection has posed significant threats to international health and the economy. In the absence of treatment for this virus, there is an urgent need to find alternative methods to control the spread of disease. Here, we have conducted an online search for all treatment options related to coronavirus infections as well as some RNA‐virus infection and we have found that general treatments, coronavirus‐specific treatments, and antiviral treatments should be useful in fighting COVID‐19. We suggest that the nutritional status of each infected patient should be evaluated before the administration of general treatments and the current children's RNA‐virus vaccines including influenza vaccine should be immunized for uninfected people and health care workers. In addition, convalescent plasma should be given to COVID‐19 patients if it is available. In conclusion, we suggest that all the potential interventions be implemented to control the emerging COVID‐19 if the infection is uncontrollable.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Med Virol</journal-id>
<journal-id journal-id-type="iso-abbrev">J. Med. Virol</journal-id>
<journal-id journal-id-type="doi">10.1002/(ISSN)1096-9071</journal-id>
<journal-id journal-id-type="publisher-id">JMV</journal-id>
<journal-title-group>
<journal-title>Journal of Medical Virology</journal-title>
</journal-title-group>
<issn pub-type="ppub">0146-6615</issn>
<issn pub-type="epub">1096-9071</issn>
<publisher>
<publisher-name>John Wiley and Sons Inc.</publisher-name>
<publisher-loc>Hoboken</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">32052466</article-id>
<article-id pub-id-type="pmc">7166986</article-id>
<article-id pub-id-type="doi">10.1002/jmv.25707</article-id>
<article-id pub-id-type="publisher-id">JMV25707</article-id>
<article-categories>
<subj-group subj-group-type="overline">
<subject>Review</subject>
</subj-group>
<subj-group subj-group-type="heading">
<subject>Reviews</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Potential interventions for novel coronavirus in China: A systematic review</article-title>
<alt-title alt-title-type="left-running-head">ZHANG
<sc>and</sc>
LIU</alt-title>
</title-group>
<contrib-group>
<contrib id="jmv25707-cr-0001" contrib-type="author">
<name>
<surname>Zhang</surname>
<given-names>Lei</given-names>
</name>
<xref ref-type="aff" rid="jmv25707-aff-0001">
<sup>1</sup>
</xref>
</contrib>
<contrib id="jmv25707-cr-0002" contrib-type="author" corresp="yes">
<name>
<surname>Liu</surname>
<given-names>Yunhui</given-names>
</name>
<contrib-id contrib-id-type="orcid" authenticated="false">http://orcid.org/0000-0002-9920-9933</contrib-id>
<xref ref-type="aff" rid="jmv25707-aff-0001">
<sup>1</sup>
</xref>
<address>
<email>liuyh@sj-hospital.org</email>
</address>
</contrib>
</contrib-group>
<aff id="jmv25707-aff-0001">
<label>
<sup>1</sup>
</label>
<named-content content-type="organisation-division">Department of Neurosurgery</named-content>
<institution>Shengjing Hospital of China Medical University</institution>
<city>Shenyang</city>
<named-content content-type="country-part">Liaoning</named-content>
<country country="CN">China</country>
</aff>
<author-notes>
<corresp id="correspondenceTo">
<label>*</label>
<bold>Correspondence</bold>
Yunhui Liu, Department of Neurosurgery, Shengjing Hospital, China Medical University, No. 36 Sanhao Street, Heping, Shenyang, 110004 Liaoning, China.
<break></break>
Email:
<email>liuyh@sj-hospital.org</email>
<break></break>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>03</day>
<month>3</month>
<year>2020</year>
</pub-date>
<pub-date pub-type="ppub">
<month>5</month>
<year>2020</year>
</pub-date>
<volume>92</volume>
<issue>5</issue>
<issue-id pub-id-type="doi">10.1002/jmv.v92.5</issue-id>
<issue-title>Special Issue on New coronavirus (2019‐nCoV or SARS‐CoV‐2) and the outbreak of the respiratory illness (COVID‐19)</issue-title>
<fpage>479</fpage>
<lpage>490</lpage>
<history>
<date date-type="received">
<day>30</day>
<month>1</month>
<year>2020</year>
</date>
<date date-type="accepted">
<day>04</day>
<month>2</month>
<year>2020</year>
</date>
</history>
<permissions>
<pmc-comment> © 2020 Wiley Periodicals, Inc. </pmc-comment>
<copyright-statement content-type="article-copyright">© 2020 Wiley Periodicals, Inc.</copyright-statement>
<license>
<license-p>This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:href="file:JMV-92-479.pdf"></self-uri>
<abstract>
<title>Abstract</title>
<p>An outbreak of a novel coronavirus (COVID‐19 or 2019‐CoV) infection has posed significant threats to international health and the economy. In the absence of treatment for this virus, there is an urgent need to find alternative methods to control the spread of disease. Here, we have conducted an online search for all treatment options related to coronavirus infections as well as some RNA‐virus infection and we have found that general treatments, coronavirus‐specific treatments, and antiviral treatments should be useful in fighting COVID‐19. We suggest that the nutritional status of each infected patient should be evaluated before the administration of general treatments and the current children's RNA‐virus vaccines including influenza vaccine should be immunized for uninfected people and health care workers. In addition, convalescent plasma should be given to COVID‐19 patients if it is available. In conclusion, we suggest that all the potential interventions be implemented to control the emerging COVID‐19 if the infection is uncontrollable.</p>
</abstract>
<kwd-group>
<kwd id="jmv25707-kwd-0001">2019‐CoV</kwd>
<kwd id="jmv25707-kwd-0002">coronavirus</kwd>
<kwd id="jmv25707-kwd-0003">COVID‐19</kwd>
<kwd id="jmv25707-kwd-0004">MERS</kwd>
<kwd id="jmv25707-kwd-0005">potential interventions</kwd>
<kwd id="jmv25707-kwd-0006">SARS</kwd>
</kwd-group>
<funding-group>
<award-group id="funding-0001">
<funding-source>Project of Key Laboratory of Neurooncology in Liaoning Province, China</funding-source>
<award-id>112‐2400017005</award-id>
</award-group>
</funding-group>
<counts>
<fig-count count="0"></fig-count>
<table-count count="3"></table-count>
<page-count count="12"></page-count>
<word-count count="9117"></word-count>
</counts>
<custom-meta-group>
<custom-meta>
<meta-name>source-schema-version-number</meta-name>
<meta-value>2.0</meta-value>
</custom-meta>
<custom-meta>
<meta-name>cover-date</meta-name>
<meta-value>May 2020</meta-value>
</custom-meta>
<custom-meta>
<meta-name>details-of-publishers-convertor</meta-name>
<meta-value>Converter:WILEY_ML3GV2_TO_JATSPMC version:5.8.0 mode:remove_FC converted:15.04.2020</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes>
<p content-type="self-citation">
<mixed-citation publication-type="journal" id="jmv25707-cit-0141">
<string-name>
<surname>Zhang</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>Y</given-names>
</string-name>
.
<article-title>Potential interventions for novel coronavirus in China: A systematic review</article-title>
.
<source xml:lang="en">J Med Virol</source>
.
<year>2020</year>
;
<volume>92</volume>
:
<fpage>479</fpage>
<lpage>490</lpage>
.
<pub-id pub-id-type="doi">10.1002/jmv.25707</pub-id>
<pub-id pub-id-type="pmid">32052466</pub-id>
</mixed-citation>
</p>
</notes>
</front>
<body>
<sec id="jmv25707-sec-0010">
<label>1</label>
<title>INTRODUCTION</title>
<p>Coronaviruses (CoVs) belong to the subfamily
<italic>Orthocoronavirinae</italic>
in the family of
<italic>Coronaviridae</italic>
in the order
<italic>Nidovirales</italic>
, and this subfamily including α‐coronavirus, β‐coronavirus, γ‐coronavirus, and delta‐coronavirus.
<xref rid="jmv25707-bib-0001" ref-type="ref">
<sup>1</sup>
</xref>
Coronaviruses primarily cause enzootic infections in birds and mammals and, in the last decades, have shown to be capable of infecting humans as well.
<xref rid="jmv25707-bib-0002" ref-type="ref">
<sup>2</sup>
</xref>
The outbreak of severe acute respiratory syndrome (SARS) in 2002 and Middle East respiratory syndrome (MERS) in 2012 has demonstrated the lethality of coronaviruses when they cross the species barrier and infect humans.
<xref rid="jmv25707-bib-0002" ref-type="ref">
<sup>2</sup>
</xref>
SARS‐CoV and MERS‐CoV all belong to the β‐coronavirus family.
<xref rid="jmv25707-bib-0003" ref-type="ref">
<sup>3</sup>
</xref>
Recently, a novel flu‐like coronavirus (COVID‐19) related to the MERS and SARS coronaviruses was found at the end of 2019 in China
<xref rid="jmv25707-bib-0004" ref-type="ref">
<sup>4</sup>
</xref>
,
<xref rid="jmv25707-bib-0005" ref-type="ref">
<sup>5</sup>
</xref>
and the evidence of human‐to‐human transmission was confirmed among close contacts.
<xref rid="jmv25707-bib-0006" ref-type="ref">
<sup>6</sup>
</xref>
The genome of COVID‐19 is a single‐stranded positive‐sense RNA.
<xref rid="jmv25707-bib-0007" ref-type="ref">
<sup>7</sup>
</xref>
The sequence analysis showed that the COVID‐19 possessed a typical genome structure of coronavirus and belonged to the cluster of β‐coronaviruses including SARS‐CoV and MERS‐CoV.
<xref rid="jmv25707-bib-0007" ref-type="ref">
<sup>7</sup>
</xref>
COVID‐19 was more than 82% identical to those of SARS‐CoV.
<xref rid="jmv25707-bib-0008" ref-type="ref">
<sup>8</sup>
</xref>
,
<xref rid="jmv25707-bib-0009" ref-type="ref">
<sup>9</sup>
</xref>
COVID‐19 may spread worldwide with the pandemic. Currently, there is no registered treatment or vaccine for the disease. In the absence of a specific treatment for this novel virus, there is an urgent need to find an alternative solution to prevent and control the replication and spread of the virus. We have done an online search on PubMed and Web of Science with the keywords of SARS, MERS, and coronaviruses. We summarize and propose therapeutic options available for the treatment of this novel coronaviruses.</p>
</sec>
<sec id="jmv25707-sec-0020">
<label>2</label>
<title>GENERAL TREATMENT FOR VIRAL INFECTION</title>
<sec id="jmv25707-sec-0030">
<label>2.1</label>
<title>Nutritional interventions</title>
<sec id="jmv25707-sec-0040">
<label>2.1.1</label>
<title>Vitamin A</title>
<p>Vitamin A is the first fat‐soluble vitamin to be recognized and β‐carotene is its plant‐derived precursor (Table 
<xref rid="jmv25707-tbl-0001" ref-type="table">1</xref>
). There are three active forms of vitamin A in the body, retinol, retinal, and retinoic acid. Vitamin A is also called “anti‐infective” vitamin and many of the body's defenses against infection depend on an adequate supply. Researchers have believed that an impaired immune response is due to the deficiency of a particular nutritional element.
<xref rid="jmv25707-bib-0010" ref-type="ref">
<sup>10</sup>
</xref>
Vitamin A deficiency is strongly involved in measles and diarrhea
<xref rid="jmv25707-bib-0011" ref-type="ref">
<sup>11</sup>
</xref>
and measles can become severe in vitamin A‐deficient children. In addition, Semba et al
<xref rid="jmv25707-bib-0012" ref-type="ref">
<sup>12</sup>
</xref>
had reported that vitamin A supplementation reduced morbidity and mortality in different infectious diseases, such as measles, diarrheal disease, measles‐related pneumonia, human immunodeficiency virus (HIV) infection, and malaria. Vitamin A supplementation also offers some protection against the complications of other life‐threatening infections, including malaria, lung diseases, and HIV.
<xref rid="jmv25707-bib-0013" ref-type="ref">
<sup>13</sup>
</xref>
Jee et al
<xref rid="jmv25707-bib-0014" ref-type="ref">
<sup>14</sup>
</xref>
had reported that low vitamin A diets might compromise the effectiveness of inactivated bovine coronavirus vaccines and render calves more susceptible to infectious disease. The effect of infection with infectious bronchitis virus (IBV), a kind of coronaviruses, was more pronounced in chickens fed a diet marginally deficient in vitamin A than in those fed a diet adequate in vitamin A.
<xref rid="jmv25707-bib-0015" ref-type="ref">
<sup>15</sup>
</xref>
The mechanism by which vitamin A and retinoids inhibit measles replication is upregulating elements of the innate immune response in uninfected bystander cells, making them refractory to productive infection during subsequent rounds of viral replication.
<xref rid="jmv25707-bib-0016" ref-type="ref">
<sup>16</sup>
</xref>
Therefore, vitamin A could be a promising option for the treatment of this novel coronavirus and the prevention of lung infection.</p>
<table-wrap id="jmv25707-tbl-0001" xml:lang="en" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<p>General supportive treatments</p>
</caption>
<table frame="hsides" rules="groups">
<col style="border-right:solid 1px #000000; border-bottom:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000; border-bottom:solid 1px #000000" span="1"></col>
<thead valign="bottom">
<tr valign="bottom" style="border-bottom:solid 1px #000000">
<th valign="bottom" rowspan="1" colspan="1">Options</th>
<th valign="bottom" rowspan="1" colspan="1">Virus targeted and functions related</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td valign="top" rowspan="1" colspan="1">2.1. Nutritional interventions</td>
<td valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">2.1.1. Vitamin A</td>
<td valign="top" rowspan="1" colspan="1">Measles virus, human immunodeficiency virus, avian coronavirus</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">2.1.2. B vitamins</td>
<td valign="top" rowspan="1" colspan="1">MERS‐CoV; ventilator‐induced lung injury</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">2.1.3. Vitamin C</td>
<td valign="top" rowspan="1" colspan="1">Avian coronavirus; lower respiratory tract infections</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">2.1.4. Vitamin D</td>
<td valign="top" rowspan="1" colspan="1">Bovine coronavirus</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">2.1.5. Vitamin E</td>
<td valign="top" rowspan="1" colspan="1">Coxsackievirus, bovine coronavirus</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">2.1.6. Omega‐3 polyunsaturated fatty acids (PUFA)</td>
<td valign="top" rowspan="1" colspan="1">Influenza virus, human immunodeficiency virus</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">2.1.7. Selenium</td>
<td valign="top" rowspan="1" colspan="1">Influenza virus, avian coronavirus; viral mutations</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">2.1.8. Zinc</td>
<td valign="top" rowspan="1" colspan="1">Measles virus, SARS‐CoV</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">2.1.9. Iron</td>
<td valign="top" rowspan="1" colspan="1">Viral mutations</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">2.2. Immunoenhancers</td>
<td valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">2.2.1. Interferons</td>
<td valign="top" rowspan="1" colspan="1">SARS‐CoV, MERS‐CoV</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">2.2.2. Intravenous gammaglobulin</td>
<td valign="top" rowspan="1" colspan="1">SARS‐CoV</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">2.2.3. Thymosin α‐1</td>
<td valign="top" rowspan="1" colspan="1">Increase resistance to glucocorticoid‐induced death of thymocyte</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">2.2.4. Thymopentin</td>
<td valign="top" rowspan="1" colspan="1">Restore antibody production</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">2.2.5. Levamisole</td>
<td valign="top" rowspan="1" colspan="1">Immunostimulant agent or immunosuppressive agent</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">2.2.6. Cyclosporine A</td>
<td valign="top" rowspan="1" colspan="1">SARS‐CoV, avian infectious bronchitis virus</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">2.2.7. Chinese medicine</td>
<td valign="top" rowspan="1" colspan="1">SARS‐CoV, avian infectious bronchitis virus</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="jmv25707-tbl1-note-0001">
<p>Abbreviations: MERS‐CoV, Middle East respiratory syndrome coronavirus; SARS‐CoV, severe acute respiratory syndrome coronavirus.</p>
</fn>
</table-wrap-foot>
<permissions>
<copyright-holder>John Wiley & Sons, Ltd.</copyright-holder>
<license>
<license-p>This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.</license-p>
</license>
</permissions>
</table-wrap>
</sec>
<sec id="jmv25707-sec-0050">
<label>2.1.2</label>
<title>B vitamins</title>
<p>B vitamins are water‐soluble vitamins and work as part of coenzymes. Each B vitamin has its special functions. For example, vitamin B2 (riboflavin) plays a role in the energy metabolism of all cells. Vitamin B2 deficiency had been suspected to occur among US elderly.
<xref rid="jmv25707-bib-0017" ref-type="ref">
<sup>17</sup>
</xref>
Keil et al
<xref rid="jmv25707-bib-0018" ref-type="ref">
<sup>18</sup>
</xref>
had reported that vitamin B2 and UV light effectively reduced the titer of MERS‐CoV in human plasma products. Vitamin B3, also called nicotinamide, could enhance the killing of
<italic>Staphylococcus aureus</italic>
through a myeloid‐specific transcription factor and vitamin B3 was efficacious in both prophylactic and therapeutic settings.
<xref rid="jmv25707-bib-0019" ref-type="ref">
<sup>19</sup>
</xref>
Moreover, vitamin B3 treatment significantly inhibited neutrophil infiltration into the lungs with a strong anti‐inflammatory effect during ventilator‐induced lung injury. However, it also paradoxically led to the development of significant hypoxemia.
<xref rid="jmv25707-bib-0020" ref-type="ref">
<sup>20</sup>
</xref>
Vitamin B6 is also needed in protein metabolism and it participates in over 100 reactions in body tissues. In addition, it also plays important role in body immune function as well. As shortage of B vitamins may weaken host immune response, they should be supplemented to the virus‐infected patients to enhance their immune system. Therefore, B vitamins could be chosen as a basic option for the treatment of COVID‐19.</p>
</sec>
<sec id="jmv25707-sec-0060">
<label>2.1.3</label>
<title>Vitamin C</title>
<p>Vitamin C is another water‐soluble vitamin and it is also called ascorbic acid, which means “no‐scurvy acid.” Vitamin C is best known for its role in the synthesis of collagen in connective tissues and acts as an antioxidant. Vitamin C also supports immune functions and protects against infection caused by a coronavirus.
<xref rid="jmv25707-bib-0021" ref-type="ref">
<sup>21</sup>
</xref>
For example, Atherton et al
<xref rid="jmv25707-bib-0022" ref-type="ref">
<sup>22</sup>
</xref>
had reported that vitamin C increased the resistance of chick embryo tracheal organ cultures to avian coronavirus infection. Vitamin C may also function as a weak antihistamine agent to provide relief from flu‐like symptoms such as sneezing, a running or stuffy nose, and swollen sinuses.
<xref rid="jmv25707-bib-0023" ref-type="ref">
<sup>23</sup>
</xref>
Three human controlled trials had reported that there was significantly lower incidence of pneumonia in vitamin C‐supplemented groups, suggesting that vitamin C might prevent the susceptibility to lower respiratory tract infections under certain conditions.
<xref rid="jmv25707-bib-0024" ref-type="ref">
<sup>24</sup>
</xref>
The COVID‐19 had been reported to cause lower respiratory tract infection, so vitamin C could be one of the effective choices for the treatment of COVID‐19.</p>
</sec>
<sec id="jmv25707-sec-0070">
<label>2.1.4</label>
<title>Vitamin D</title>
<p>Vitamin D is not only a nutrient but also a hormone, which can be synthesized in our body with the help of sunlight. In addition to its role in maintaining bone integrity, it also stimulates the maturation of many cells including immune cells. A high number of healthy adults have been reported to be with low levels of vitamin D, mostly at the end of the Winter season.
<xref rid="jmv25707-bib-0025" ref-type="ref">
<sup>25</sup>
</xref>
In addition, people who are housebound, or institutionalized and those who work at night may have vitamin D deficiency, as do many elderly people, who have limited exposure to sunlight.
<xref rid="jmv25707-bib-0026" ref-type="ref">
<sup>26</sup>
</xref>
The COVID‐19 was first identified in Winter of 2019 and mostly affected middle‐aged to elderly people. The virus‐infected people might have insufficient vitamin D. In addition, the decreased vitamin D status in calves had been reported to cause the infection of bovine coronavirus.
<xref rid="jmv25707-bib-0027" ref-type="ref">
<sup>27</sup>
</xref>
Therefore, vitamin D could work as another therapeutic option for the treatment of this novel virus.</p>
</sec>
<sec id="jmv25707-sec-0080">
<label>2.1.5</label>
<title>Vitamin E</title>
<p>Vitamin E is a lipid‐soluble vitamin and it includes both tocopherols and tocotrienols. Vitamin E plays an important role in reducing oxidative stress through binding to free radicals as an antioxidant.
<xref rid="jmv25707-bib-0028" ref-type="ref">
<sup>28</sup>
</xref>
Vitamin E deficiency had been reported to intensify the myocardial injury of coxsackievirus B3 (a kind of RNA viruses) infection in mice
<xref rid="jmv25707-bib-0029" ref-type="ref">
<sup>29</sup>
</xref>
and increased the virulence of coxsackievirus B3 in mice due to vitamin E or selenium deficiency.
<xref rid="jmv25707-bib-0030" ref-type="ref">
<sup>30</sup>
</xref>
In addition, the decreased vitamin E and D status in calves also caused the infection of bovine coronavirus.
<xref rid="jmv25707-bib-0027" ref-type="ref">
<sup>27</sup>
</xref>
</p>
</sec>
<sec id="jmv25707-sec-0090">
<label>2.1.6</label>
<title>Omega‐3 polyunsaturated fatty acids</title>
<p>Long‐chain polyunsaturated fatty acids (PUFAs) are important mediators of inflammation and adaptive immune responses.
<xref rid="jmv25707-bib-0031" ref-type="ref">
<sup>31</sup>
</xref>
Omega‐3 and omega‐6 PUFAs predominantly promote anti‐inflammatory and pro‐inflammatory effects. They are precursors of resolvins/protectins and prostaglandins/leukotrienes, respectively.
<xref rid="jmv25707-bib-0031" ref-type="ref">
<sup>31</sup>
</xref>
Begin et al
<xref rid="jmv25707-bib-0032" ref-type="ref">
<sup>32</sup>
</xref>
had studied plasma lipids levels in patients with AIDS and had found that a selective and specific lack of the long‐chain PUFAs of omega‐3 series, which are found in high concentrations in fish oils. In addition, protectin D1, the omega‐3 PUFA‐derived lipid mediator, could markedly attenuate influenza virus replication via RNA export machinery. In addition, treatment of protectin D1 with peramivir could completely rescue mice from flu mortality.
<xref rid="jmv25707-bib-0033" ref-type="ref">
<sup>33</sup>
</xref>
Leu et al
<xref rid="jmv25707-bib-0034" ref-type="ref">
<sup>34</sup>
</xref>
had found that several PUFAs also had anti‐hepatitis C virus (HCV) activities. Therefore, Omega‐3 including protectin D1, which served as a novel antiviral drug, could be considered for one of the potential interventions of this novel virus, COVID‐19.</p>
</sec>
<sec id="jmv25707-sec-0100">
<label>2.1.7</label>
<title>Selenium</title>
<p>Selenium is an essential trace element for mammalian redox biology.
<xref rid="jmv25707-bib-0035" ref-type="ref">
<sup>35</sup>
</xref>
The nutritional status of the host plays a very important role in the defense against infectious diseases.
<xref rid="jmv25707-bib-0036" ref-type="ref">
<sup>36</sup>
</xref>
Nutritional deficiency impacts not only the immune response but also the viral pathogen itself.
<xref rid="jmv25707-bib-0010" ref-type="ref">
<sup>10</sup>
</xref>
Dietary selenium deficiency that causes oxidative stress in the host can alter a viral genome so that a normally benign or mildly pathogenic virus can become highly virulent in the deficient host under oxidative stress.
<xref rid="jmv25707-bib-0010" ref-type="ref">
<sup>10</sup>
</xref>
Deficiency in selenium also induces not only impairment of host immune system, but also rapid mutation of benign variants of RNA viruses to virulence.
<xref rid="jmv25707-bib-0037" ref-type="ref">
<sup>37</sup>
</xref>
Beck et al
<xref rid="jmv25707-bib-0038" ref-type="ref">
<sup>38</sup>
</xref>
had reported that selenium deficiency could not only increase the pathology of an influenza virus infection but also drive changes in genome of coxsackievirus, permitting an avirulent virus to acquire virulence due to genetic mutation.
<xref rid="jmv25707-bib-0039" ref-type="ref">
<sup>39</sup>
</xref>
It is because that selenium could assist a group of enzymes that, in concert with vitamin E, work to prevent the formation of free radicals and prevent oxidative damage to cells and tissues.
<xref rid="jmv25707-bib-0037" ref-type="ref">
<sup>37</sup>
</xref>
It was reported that synergistic effect of selenium with ginseng stem‐leaf saponins could induce immune response to a live bivalent infectious bronchitis coronavirus vaccine in chickens.
<xref rid="jmv25707-bib-0040" ref-type="ref">
<sup>40</sup>
</xref>
Therefore, selenium supplementation could be an effective choice for the treatment of this novel virus of COVID‐19.</p>
</sec>
<sec id="jmv25707-sec-0110">
<label>2.1.8</label>
<title>Zinc</title>
<p>Zinc is a dietary trace mineral and is important for the maintenance and development of immune cells of both the innate and adaptive immune system.
<xref rid="jmv25707-bib-0041" ref-type="ref">
<sup>41</sup>
</xref>
Zinc deficiency results in dysfunction of both humoral and cell‐mediated immunity and increases susceptibility to infectious diseases.
<xref rid="jmv25707-bib-0042" ref-type="ref">
<sup>42</sup>
</xref>
Zinc supplement given to zinc‐deficient children could reduce measles‐related morbidity and mortality caused by lower respiratory tract infections.
<xref rid="jmv25707-bib-0043" ref-type="ref">
<sup>43</sup>
</xref>
Increasing the concentration of intracellular zinc with zinc‐ionophores like pyrithione can efficiently impair the replication of a variety of RNA viruses.
<xref rid="jmv25707-bib-0044" ref-type="ref">
<sup>44</sup>
</xref>
In addition, the combination of zinc and pyrithione at low concentrations inhibits the replication of SARS coronavirus (SARS‐CoV).
<xref rid="jmv25707-bib-0044" ref-type="ref">
<sup>44</sup>
</xref>
Therefore, zinc supplement may have effect not only on COVID‐19‐related symptom like diarrhea and lower respiratory tract infection, but also on COVID‐19 itself.</p>
</sec>
<sec id="jmv25707-sec-0120">
<label>2.1.9</label>
<title>Iron</title>
<p>Iron is required for both host and pathogen and iron deficiency can impair host immunity, while iron overload can cause oxidative stress to propagate harmful viral mutations.
<xref rid="jmv25707-bib-0045" ref-type="ref">
<sup>45</sup>
</xref>
Iron deficiency has been reported as a risk factor for the development of recurrent acute respiratory tract infections.
<xref rid="jmv25707-bib-0046" ref-type="ref">
<sup>46</sup>
</xref>
</p>
</sec>
</sec>
<sec id="jmv25707-sec-0130">
<label>2.2</label>
<title>Immunoenhancers</title>
<sec id="jmv25707-sec-0140">
<label>2.2.1</label>
<title>Interferons</title>
<p>Interferons (IFNs) have divided into type I and Type II Interferons. As a member of Type I IFN, IFN‐α is produced very quickly as part of the innate immune response to virus infection. IFN‐α inhibits the replication of animal and human coronaviruses.
<xref rid="jmv25707-bib-0047" ref-type="ref">
<sup>47</sup>
</xref>
,
<xref rid="jmv25707-bib-0048" ref-type="ref">
<sup>48</sup>
</xref>
The investigation in vitro also demonstrated that type I interferons including IFN‐β could inhibit the replication of SARS‐CoV.
<xref rid="jmv25707-bib-0049" ref-type="ref">
<sup>49</sup>
</xref>
However, interferon‐γ was reported not to possess antiviral activity against SARS coronavirus.
<xref rid="jmv25707-bib-0050" ref-type="ref">
<sup>50</sup>
</xref>
Kuri et al
<xref rid="jmv25707-bib-0051" ref-type="ref">
<sup>51</sup>
</xref>
further reported that IFN transcription was blocked in tissue cells infected with SARS‐CoV and the cells were able to partially restore their innate immune responsiveness to SARS‐CoV after priming with small amounts of IFNs. Moreover, Tan et al had tested the inhibition of SARS coronavirus infection in vitro with clinically approved antiviral drugs. They found that the complete inhibition of cytopathic effects of the virus was observed with specific subtypes (β‐1b, α‐n1, α‐n3, and human leukocyte interferon α) in culture.
<xref rid="jmv25707-bib-0052" ref-type="ref">
<sup>52</sup>
</xref>
Haagmans et al
<xref rid="jmv25707-bib-0054" ref-type="ref">
<sup>54</sup>
</xref>
also reported in vivo that pegylated recombinant IFN‐α2b, a registered drug for chronic hepatitis C,
<xref rid="jmv25707-bib-0053" ref-type="ref">
<sup>53</sup>
</xref>
could protect type 1 pneumocytes against SARS coronavirus infection in monkeys (macaques). The drug given at 3 days before infection could reduce viral replication and lung damage as compared with the control monkeys.
<xref rid="jmv25707-bib-0055" ref-type="ref">
<sup>55</sup>
</xref>
It was also considered as a candidate drug for SARS therapy at that time and the effectiveness of synthetic recombinant IFN‐α for the treatment of SARS patients was demonstrated in a pilot clinical trial.
<xref rid="jmv25707-bib-0056" ref-type="ref">
<sup>56</sup>
</xref>
In addition, interferons have also been found to be potent inhibitors of MERS‐CoV replication.
<xref rid="jmv25707-bib-0057" ref-type="ref">
<sup>57</sup>
</xref>
Moreover, the combination of interferon‐α‐2a with ribavirin was administered to patients with severe MERS‐CoV infection and the survival of these patients was improved.
<xref rid="jmv25707-bib-0057" ref-type="ref">
<sup>57</sup>
</xref>
These findings suggest that these approved IFN's could be also used for the treatment of this novel coronavirus.</p>
</sec>
<sec id="jmv25707-sec-0150">
<label>2.2.2</label>
<title>Intravenous gammaglobulin</title>
<p>Intravenous gammaglobulin
<bold>(</bold>
IVIg) was first developed in the late 1970s 
<xref rid="jmv25707-bib-0058" ref-type="ref">
<sup>58</sup>
</xref>
and is probably the safest immunomodulating drug available for long‐term use in all ages. However, it does have adverse reactions. During the SARS outbreak in 2003, IVIg was used extensively in Singapore. However, one‐third of critically ill patients developed venous thromboembolism including pulmonary embolism despite the use of low‐molecular weight heparin prophylactic.
<xref rid="jmv25707-bib-0059" ref-type="ref">
<sup>59</sup>
</xref>
It was due to the IVIg‐induced increase of viscosity in hypercoagulable states of SARS patients.
<xref rid="jmv25707-bib-0060" ref-type="ref">
<sup>60</sup>
</xref>
</p>
</sec>
<sec id="jmv25707-sec-0160">
<label>2.2.3</label>
<title>Thymosin α‐1</title>
<p>Thymosin α‐1 (Ta1) is a thymic peptide hormone and it has a peculiar ability to restore the homeostasis of the immune system.
<xref rid="jmv25707-bib-0061" ref-type="ref">
<sup>61</sup>
</xref>
It is was first isolated from thymic tissue in the mid‐sixties and it had gained much attention for its immunostimulatory activity.
<xref rid="jmv25707-bib-0062" ref-type="ref">
<sup>62</sup>
</xref>
It was chemically synthesized and used in diseases where the immune system was hindered or impaired.
<xref rid="jmv25707-bib-0063" ref-type="ref">
<sup>63</sup>
</xref>
Besides its role in thymocyte development, thymosin α‐1 could also increase resistance to glucocorticoid‐induced death of the thymocyte.
<xref rid="jmv25707-bib-0064" ref-type="ref">
<sup>64</sup>
</xref>
Thymosin α‐1 could also be used as immune enhancer to SARS patients and it was effective in controlling the spread of the disease.
<xref rid="jmv25707-bib-0065" ref-type="ref">
<sup>65</sup>
</xref>
,
<xref rid="jmv25707-bib-0066" ref-type="ref">
<sup>66</sup>
</xref>
Methylprednisolone was often used during the current treatment of COVID‐19 and the side effect of corticoid‐induced death of thymocytes should be considered. So, it is wise to use thymosin α1 before the administration of methylprednisolone.</p>
</sec>
<sec id="jmv25707-sec-0170">
<label>2.2.4</label>
<title>Thymopentin</title>
<p>Thymopentin (TP5, munox), a synthetic pentapeptide corresponding to the active site of thymopoietin, had been shown to restore antibody production in old mice.
<xref rid="jmv25707-bib-0067" ref-type="ref">
<sup>67</sup>
</xref>
Additionally, it could enhance the antibody response in humans when it was applied subcutaneously three times a week at doses of 50 mg.
<xref rid="jmv25707-bib-0068" ref-type="ref">
<sup>68</sup>
</xref>
Moreover, thymopentin could also be used as an adjuvant treatment for non‐responders or hyporesponders to hepatitis B vaccination.
<xref rid="jmv25707-bib-0069" ref-type="ref">
<sup>69</sup>
</xref>
</p>
</sec>
<sec id="jmv25707-sec-0180">
<label>2.2.5</label>
<title>Levamisole</title>
<p>Levamisole, a synthetic low‐molecular‐weight compound, is the first member of a new class of drugs that can increase the functions of cellular immunity in normal, healthy laboratory animals.
<xref rid="jmv25707-bib-0070" ref-type="ref">
<sup>70</sup>
</xref>
However, levamisole can act as either an immunostimulant agent or an immunosuppressive agent depending upon the dosing and the timing. So, its clinical use should be carefully taken. Joffe et al
<xref rid="jmv25707-bib-0071" ref-type="ref">
<sup>71</sup>
</xref>
had reported that levamisole and ascorbic acid treatment in vitro could reverse the depressed helper/inducer subpopulation of lymphocyte in measles. Therefore, the use of levamisole could also be considered for the treatment of COVID‐19.</p>
</sec>
<sec id="jmv25707-sec-0190">
<label>2.2.6</label>
<title>Cyclosporine A</title>
<p>Cyclosporine A is a very important immunosuppressive drug and it has been widely used in transplantation. The emerging use of cyclosporine A has greatly improved the survival rates of patients and grafts after solid‐organ transplantation.
<xref rid="jmv25707-bib-0072" ref-type="ref">
<sup>72</sup>
</xref>
Cyclosporine A is also used for the treatment of autoimmune disorders. Luo et al
<xref rid="jmv25707-bib-0073" ref-type="ref">
<sup>73</sup>
</xref>
had speculated that nucleocapsid protein (NP) of SARS‐CoV played an important role in the process of virus particle assembly and release and it might also bind to human cyclophilin A. Cyclophilin A is a key member of immunophilins acting as a cellular receptor for cyclosporine A.
<xref rid="jmv25707-bib-0074" ref-type="ref">
<sup>74</sup>
</xref>
Cyclophilin A has played an important role in viral infection which either facilitates or inhibits their replication.
<xref rid="jmv25707-bib-0074" ref-type="ref">
<sup>74</sup>
</xref>
In addition, the inhibition of cyclophilins by cyclosporine A could block the replication of coronavirus of all genera, including SARS‐CoV as well as avian infectious bronchitis virus.
<xref rid="jmv25707-bib-0075" ref-type="ref">
<sup>75</sup>
</xref>
Therefore, the non‐immunosuppressive derivatives of cyclosporine A might serve as broad‐range coronavirus inhibitors applicable against the emerging novel virus‐like COVID‐19.</p>
</sec>
<sec id="jmv25707-sec-0200">
<label>2.2.7</label>
<title>Chinese medicine</title>
<p>Glycyrrhizin is an active component of liquorice roots in Chinese medicine. Cinatl et al
<xref rid="jmv25707-bib-0076" ref-type="ref">
<sup>76</sup>
</xref>
had reported that glycyrrhizin could inhibit the replication of SARS‐associated virus in vitro and it had already been suggested as an alternative option for treatment of SARS at that time. Baicalin, another Chinese herb, is a flavonoid which is isolated from Radix Scutellaria. Baicalin was also found to have the ability to inhibit SARS‐CoV in vitro.
<xref rid="jmv25707-bib-0050" ref-type="ref">
<sup>50</sup>
</xref>
Ginseng stem‐leaf saponins could highly enhance the specific‐antibody responses for Newcastle disease virus and infectious bronchitis virus.
<xref rid="jmv25707-bib-0040" ref-type="ref">
<sup>40</sup>
</xref>
Therefore, Chinese Medicine could also be considered as a choice to enhance host immunity against the infection of COVID‐19.</p>
<p>In summary, the general treatment for viral infection including nutritional interventions and all kinds of immunoenhancers has been used to enhance host immunity against RNA viral infections. Therefore, they may also be used to fight COVID‐19 infection by correcting the lymphopenia of patients.</p>
</sec>
</sec>
</sec>
<sec id="jmv25707-sec-0210">
<label>3</label>
<title>CORONAVIRUS‐SPECIFIC TREATMENTS</title>
<sec id="jmv25707-sec-0220">
<label>3.1</label>
<title>Coronaviral protease inhibitors</title>
<p>Chymotrypsin‐like (3C‐like) and papain‐like protease (PLP) are coronavirus encoded proteins (Table 
<xref rid="jmv25707-tbl-0002" ref-type="table">2</xref>
). They have an essential function for coronaviral replication and also have additional function for inhibition of host innate immune responses. Targeting 3C‐like protease (3 CLpro) and papain‐like protease (PLpro) are more attractive for the treatment of coronavirus.
<xref rid="jmv25707-bib-0077" ref-type="ref">
<sup>77</sup>
</xref>
</p>
<table-wrap id="jmv25707-tbl-0002" xml:lang="en" orientation="portrait" position="float">
<label>Table 2</label>
<caption>
<p>Coronavirus‐specific treatments</p>
</caption>
<table frame="hsides" rules="groups">
<col style="border-right:solid 1px #000000; border-bottom:solid 1px #000000" span="1"></col>
<tbody valign="top">
<tr>
<td valign="top" rowspan="1" colspan="1">3.1. Coronavirus protease inhibitors</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">3.1.1. Chymotrypsin‐like (3C‐like) inhibitors</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">3.1.1.1. Cinanserin</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">3.1.1.2. Flavonoids</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">3.1.2. Papain‐like protease (PLP) inhibitors</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">3.1.2.1. Diarylheptanoids</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">3.2. Spike (S) protein‐angiotensin‐converting enzyme‐2 (ACE2) blockers</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">3.2.1. Human monoclonal antibody (mAb)</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">3.2.2. Chloroquine</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">3.2.3. Emodin</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">3.2.4. Promazine</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">3.2.5. Nicotianamine</td>
</tr>
</tbody>
</table>
<permissions>
<copyright-holder>John Wiley & Sons, Ltd.</copyright-holder>
<license>
<license-p>This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.</license-p>
</license>
</permissions>
</table-wrap>
<sec id="jmv25707-sec-0230">
<label>3.1.1</label>
<title>Chymotrypsin‐like (3C‐like) inhibitors</title>
<sec id="jmv25707-sec-0240">
<title>Cinanserin</title>
<p>Cinanserin, an old drug, is well‐known for serotonin receptor antagonist. It could inhibit the 3 chymotrypsin‐like (3C‐like) protease and was a promising inhibitor of replication of SARS‐CoV.
<xref rid="jmv25707-bib-0078" ref-type="ref">
<sup>78</sup>
</xref>
The 3CLpro was also been found to be encoded in COVID‐19.
<xref rid="jmv25707-bib-0007" ref-type="ref">
<sup>7</sup>
</xref>
Therefore, Cinanserin may be a better choice for the treatment of COVID‐19 infection.</p>
</sec>
<sec id="jmv25707-sec-0250">
<title>Flavonoids</title>
<p>Flavonoids are an important class of natural products and have several subgroups, which include chalcones, flavones, flavonols, and isoflavones.
<xref rid="jmv25707-bib-0079" ref-type="ref">
<sup>79</sup>
</xref>
Flavonoids have many functions besides antioxidant effects and they also have antiviral abilities. Shimizu et al
<xref rid="jmv25707-bib-0080" ref-type="ref">
<sup>80</sup>
</xref>
had found that flavonoids from Pterogyne Nitens could inhibit the entry of the hepatitis C Virus. Jo et al
<xref rid="jmv25707-bib-0081" ref-type="ref">
<sup>81</sup>
</xref>
had suggested that the anti‐coronavirus activity of some flavonoids (Herbacetin, rhoifolin and pectolinarin) was due to the inhibition of 3C‐like protease (3CLpro). Other flavonoids (Herbacetin, isobavachalcone, quercetin 3‐β‐d‐glucoside, and helichrysetin) were also found to be able to block the enzymatic activity of MERS‐CoV/3CLpro.
<xref rid="jmv25707-bib-0082" ref-type="ref">
<sup>82</sup>
</xref>
Moreover, Ryu et al
<xref rid="jmv25707-bib-0083" ref-type="ref">
<sup>83</sup>
</xref>
had reported that biflavonoids from
<italic>Torreya nucifera</italic>
also brought inhibition effect of SARS‐CoV/3CL (pro).</p>
</sec>
</sec>
<sec id="jmv25707-sec-0260">
<label>3.1.2</label>
<title>Papain‐like protease inhibitors</title>
<p>Papain‐like protease (PLP) of human coronavirus is a novel viral‐encoded deubiquitinase and is an IFN antagonist for inhibition of host innate antiviral immune response.</p>
<sec id="jmv25707-sec-0270">
<title>Diarylheptanoids</title>
<p>Diarylheptanoids is a natural product and is extracted from the stem bark of
<italic>Alnus japonica</italic>
. It had been found to be able to inhibit papain‐like protease of SARS‐CoV.
<xref rid="jmv25707-bib-0077" ref-type="ref">
<sup>77</sup>
</xref>
</p>
<p>Therefore, cinanserin together with flavonoids and other natural compounds could be chosen as alternative choices to fight COVID‐19 infection through targeting coronaviral proteases.</p>
</sec>
</sec>
</sec>
<sec id="jmv25707-sec-0280">
<label>3.2</label>
<title>Spike (S) protein‐angiotensin‐converting enzyme‐2 (ACE2) blockers</title>
<p>Angiotensin‐converting enzyme‐2 (ACE2) is a type I integral membrane protein which functions as a carboxypeptidase and is the first human homolog of ACE.
<xref rid="jmv25707-bib-0084" ref-type="ref">
<sup>84</sup>
</xref>
ACE2 efficiently hydrolyzes the potent vasoconstrictor angiotensin II to angiotensin (1‐7) and it has been implicated in hypertension, cardiac function, heart function, and diabetes.
<xref rid="jmv25707-bib-0084" ref-type="ref">
<sup>84</sup>
</xref>
In addition, ACE2 is also a functional receptor of SARS‐CoV and it mediates virus entry into the cell through binding with spike (S) protein.
<xref rid="jmv25707-bib-0085" ref-type="ref">
<sup>85</sup>
</xref>
,
<xref rid="jmv25707-bib-0086" ref-type="ref">
<sup>86</sup>
</xref>
The S protein of SARS‐CoV is a type I surface glycoprotein and is responsible for the binding to cellular receptors. In addition, S protein mediates the fusion of viral and host membranes.
<xref rid="jmv25707-bib-0087" ref-type="ref">
<sup>87</sup>
</xref>
Zhou et al reported that COVID‐19 used ACE2 as a sole receptor for the entry, but did not use other coronavirus receptors, aminopeptidase N and dipeptidyl peptidase, for the entry. Blocking the binding of S protein to ACE2 is important for the treatment of SARS‐CoV infection.
<xref rid="jmv25707-bib-0088" ref-type="ref">
<sup>88</sup>
</xref>
</p>
<sec id="jmv25707-sec-0290">
<label>3.2.1</label>
<title>Human monoclonal antibody</title>
<p>Sui et al had found one recombinant human monoclonal antibody (mAb) (single‐chain variable region fragments, scFvs 80R) against the S1 domain of S protein of SARS‐CoV from two nonimmune human antibody libraries. The mAb could efficiently neutralize SARS‐CoV and inhibit syncytia formation between cells expressing the S protein and those expressing the SARS‐CoV receptor ACE2.
<xref rid="jmv25707-bib-0089" ref-type="ref">
<sup>89</sup>
</xref>
</p>
</sec>
<sec id="jmv25707-sec-0300">
<label>3.2.2</label>
<title>Chloroquine</title>
<p>Chloroquine is a 9‐aminoquinoline known since 1934. Apart from its well‐known antimalarial effects, the drug also has many interesting biochemical properties including antiviral effect. In addition, it had been used against viral infection.
<xref rid="jmv25707-bib-0090" ref-type="ref">
<sup>90</sup>
</xref>
Moreover, chloroquine was also found to be a potent inhibitor of SARS coronavirus infection through interfering with ACE2, one of cell surface binding sites for S protein of SARS‐CoV.
<xref rid="jmv25707-bib-0091" ref-type="ref">
<sup>91</sup>
</xref>
</p>
</sec>
<sec id="jmv25707-sec-0310">
<label>3.2.3</label>
<title>Emodin</title>
<p>Emodin is an anthraquinone compound derived from genus
<italic>Rheum</italic>
and
<italic>Polygonum</italic>
and it is also a virucidal agent.
<xref rid="jmv25707-bib-0092" ref-type="ref">
<sup>92</sup>
</xref>
Emodin could significantly block the interaction between the S protein of SARS‐CoV and ACE2. Therefore, emodin might abolish SARS‐CoV infection by competing for the binding site of S protein with ACE2.
<xref rid="jmv25707-bib-0093" ref-type="ref">
<sup>93</sup>
</xref>
</p>
</sec>
<sec id="jmv25707-sec-0320">
<label>3.2.4</label>
<title>Promazine</title>
<p>Promazine, anti‐psychotic drug, shares a similar structure with emodin. It has been found to exhibit a significant effect in inhibiting the replication of SARS‐CoV.
<xref rid="jmv25707-bib-0094" ref-type="ref">
<sup>94</sup>
</xref>
As compared to emodin, promazine exhibited potent inhibition of the binding of S protein to ACE2. These findings suggested that emodin and promazine might be able to inhibit SARS‐CoV infectivity through blocking the interaction of S protein and ACE2.
<xref rid="jmv25707-bib-0093" ref-type="ref">
<sup>93</sup>
</xref>
Therefore, the monoclonal antibody (scFv80R), chloroquine, emodin, and promazine could be used as alternative choices for the treatment of COVID‐19.</p>
</sec>
<sec id="jmv25707-sec-0330">
<label>3.2.5</label>
<title>Nicotianamine</title>
<p>Nicotianamine is an important metal ligand in plants
<xref rid="jmv25707-bib-0095" ref-type="ref">
<sup>95</sup>
</xref>
and it is found a novel angiotensin‐converting enzyme‐2 inhibitor in soybean.
<xref rid="jmv25707-bib-0096" ref-type="ref">
<sup>96</sup>
</xref>
So, it is another potential option to be used to reduce the infection of COVID‐19.</p>
</sec>
</sec>
</sec>
<sec id="jmv25707-sec-0340">
<label>4</label>
<title>ANTIVIRAL TREATMENTS</title>
<sec id="jmv25707-sec-0350">
<label>4.1</label>
<title>Ribavirin</title>
<p>Ribavirin, a broad‐spectrum antiviral agent, is routinely used to treat hepatitis C (Table 
<xref rid="jmv25707-tbl-0003" ref-type="table">3</xref>
). During the outbreak of SARS, ribavirin was used extensively for most cases with or without concomitant use of steroids in Hong Kong.
<xref rid="jmv25707-bib-0097" ref-type="ref">
<sup>97</sup>
</xref>
However, there was considerable skepticism from overseas and local experts on the efficacy of ribavirin.
<xref rid="jmv25707-bib-0098" ref-type="ref">
<sup>98</sup>
</xref>
Because there was a report mentioned that ribavirin had no significant activity against SARS‐CoV in vitro
<xref rid="jmv25707-bib-0052" ref-type="ref">
<sup>52</sup>
</xref>
and the use of ribavirin was found to be associated with significant toxicity, including hemolysis (in 76%) and decrease in hemoglobin (in 49%).
<xref rid="jmv25707-bib-0099" ref-type="ref">
<sup>99</sup>
</xref>
However, Morgenstern et al
<xref rid="jmv25707-bib-0049" ref-type="ref">
<sup>49</sup>
</xref>
had reported that ribavirin and interferon‐β synergistically inhibited the replication of SARS‐associated coronavirus in animal and human cell lines. In view of adverse reactions and the lack of in vitro efficacy, the use of ribavirin should be seriously considered for the treatment of COVID‐19, even in combination with other antiviral drugs.</p>
<table-wrap id="jmv25707-tbl-0003" xml:lang="en" orientation="portrait" position="float">
<label>Table 3</label>
<caption>
<p>Antiviral treatments and other compounds</p>
</caption>
<table frame="hsides" rules="groups">
<col style="border-right:solid 1px #000000; border-bottom:solid 1px #000000" span="1"></col>
<tbody valign="top">
<tr>
<td valign="top" rowspan="1" colspan="1">
<bold>4. Antiviral treatments</bold>
</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">4.1. Ribavirin</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">4.2. Lopinavir (LPV)/ritonavir (RTV) (Kaletra)</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">4.3. Remdesivir</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">4.4. Nelfinavir</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">4.5 Arbidol</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">4.6. Nitric oxide</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">
<bold>5. Other compounds</bold>
</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">5.1. α‐Lipoic acid</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">5.2. Estradiol and phytoestrogen</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">5.3. Mucroporin‐M1</td>
</tr>
</tbody>
</table>
<permissions>
<copyright-holder>John Wiley & Sons, Ltd.</copyright-holder>
<license>
<license-p>This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.</license-p>
</license>
</permissions>
</table-wrap>
</sec>
<sec id="jmv25707-sec-0360">
<label>4.2</label>
<title>Lopinavir/ritonavir (kaletra)</title>
<p>The combination of lopinavir with ritonavir is widely used as a boosted protease inhibitor in the treatment of HIV infection.
<xref rid="jmv25707-bib-0100" ref-type="ref">
<sup>100</sup>
</xref>
Lopinavir (LPV) is usually combined with ritonavir (RTV) to increase lopinavir half‐life through the inhibition of cytochrome P450.
<xref rid="jmv25707-bib-0101" ref-type="ref">
<sup>101</sup>
</xref>
Chu et al
<xref rid="jmv25707-bib-0102" ref-type="ref">
<sup>102</sup>
</xref>
had found that the use of LPV/RTV with ribavirin in the treatment of SARS was associated with a better outcome. Kim et al
<xref rid="jmv25707-bib-0103" ref-type="ref">
<sup>103</sup>
</xref>
had also reported a successful case of MERS‐CoV disease treated with triple combination therapy LPV/RTV, ribavirin, and IFN‐α2a in South Korea. Regarding this novel virus, COVID‐19, Kim's triple combination therapy should be considered as an option at the early stage of the disease.</p>
</sec>
<sec id="jmv25707-sec-0370">
<label>4.3</label>
<title>Remdesivir</title>
<p>Remdesivir (RDV), a nucleoside analog GS‐5734, had been reported to inhibit human and zoonotic coronavirus in vitro and to restrain severe acute respiratory syndrome coronavirus (SARS‐CoV) in vivo.
<xref rid="jmv25707-bib-0104" ref-type="ref">
<sup>104</sup>
</xref>
Recently, the antiviral activity of RDV and IFN‐β was found to be superior to that of LPV/RTV‐IFN‐β against MERS‐CoV in vitro and in vivo.
<xref rid="jmv25707-bib-0101" ref-type="ref">
<sup>101</sup>
</xref>
In addition, RDV could improve pulmonary function and reduce lung viral loads and severe lung pathology in mice, which was impossible for LPV/RTV‐IFN‐β.
<xref rid="jmv25707-bib-0101" ref-type="ref">
<sup>101</sup>
</xref>
Recently, a first COVID‐19‐infected case was reported in the United States and the use of remdesivir was administered when the patient's clinical status was getting worse.
<xref rid="jmv25707-bib-0105" ref-type="ref">
<sup>105</sup>
</xref>
Therefore, the use of RDV with IFN‐β could be a better choice for the treatment of COVID‐19 comparing with that of the triple combination of LPV/RTV‐IFN‐β. However, randomized and controlled trials are still needed to determine the safety and efficacy of remdesivir.</p>
</sec>
<sec id="jmv25707-sec-0380">
<label>4.4</label>
<title>Nelfinavir</title>
<p>Nelfinavir is a selective inhibitor of HIV protease, which is responsible for posttranslational processing of HIV propeptides.
<xref rid="jmv25707-bib-0106" ref-type="ref">
<sup>106</sup>
</xref>
Yamamoto et al
<xref rid="jmv25707-bib-0107" ref-type="ref">
<sup>107</sup>
</xref>
had found that nelfinavir could strongly inhibit the replication of SARS‐CoV. Therefore, nelfinavir could also be an option for the treatment of COVID‐19.</p>
</sec>
<sec id="jmv25707-sec-0390">
<label>4.5</label>
<title>Arbidol</title>
<p>Arbidol (ARB) is a Russian‐made small indole‐derivative molecule and is licensed in Russia and China for prophylaxis and treatment of influenza and other respiratory viral infections.
<xref rid="jmv25707-bib-0108" ref-type="ref">
<sup>108</sup>
</xref>
Arbidol had been found to be able to block viral fusion against influenza A and B viruses as well as hepatitis C virus.
<xref rid="jmv25707-bib-0109" ref-type="ref">
<sup>109</sup>
</xref>
Arbidol could also inhibit hepatitis C virus by blocking hepatitis C virus entry and replication in vitro.
<xref rid="jmv25707-bib-0110" ref-type="ref">
<sup>110</sup>
</xref>
In addition, arbidol and its derivatives, arbidol mesylate, had been reported to have antiviral activity against the pathogen of SARS in the cell cultures and arbidol mesylate was nearly 5 times as effective as arbidol in reducing the reproduction of SARS virus in the cultured cells.
<xref rid="jmv25707-bib-0111" ref-type="ref">
<sup>111</sup>
</xref>
</p>
</sec>
<sec id="jmv25707-sec-0400">
<label>4.6</label>
<title>Nitric oxide</title>
<p>Nitric oxide (NO) is a gas with diverse biological activities and is produced from arginine by NO synthases. NO is able to interact with superoxide, forming peroxynitrite, which, in turn, can mediate bactericidal or cytotoxic reactions.
<xref rid="jmv25707-bib-0112" ref-type="ref">
<sup>112</sup>
</xref>
In addition, NO had played an important role in regulating airway function and in treating inflammatory airway diseases.
<xref rid="jmv25707-bib-0113" ref-type="ref">
<sup>113</sup>
</xref>
Rossaint et al
<xref rid="jmv25707-bib-0114" ref-type="ref">
<sup>114</sup>
</xref>
reported that the beneficial effects of NO inhalation could be observed in most patients with severe acute respiratory distress syndrome. NO was also found to inhibit the synthesis of viral protein and RNA.
<xref rid="jmv25707-bib-0115" ref-type="ref">
<sup>115</sup>
</xref>
Moreover, Akerström et al
<xref rid="jmv25707-bib-0116" ref-type="ref">
<sup>116</sup>
</xref>
had reported that organic NO donor,
<italic>S</italic>
‐nitroso‐
<italic>N</italic>
‐acetylpenicillamine, could significantly inhibit the replication cycle of SARS‐CoV in a concentration‐dependent manner. Therefore, the NO inhalation could be also chosen as an option for the treatment of severely COVID‐19 infected patients.</p>
</sec>
</sec>
<sec id="jmv25707-sec-0410">
<label>5</label>
<title>OTHER COMPOUNDS</title>
<sec id="jmv25707-sec-0420">
<label>5.1</label>
<title>α‐Lipoic acid</title>
<p>α‐Lipoic acid (ALA), a naturally occurring disulfide compound, acts as a cellular coenzyme and has been applied for the treatment of polyneuropathies and hepatic disorders for years (Table 
<xref rid="jmv25707-tbl-0003" ref-type="table">3</xref>
).
<xref rid="jmv25707-bib-0117" ref-type="ref">
<sup>117</sup>
</xref>
ALA, as an antioxidant, has played a pivotal role in scavenging free radicals to protect against oxidative damage in several diseases.
<xref rid="jmv25707-bib-0118" ref-type="ref">
<sup>118</sup>
</xref>
In addition, ALA also had its capability to enhance intracellular glutathione (GSH) levels
<xref rid="jmv25707-bib-0118" ref-type="ref">
<sup>118</sup>
</xref>
and to normalize the oxidative stress induced by Dexamethasone in chicken.
<xref rid="jmv25707-bib-0119" ref-type="ref">
<sup>119</sup>
</xref>
Wu et al
<xref rid="jmv25707-bib-0120" ref-type="ref">
<sup>120</sup>
</xref>
also reported that the oxidative stress in host cells was an important factor in the infectivity of human coronavirus 229E and the glucose‐6‐phosphate dehydrogenase (G6PD) deficiency was another factor that enhanced human coronavirus 229E infection. The addition of α‐lipoic acid to G6PD‐knockdown cells could attenuate the increased susceptibility to human coronavirus 229E infection.
<xref rid="jmv25707-bib-0120" ref-type="ref">
<sup>120</sup>
</xref>
Interestingly, Baur et al
<xref rid="jmv25707-bib-0121" ref-type="ref">
<sup>121</sup>
</xref>
also found that α‐lipoic acid was effective to inhibit the replication of HIV‐1. In summary, we speculate that ALA could be also used as an optional therapy for this new virus.</p>
</sec>
<sec id="jmv25707-sec-0430">
<label>5.2</label>
<title>Estradiol and phytoestrogen</title>
<p>Females, generally, mount more robust immune responses to viral challenges than males, which can result in more efficient virus clearance.
<xref rid="jmv25707-bib-0122" ref-type="ref">
<sup>122</sup>
</xref>
Epidemiological studies showed that males experiencing a higher rate of incidence and case fatality compared with females after SARS‐CoV infection.
<xref rid="jmv25707-bib-0123" ref-type="ref">
<sup>123</sup>
</xref>
,
<xref rid="jmv25707-bib-0124" ref-type="ref">
<sup>124</sup>
</xref>
During the MERS outbreak, the disease occurrence rate in men was almost twice as much as in women and the case fatality rate was the same as the occurrence rate among men and women.
<xref rid="jmv25707-bib-0125" ref-type="ref">
<sup>125</sup>
</xref>
In addition, Channappanavar et al had reported that male mice were more susceptible to SARS‐CoV infection compared with age‐matched female mice. However, the mortality was increased in female mice when the ovariectomy was done or the estrogen receptor antagonist was given.
<xref rid="jmv25707-bib-0126" ref-type="ref">
<sup>126</sup>
</xref>
Wei et al
<xref rid="jmv25707-bib-0127" ref-type="ref">
<sup>127</sup>
</xref>
also found that serum levels of prolactin, follicle‐stimulating hormone, and luteinizing hormone of SARS patients were significantly higher than those of control groups, while estradiol (E2), pregnancy hormone, and thyroid‐stimulating hormone were considerably lower than those of normal controls. Interestingly, estrogenic compounds had been found to reduce influenza A virus replication in primary human nasal epithelial cells derived from female, but not male, donors.
<xref rid="jmv25707-bib-0128" ref-type="ref">
<sup>128</sup>
</xref>
In addition, resveratrol, a phytoestrogen from grape seeds and red wine, had been reported to be a potent anti‐MERS agent in vitro.
<xref rid="jmv25707-bib-0129" ref-type="ref">
<sup>129</sup>
</xref>
Therefore, 17β‐Estradiol or phytoestrogen could also be an alternative option to be considered for the treatment of COVID‐19.</p>
</sec>
<sec id="jmv25707-sec-0440">
<label>5.3</label>
<title>Mucroporin‐M1</title>
<p>Mucroporin‐M1 is a scorpion venom‐derived peptide and has broad‐spectrum virucidal activity against many viruses including measles, influenza H5N1 viruses, and SARS‐CoV.
<xref rid="jmv25707-bib-0130" ref-type="ref">
<sup>130</sup>
</xref>
Therefore, this peptide could also be used for the treatment of COVID‐19 infection as well as the new drug design to target COVID‐19.</p>
</sec>
</sec>
<sec sec-type="conclusions" id="jmv25707-sec-0450">
<label>6</label>
<title>CONCLUSION</title>
<p>In this review, we summarize all the potential interventions for COVID‐19 infection according to previous treatments of SARS and MERS. We have found that the general treatments are very important to enhance host immune response against RNA viral infection. The immune response has often been shown to be weakened by inadequate nutrition in many model systems as well as in human studies. However, the nutritional status of the host, until recently, has not been considered as a contributing factor to the emergence of viral infectious diseases. Therefore, we propose to verify the nutritional status of COVID‐19 infected patients before the administration of general treatments. In addition, we also found coronavirus‐specific treatments and antiviral treatments were very useful for the treatment of SARS and MERS. They should also be considered as potential treatments for COVID‐19 infection. The other compounds should also be chosen as alternative options for the treatment as well as new drug designs.</p>
<p>To complete the eradication of virus infection, the COVID‐19‐related vaccines are warranted. The vaccine development for SARS had already attracted the attention of many scientists in the past. Avian IBV is similar to SARS‐CoV and both viruses belong to coronavirus. IBV is in group 3 and SARS belongs to group 4.
<xref rid="jmv25707-bib-0131" ref-type="ref">
<sup>131</sup>
</xref>
Bijlenga et al
<xref rid="jmv25707-bib-0055" ref-type="ref">
<sup>55</sup>
</xref>
had suggested that avian live virus IBV vaccine (strain H) be used to treat SARS in 2005. However, preliminary tests in monkeys should be taken before the startup. Interestingly, children are seldom attacked by COVID‐19 as well as SARS‐CoV. It may be due to the required vaccine program for every child. The RNA‐virus vaccines and the adjuvants in vaccine programs may help children escape from the infection. Therefore, the RNA‐virus‐related vaccines including measles (MeV), polio, Japanese encephalitis virus, influenza virus, and rabies‐related vaccines, could be used as the most promising alternative choices to prevent human‐to‐human transmission through immunizing health care workers and noninfected population as well.</p>
<p>Recombinant measles vaccine expressing S protein of SARS and MERS were also tried by many researchers. Escriou et al
<xref rid="jmv25707-bib-0132" ref-type="ref">
<sup>132</sup>
</xref>
had generated live‐attenuated recombinant measles vaccine candidates expressing the membrane‐anchored S protein of SARS‐CoV (SARS‐CoV‐S‐vaccine) and they had found that the vaccine could induce highest titers of neutralizing antibodies and protected immunized animals from intranasal infectious challenge with SARS‐CoV. Bodmer et al
<xref rid="jmv25707-bib-0133" ref-type="ref">
<sup>133</sup>
</xref>
had reported that two live‐attenuated measles virus vaccines either expressing S protein or N protein of MERS‐CoV could induce robust and multifunctional T cell responses in the mouse model. Frantz et al
<xref rid="jmv25707-bib-0134" ref-type="ref">
<sup>134</sup>
</xref>
also mentioned that recombinant measles vaccine could induce stronger and T helper 1‐biased responses.</p>
<p>Regarding short‐term protection and prevention of viral infection, passive immunotherapy should not be neglected.
<xref rid="jmv25707-bib-0135" ref-type="ref">
<sup>135</sup>
</xref>
Monoclonal antibody therapy is one of the best forms of passive immunotherapy. A human IgG1 mAb, CR3014, had been generated and it had been found to be reactive with whole inactivated SARS coronavirus. In addition, CR3014 could be used as prophylaxis for SARS coronavirus infection in ferrets.
<xref rid="jmv25707-bib-0136" ref-type="ref">
<sup>136</sup>
</xref>
However, CR3014 was found to be able to block the interaction in parent SARS‐CoV strain, but not in escape variants. This led to the ineffectiveness of CR3014 to prevent infection in humans. CR3022 was another monoclonal antibody and it had been found to neutralize CR3014 escape viruses.
<xref rid="jmv25707-bib-0136" ref-type="ref">
<sup>136</sup>
</xref>
The combination of CR3014 and CR3022 had also been reported to have the potential to control immune escape.
<xref rid="jmv25707-bib-0135" ref-type="ref">
<sup>135</sup>
</xref>
However, the clinical trial of CR3022 with CR3014 had never been tried due to the high cost of manufacturing.</p>
<p>Convalescent plasma can also be called passive immunotherapy. It is usually chosen when there are no specific vaccines or drugs available for emerging infection‐related diseases.
<xref rid="jmv25707-bib-0137" ref-type="ref">
<sup>137</sup>
</xref>
Arabi et al had tested the feasibility of convalescent plasma therapy as well as its safety and clinical efficacy in critically ill MERS patients. They found that convalescent plasma had an immunotherapeutic potential for the treatment of MERS‐CoV infection.
<xref rid="jmv25707-bib-0138" ref-type="ref">
<sup>138</sup>
</xref>
In addition, convalescent plasma from recovered SARS patients had also been reported to be useful clinically for treating other SARS patients.
<xref rid="jmv25707-bib-0139" ref-type="ref">
<sup>139</sup>
</xref>
,
<xref rid="jmv25707-bib-0140" ref-type="ref">
<sup>140</sup>
</xref>
Importantly, the use of convalescent plasma or serum was also suggested by the World Health Organization under Blood Regulators Network when vaccines and antiviral drugs were unavailable for an emerging virus. In summary, these findings suggest that the current children's RNA‐virus‐related vaccines are the best alternative methods to be used to vaccinate the uninfected people and health care workers. Convalescent plasma should be routinely used for the treatment of COVID‐19 infected critically sick patients if it is available. The avian IBV vaccine is also another choice for clinical trials if its safety has been approved in monkeys. Therefore, we suggest that all the potential interventions be implemented to control the emerging COVID‐19 if the infection is uncontrollable.</p>
</sec>
<sec sec-type="COI-statement" id="jmv25707-sec-0460">
<title>CONFLICT OF INTERESTS</title>
<p>The authors declare that there are no conflict of interests.</p>
</sec>
</body>
<back>
<ref-list content-type="cited-references" id="jmv25707-bibl-0001">
<title>REFERENCES</title>
<ref id="jmv25707-bib-0001">
<label>1</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0001">
<string-name>
<surname>Banerjee</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Kulcsar</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Misra</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Frieman</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Mossman</surname>
<given-names>K</given-names>
</string-name>
.
<article-title>Bats and coronaviruses</article-title>
.
<source xml:lang="en">Viruses</source>
.
<year>2019</year>
;
<volume>11</volume>
:
<fpage>41</fpage>
<pub-id pub-id-type="doi">10.3390/v11010041</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0002">
<label>2</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0002">
<string-name>
<surname>Schoeman</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Fielding</surname>
<given-names>BC</given-names>
</string-name>
.
<article-title>Coronavirus envelope protein: current knowledge</article-title>
.
<source xml:lang="en">Virol J</source>
.
<year>2019</year>
;
<volume>16</volume>
:
<fpage>69</fpage>
<pub-id pub-id-type="doi">10.1186/s12985-019-1182-0</pub-id>
<pub-id pub-id-type="pmid">31133031</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0003">
<label>3</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0003">
<string-name>
<surname>Zumla</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Hui</surname>
<given-names>DS</given-names>
</string-name>
,
<string-name>
<surname>Perlman</surname>
<given-names>S</given-names>
</string-name>
.
<article-title>Middle East respiratory syndrome</article-title>
.
<source xml:lang="en">Lancet</source>
.
<year>2015</year>
;
<volume>386</volume>
:
<fpage>995</fpage>
<lpage>1007</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0140-6736(15)60454-8</pub-id>
<pub-id pub-id-type="pmid">26049252</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0004">
<label>4</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0004">
<string-name>
<surname>Cohen</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Normile</surname>
<given-names>D</given-names>
</string-name>
.
<article-title>New SARS‐like virus in China triggers alarm</article-title>
.
<source xml:lang="en">Science</source>
.
<year>2020</year>
;
<volume>367</volume>
:
<fpage>234</fpage>
<lpage>235</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.367.6475.234</pub-id>
<pub-id pub-id-type="pmid">31949058</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0005">
<label>5</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0005">
<string-name>
<surname>Zhu</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>W</given-names>
</string-name>
, et al.
<article-title>A novel coronavirus from patients with pneumonia in China, 2019</article-title>
.
<source xml:lang="en">N Engl J Med</source>
.
<year>2020</year>
;
<volume>382</volume>
(
<issue>8</issue>
):
<fpage>727</fpage>
<lpage>733</lpage>
.
<pub-id pub-id-type="doi">10.1056/NEJMoa2001017</pub-id>
<pub-id pub-id-type="pmid">31978945</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0006">
<label>6</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0006">
<string-name>
<surname>Li</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Guan</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Wu</surname>
<given-names>P</given-names>
</string-name>
, et al.
<article-title>Early transmission dynamics in Wuhan, China, of novel coronavirus‐infected pneumonia</article-title>
.
<source xml:lang="en">New Engl J Med</source>
.
<year>2020</year>
:
<fpage>1</fpage>
<lpage>9</lpage>
.
<pub-id pub-id-type="doi">10.1056/NEJMoa2001316</pub-id>
<pub-id pub-id-type="pmid">31826359</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0007">
<label>7</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0007">
<string-name>
<surname>Chen</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Guo</surname>
<given-names>D</given-names>
</string-name>
.
<article-title>Coronaviruses: genome structure, replication, and pathogenesis</article-title>
.
<source xml:lang="en">J Med Virol</source>
.
<year>2020</year>
;
<volume>92</volume>
(
<issue>4</issue>
):
<fpage>418</fpage>
<lpage>423</lpage>
.
<pub-id pub-id-type="doi">10.1002/jmv.25681</pub-id>
<pub-id pub-id-type="pmid">31967327</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0008">
<label>8</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0008">
<string-name>
<surname>Zhang</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Deng</surname>
<given-names>X</given-names>
</string-name>
, et al.
<article-title>Recent advances in the detection of respiratory virus infection in humans</article-title>
.
<source xml:lang="en">J Med Virol</source>
.
<year>2020</year>
;
<volume>92</volume>
(
<issue>4</issue>
):
<fpage>408</fpage>
<lpage>417</lpage>
.
<pub-id pub-id-type="doi">10.1002/jmv.25674</pub-id>
<pub-id pub-id-type="pmid">31944312</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0009">
<label>9</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0009">
<string-name>
<surname>Chan</surname>
<given-names>JFW</given-names>
</string-name>
,
<string-name>
<surname>Kok</surname>
<given-names>KH</given-names>
</string-name>
,
<string-name>
<surname>Zhu</surname>
<given-names>Z</given-names>
</string-name>
, et al.
<article-title>Genomic characterization of the 2019 novel human‐pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan</article-title>
.
<source xml:lang="en">Emerg Microbes Infect</source>
.
<year>2020</year>
;
<volume>9</volume>
(
<issue>1</issue>
):
<fpage>221</fpage>
<lpage>236</lpage>
.
<pub-id pub-id-type="doi">10.1080/22221751.2020.1719902</pub-id>
<pub-id pub-id-type="pmid">31987001</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0010">
<label>10</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0010">
<string-name>
<surname>Guillin</surname>
<given-names>OM</given-names>
</string-name>
,
<string-name>
<surname>Vindry</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Ohlmann</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Chavatte</surname>
<given-names>L</given-names>
</string-name>
.
<article-title>Selenium, selenoproteins and viral infection</article-title>
.
<source xml:lang="en">Nutrients</source>
.
<year>2019</year>
;
<volume>11</volume>
:
<fpage>2101</fpage>
<pub-id pub-id-type="doi">10.3390/nu11092101</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0011">
<label>11</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0011">
<string-name>
<surname>Kantoch</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Litwinska</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Szkoda</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Siennicka</surname>
<given-names>J</given-names>
</string-name>
.
<article-title>Importance of vitamin A deficiency in pathology and immunology of viral infections</article-title>
.
<source xml:lang="en">Rocz Panstw Zakl Hig</source>
.
<year>2002</year>
;
<volume>53</volume>
:
<fpage>385</fpage>
<lpage>392</lpage>
.
<pub-id pub-id-type="pmid">12664666</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0012">
<label>12</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0012">
<string-name>
<surname>Semba</surname>
<given-names>RD</given-names>
</string-name>
.
<article-title>Vitamin A and immunity to viral, bacterial and protozoan infections</article-title>
.
<source xml:lang="en">Proc Nutr Soc</source>
.
<year>1999</year>
;
<volume>58</volume>
:
<fpage>719</fpage>
<lpage>727</lpage>
.
<pub-id pub-id-type="doi">10.1017/s0029665199000944</pub-id>
<pub-id pub-id-type="pmid">10604208</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0013">
<label>13</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0013">
<string-name>
<surname>Villamor</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Mbise</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Spiegelman</surname>
<given-names>D</given-names>
</string-name>
, et al.
<article-title>Vitamin A supplements ameliorate the adverse effect of HIV‐1, malaria, and diarrheal infections on child growth</article-title>
.
<source xml:lang="en">Pediatrics</source>
.
<year>2002</year>
;
<volume>109</volume>
:
<elocation-id>e6</elocation-id>
<pub-id pub-id-type="doi">10.1542/peds.109.1.e6</pub-id>
<pub-id pub-id-type="pmid">11773574</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0014">
<label>14</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0014">
<string-name>
<surname>Jee</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Hoet</surname>
<given-names>AE</given-names>
</string-name>
,
<string-name>
<surname>Azevedo</surname>
<given-names>MP</given-names>
</string-name>
, et al.
<article-title>Effects of dietary vitamin A content on antibody responses of feedlot calves inoculated intramuscularly with an inactivated bovine coronavirus vaccine</article-title>
.
<source xml:lang="en">Am J Vet Res</source>
.
<year>2013</year>
;
<volume>74</volume>
:
<fpage>1353</fpage>
<lpage>1362</lpage>
.
<pub-id pub-id-type="doi">10.2460/ajvr.74.10.1353</pub-id>
<pub-id pub-id-type="pmid">24066921</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0015">
<label>15</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0015">
<string-name>
<surname>West</surname>
<given-names>CE</given-names>
</string-name>
,
<string-name>
<surname>Sijtsma</surname>
<given-names>SR</given-names>
</string-name>
,
<string-name>
<surname>Kouwenhoven</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Rombout</surname>
<given-names>JH</given-names>
</string-name>
,
<string-name>
<surname>van der Zijpp</surname>
<given-names>AJ</given-names>
</string-name>
.
<article-title>Epithelia‐damaging virus infections affect vitamin A status in chickens</article-title>
.
<source xml:lang="en">J Nutr</source>
.
<year>1992</year>
;
<volume>122</volume>
:
<fpage>333</fpage>
<lpage>339</lpage>
.
<pub-id pub-id-type="doi">10.1093/jn/122.2.333</pub-id>
<pub-id pub-id-type="pmid">1310111</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0016">
<label>16</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0016">
<string-name>
<surname>Trottier</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Colombo</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Mann</surname>
<given-names>KK</given-names>
</string-name>
,
<string-name>
<surname>Miller</surname>
<given-names>WH</given-names>
<suffix>Jr.</suffix>
</string-name>
,
<string-name>
<surname>Ward</surname>
<given-names>BJ</given-names>
</string-name>
.
<article-title>Retinoids inhibit measles virus through a type I IFN‐dependent bystander effect</article-title>
.
<source xml:lang="en">FASEB J</source>
.
<year>2009</year>
;
<volume>23</volume>
:
<fpage>3203</fpage>
<lpage>3212</lpage>
.
<pub-id pub-id-type="doi">10.1096/fj.09-129288</pub-id>
<pub-id pub-id-type="pmid">19447880</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0017">
<label>17</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0017">
<string-name>
<surname>Powers</surname>
<given-names>HJ</given-names>
</string-name>
.
<article-title>Riboflavin (vitamin B‐2) and health</article-title>
.
<source xml:lang="en">Am J Clin Nutr</source>
.
<year>2003</year>
;
<volume>77</volume>
:
<fpage>1352</fpage>
<lpage>1360</lpage>
.
<pub-id pub-id-type="doi">10.1093/ajcn/77.6.1352</pub-id>
<pub-id pub-id-type="pmid">12791609</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0018">
<label>18</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0018">
<string-name>
<surname>Keil</surname>
<given-names>SD</given-names>
</string-name>
,
<string-name>
<surname>Bowen</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Marschner</surname>
<given-names>S</given-names>
</string-name>
.
<article-title>Inactivation of Middle East respiratory syndrome coronavirus (MERS‐CoV) in plasma products using a riboflavin‐based and ultraviolet light‐based photochemical treatment</article-title>
.
<source xml:lang="en">Transfusion</source>
.
<year>2016</year>
;
<volume>56</volume>
:
<fpage>2948</fpage>
<lpage>2952</lpage>
.
<pub-id pub-id-type="doi">10.1111/trf.13860</pub-id>
<pub-id pub-id-type="pmid">27805261</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0019">
<label>19</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0019">
<string-name>
<surname>Kyme</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Thoennissen</surname>
<given-names>NH</given-names>
</string-name>
,
<string-name>
<surname>Tseng</surname>
<given-names>CW</given-names>
</string-name>
, et al.
<article-title>C/EBPepsilon mediates nicotinamide‐enhanced clearance of
<italic>Staphylococcus aureus</italic>
in mice</article-title>
.
<source xml:lang="en">J Clin Invest</source>
.
<year>2012</year>
;
<volume>122</volume>
:
<fpage>3316</fpage>
<lpage>3329</lpage>
.
<pub-id pub-id-type="doi">10.1172/JCI62070</pub-id>
<pub-id pub-id-type="pmid">22922257</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0020">
<label>20</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0020">
<string-name>
<surname>Jones</surname>
<given-names>HD</given-names>
</string-name>
,
<string-name>
<surname>Yoo</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Crother</surname>
<given-names>TR</given-names>
</string-name>
, et al.
<article-title>Nicotinamide exacerbates hypoxemia in ventilator‐induced lung injury independent of neutrophil infiltration</article-title>
.
<source xml:lang="en">PLOS One</source>
.
<year>2015</year>
;
<volume>10</volume>
:
<elocation-id>e0123460</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0123460</pub-id>
<pub-id pub-id-type="pmid">25875775</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0021">
<label>21</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0021">
<string-name>
<surname>Hemila</surname>
<given-names>H</given-names>
</string-name>
.
<article-title>Vitamin C and SARS coronavirus</article-title>
.
<source xml:lang="en">J Antimicrob Chemother</source>
.
<year>2003</year>
;
<volume>52</volume>
:
<fpage>1049</fpage>
<lpage>1050</lpage>
.
<pub-id pub-id-type="doi">10.1093/jac/dkh002</pub-id>
<pub-id pub-id-type="pmid">14613951</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0022">
<label>22</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0022">
<string-name>
<surname>Atherton</surname>
<given-names>JG</given-names>
</string-name>
,
<string-name>
<surname>Kratzing</surname>
<given-names>CC</given-names>
</string-name>
,
<string-name>
<surname>Fisher</surname>
<given-names>A</given-names>
</string-name>
.
<article-title>The effect of ascorbic acid on infection chick‐embryo ciliated tracheal organ cultures by coronavirus</article-title>
.
<source xml:lang="en">Arch Virol</source>
.
<year>1978</year>
;
<volume>56</volume>
:
<fpage>195</fpage>
<lpage>199</lpage>
.
<pub-id pub-id-type="doi">10.1007/bf01317848</pub-id>
<pub-id pub-id-type="pmid">205194</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0023">
<label>23</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0023">
<string-name>
<surname>Field</surname>
<given-names>CJ</given-names>
</string-name>
,
<string-name>
<surname>Johnson</surname>
<given-names>IR</given-names>
</string-name>
,
<string-name>
<surname>Schley</surname>
<given-names>PD</given-names>
</string-name>
.
<article-title>Nutrients and their role in host resistance to infection</article-title>
.
<source xml:lang="en">J Leukoc Biol</source>
.
<year>2002</year>
;
<volume>71</volume>
:
<fpage>16</fpage>
<lpage>32</lpage>
.
<pub-id pub-id-type="pmid">11781377</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0024">
<label>24</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0024">
<string-name>
<surname>Hemila</surname>
<given-names>H</given-names>
</string-name>
.
<article-title>Vitamin C intake and susceptibility to pneumonia</article-title>
.
<source xml:lang="en">Pediatr Infect Dis J</source>
.
<year>1997</year>
;
<volume>16</volume>
:
<fpage>836</fpage>
<lpage>837</lpage>
.
<pub-id pub-id-type="doi">10.1097/00006454-199709000-00003</pub-id>
<pub-id pub-id-type="pmid">9306475</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0025">
<label>25</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0025">
<string-name>
<surname>Tangpricha</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Pearce</surname>
<given-names>EN</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>TC</given-names>
</string-name>
,
<string-name>
<surname>Holick</surname>
<given-names>MF</given-names>
</string-name>
.
<article-title>Vitamin D insufficiency among free‐living healthy young adults</article-title>
.
<source xml:lang="en">Am J Med</source>
.
<year>2002</year>
;
<volume>112</volume>
:
<fpage>659</fpage>
<lpage>662</lpage>
.
<pub-id pub-id-type="doi">10.1016/s0002-9343(02)01091-4</pub-id>
<pub-id pub-id-type="pmid">12034416</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0026">
<label>26</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0026">
<string-name>
<surname>Holick</surname>
<given-names>MF</given-names>
</string-name>
.
<article-title>Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease</article-title>
.
<source xml:lang="en">Am J Clin Nutr</source>
.
<year>2004</year>
;
<volume>80</volume>
:
<fpage>1678S</fpage>
<lpage>1688S</lpage>
.
<pub-id pub-id-type="doi">10.1093/ajcn/80.6.1678S</pub-id>
<pub-id pub-id-type="pmid">15585788</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0027">
<label>27</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0027">
<string-name>
<surname>Nonnecke</surname>
<given-names>BJ</given-names>
</string-name>
,
<string-name>
<surname>McGill</surname>
<given-names>JL</given-names>
</string-name>
,
<string-name>
<surname>Ridpath</surname>
<given-names>JF</given-names>
</string-name>
,
<string-name>
<surname>Sacco</surname>
<given-names>RE</given-names>
</string-name>
,
<string-name>
<surname>Lippolis</surname>
<given-names>JD</given-names>
</string-name>
,
<string-name>
<surname>Reinhardt</surname>
<given-names>TA</given-names>
</string-name>
.
<article-title>Acute phase response elicited by experimental bovine diarrhea virus (BVDV) infection is associated with decreased vitamin D and E status of vitamin‐replete preruminant calves</article-title>
.
<source xml:lang="en">J Dairy Sci</source>
.
<year>2014</year>
;
<volume>97</volume>
:
<fpage>5566</fpage>
<lpage>5579</lpage>
.
<pub-id pub-id-type="doi">10.3168/jds.2014-8293</pub-id>
<pub-id pub-id-type="pmid">25022687</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0028">
<label>28</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0028">
<string-name>
<surname>Galmes</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Serra</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Palou</surname>
<given-names>A</given-names>
</string-name>
.
<article-title>Vitamin E metabolic effects and genetic variants: a challenge for precision nutrition in obesity and associated disturbances</article-title>
.
<source xml:lang="en">Nutrients</source>
.
<year>2018</year>
;
<volume>10</volume>
:
<fpage>1919</fpage>
<pub-id pub-id-type="doi">10.3390/nu10121919</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0029">
<label>29</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0029">
<string-name>
<surname>Beck</surname>
<given-names>MA</given-names>
</string-name>
,
<string-name>
<surname>Kolbeck</surname>
<given-names>PC</given-names>
</string-name>
,
<string-name>
<surname>Rohr</surname>
<given-names>LH</given-names>
</string-name>
,
<string-name>
<surname>Shi</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Morris</surname>
<given-names>VC</given-names>
</string-name>
,
<string-name>
<surname>Levander</surname>
<given-names>OA</given-names>
</string-name>
.
<article-title>Vitamin E deficiency intensifies the myocardial injury of coxsackievirus B3 infection of mice</article-title>
.
<source xml:lang="en">J Nutr</source>
.
<year>1994</year>
;
<volume>124</volume>
:
<fpage>345</fpage>
<lpage>358</lpage>
.
<pub-id pub-id-type="doi">10.1093/jn/124.3.345</pub-id>
<pub-id pub-id-type="pmid">8120653</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0030">
<label>30</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0030">
<string-name>
<surname>Beck</surname>
<given-names>MA</given-names>
</string-name>
.
<article-title>Increased virulence of coxsackievirus B3 in mice due to vitamin E or selenium deficiency</article-title>
.
<source xml:lang="en">J Nutr</source>
.
<year>1997</year>
;
<volume>127</volume>
:
<fpage>966S</fpage>
<lpage>970S</lpage>
.
<pub-id pub-id-type="doi">10.1093/jn/127.5.966S</pub-id>
<pub-id pub-id-type="pmid">9164275</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0031">
<label>31</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0031">
<string-name>
<surname>Cai</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Koch</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Morikawa</surname>
<given-names>K</given-names>
</string-name>
, et al.
<article-title>Macrophage‐derived extracellular vesicles induce long‐lasting immunity against hepatitis C virus which is blunted by polyunsaturated fatty acids</article-title>
.
<source xml:lang="en">Front Immunol</source>
.
<year>2018</year>
;
<volume>9</volume>
:
<fpage>723</fpage>
<pub-id pub-id-type="doi">10.3389/fimmu.2018.00723</pub-id>
<pub-id pub-id-type="pmid">29706960</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0032">
<label>32</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0032">
<string-name>
<surname>Begin</surname>
<given-names>ME</given-names>
</string-name>
,
<string-name>
<surname>Manku</surname>
<given-names>MS</given-names>
</string-name>
,
<string-name>
<surname>Horrobin</surname>
<given-names>DF</given-names>
</string-name>
.
<article-title>Plasma fatty acid levels in patients with acquired immune deficiency syndrome and in controls</article-title>
.
<source xml:lang="en">Prostaglandins Leukot Essent Fatty Acids</source>
.
<year>1989</year>
;
<volume>37</volume>
:
<fpage>135</fpage>
<lpage>137</lpage>
.
<pub-id pub-id-type="doi">10.1016/0952-3278(89)90110-5</pub-id>
<pub-id pub-id-type="pmid">2550969</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0033">
<label>33</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0033">
<string-name>
<surname>Morita</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Kuba</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Ichikawa</surname>
<given-names>A</given-names>
</string-name>
, et al.
<article-title>The lipid mediator protectin D1 inhibits influenza virus replication and improves severe influenza</article-title>
.
<source xml:lang="en">Cell</source>
.
<year>2013</year>
;
<volume>153</volume>
:
<fpage>112</fpage>
<lpage>125</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cell.2013.02.027</pub-id>
<pub-id pub-id-type="pmid">23477864</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0034">
<label>34</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0034">
<string-name>
<surname>Leu</surname>
<given-names>GZ</given-names>
</string-name>
,
<string-name>
<surname>Lin</surname>
<given-names>TY</given-names>
</string-name>
,
<string-name>
<surname>Hsu</surname>
<given-names>JT</given-names>
</string-name>
.
<article-title>Anti‐HCV activities of selective polyunsaturated fatty acids</article-title>
.
<source xml:lang="en">Biochem Biophys Res Commun</source>
.
<year>2004</year>
;
<volume>318</volume>
:
<fpage>275</fpage>
<lpage>280</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bbrc.2004.04.019</pub-id>
<pub-id pub-id-type="pmid">15110784</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0035">
<label>35</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0035">
<string-name>
<surname>Rayman</surname>
<given-names>MP</given-names>
</string-name>
.
<article-title>Selenium and human health</article-title>
.
<source xml:lang="en">Lancet</source>
.
<year>2012</year>
;
<volume>379</volume>
:
<fpage>1256</fpage>
<lpage>1268</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0140-6736(11)61452-9</pub-id>
<pub-id pub-id-type="pmid">22381456</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0036">
<label>36</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0036">
<string-name>
<surname>Beck</surname>
<given-names>MA</given-names>
</string-name>
,
<string-name>
<surname>Matthews</surname>
<given-names>CC</given-names>
</string-name>
.
<article-title>Micronutrients and host resistance to viral infection</article-title>
.
<source xml:lang="en">Proc Nutr Soc</source>
.
<year>2000</year>
;
<volume>59</volume>
:
<fpage>581</fpage>
<lpage>585</lpage>
.
<pub-id pub-id-type="doi">10.1017/s0029665100000823</pub-id>
<pub-id pub-id-type="pmid">11115793</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0037">
<label>37</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0037">
<string-name>
<surname>Harthill</surname>
<given-names>M</given-names>
</string-name>
.
<article-title>Review: micronutrient selenium deficiency influences evolution of some viral infectious diseases</article-title>
.
<source xml:lang="en">Biol Trace Elem Res</source>
.
<year>2011</year>
;
<volume>143</volume>
:
<fpage>1325</fpage>
<lpage>1336</lpage>
.
<pub-id pub-id-type="doi">10.1007/s12011-011-8977-1</pub-id>
<pub-id pub-id-type="pmid">21318622</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0038">
<label>38</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0038">
<string-name>
<surname>Beck</surname>
<given-names>MA</given-names>
</string-name>
,
<string-name>
<surname>Nelson</surname>
<given-names>HK</given-names>
</string-name>
,
<string-name>
<surname>Shi</surname>
<given-names>Q</given-names>
</string-name>
, et al.
<article-title>Selenium deficiency increases the pathology of an influenza virus infection</article-title>
.
<source xml:lang="en">FASEB J</source>
.
<year>2001</year>
;
<volume>15</volume>
:
<fpage>1481</fpage>
<lpage>1483</lpage>
<pub-id pub-id-type="pmid">11387264</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0039">
<label>39</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0039">
<string-name>
<surname>Beck</surname>
<given-names>MA</given-names>
</string-name>
,
<string-name>
<surname>Shi</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Morris</surname>
<given-names>VC</given-names>
</string-name>
,
<string-name>
<surname>Levander</surname>
<given-names>OA</given-names>
</string-name>
.
<article-title>Rapid genomic evolution of a non‐virulent coxsackievirus B3 in selenium‐deficient mice results in selection of identical virulent isolates</article-title>
.
<source xml:lang="en">Nat Med</source>
.
<year>1995</year>
;
<volume>1</volume>
:
<fpage>433</fpage>
<lpage>436</lpage>
.
<pub-id pub-id-type="doi">10.1038/nm0595-433</pub-id>
<pub-id pub-id-type="pmid">7585090</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0040">
<label>40</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0040">
<string-name>
<surname>Ma</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Bi</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Chi</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Hu</surname>
<given-names>S</given-names>
</string-name>
.
<article-title>Combined adjuvant effect of ginseng stem‐leaf saponins and selenium on immune responses to a live bivalent vaccine of Newcastle disease virus and infectious bronchitis virus in chickens</article-title>
.
<source xml:lang="en">Poult Sci</source>
.
<year>2019</year>
;
<volume>98</volume>
:
<fpage>3548</fpage>
<lpage>3556</lpage>
.
<pub-id pub-id-type="doi">10.3382/ps/pez207</pub-id>
<pub-id pub-id-type="pmid">31220864</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0041">
<label>41</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0041">
<string-name>
<surname>Maares</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Haase</surname>
<given-names>H</given-names>
</string-name>
.
<article-title>Zinc and immunity: an essential interrelation</article-title>
.
<source xml:lang="en">Arch Biochem Biophys</source>
.
<year>2016</year>
;
<volume>611</volume>
:
<fpage>58</fpage>
<lpage>65</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.abb.2016.03.022</pub-id>
<pub-id pub-id-type="pmid">27021581</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0042">
<label>42</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0042">
<string-name>
<surname>Tuerk</surname>
<given-names>MJ</given-names>
</string-name>
,
<string-name>
<surname>Fazel</surname>
<given-names>N</given-names>
</string-name>
.
<article-title>Zinc deficiency</article-title>
.
<source xml:lang="en">Curr Opin Gastroenterol</source>
.
<year>2009</year>
;
<volume>25</volume>
:
<fpage>136</fpage>
<lpage>143</lpage>
.
<pub-id pub-id-type="doi">10.1097/MOG.0b013e328321b395</pub-id>
<pub-id pub-id-type="pmid">19528881</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0043">
<label>43</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0043">
<string-name>
<surname>Awotiwon</surname>
<given-names>AA</given-names>
</string-name>
,
<string-name>
<surname>Oduwole</surname>
<given-names>O</given-names>
</string-name>
,
<string-name>
<surname>Sinha</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Okwundu</surname>
<given-names>CI</given-names>
</string-name>
.
<article-title>Zinc supplementation for the treatment of measles in children</article-title>
.
<source xml:lang="en">Cochrane Database Syst Rev</source>
.
<year>2017</year>
;
<volume>2017</volume>
(
<issue>6</issue>
):
<elocation-id>CD011177</elocation-id>
<pub-id pub-id-type="doi">10.1002/14651858.CD011177.pub3</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0044">
<label>44</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0044">
<string-name>
<surname>te Velthuis</surname>
<given-names>AJW</given-names>
</string-name>
,
<string-name>
<surname>van den Worm</surname>
<given-names>SHE</given-names>
</string-name>
,
<string-name>
<surname>Sims</surname>
<given-names>AC</given-names>
</string-name>
,
<string-name>
<surname>Baric</surname>
<given-names>RS</given-names>
</string-name>
,
<string-name>
<surname>Snijder</surname>
<given-names>EJ</given-names>
</string-name>
,
<string-name>
<surname>van Hemert</surname>
<given-names>MJ</given-names>
</string-name>
.
<article-title>Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture</article-title>
.
<source xml:lang="en">PLOS Pathog</source>
.
<year>2010</year>
;
<volume>6</volume>
:
<elocation-id>e1001176</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.ppat.1001176</pub-id>
<pub-id pub-id-type="pmid">21079686</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0045">
<label>45</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0045">
<string-name>
<surname>Wessling‐Resnick</surname>
<given-names>M</given-names>
</string-name>
.
<article-title>Crossing the iron gate: why and how transferrin receptors mediate viral entry</article-title>
.
<source xml:lang="en">Annu Rev Nutr</source>
.
<year>2018</year>
;
<volume>38</volume>
:
<fpage>431</fpage>
<lpage>458</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev-nutr-082117-051749</pub-id>
<pub-id pub-id-type="pmid">29852086</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0046">
<label>46</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0046">
<string-name>
<surname>Jayaweera</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Reyes</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Joseph</surname>
<given-names>A</given-names>
</string-name>
.
<article-title>Childhood iron deficiency anemia leads to recurrent respiratory tract infections and gastroenteritis</article-title>
.
<source xml:lang="en">Sci Rep</source>
.
<year>2019</year>
;
<volume>9</volume>
:
<elocation-id>12637</elocation-id>
<pub-id pub-id-type="doi">10.1038/s41598-019-49122-z</pub-id>
<pub-id pub-id-type="pmid">31477792</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0047">
<label>47</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0047">
<string-name>
<surname>Pei</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Sekellick</surname>
<given-names>MJ</given-names>
</string-name>
,
<string-name>
<surname>Marcus</surname>
<given-names>PI</given-names>
</string-name>
,
<string-name>
<surname>Choi</surname>
<given-names>IS</given-names>
</string-name>
,
<string-name>
<surname>Collisson</surname>
<given-names>EW</given-names>
</string-name>
.
<article-title>Chicken interferon type I inhibits infectious bronchitis virus replication and associated respiratory illness</article-title>
.
<source xml:lang="en">J Interferon Cytokine Res</source>
.
<year>2001</year>
;
<volume>21</volume>
:
<fpage>1071</fpage>
<lpage>1077</lpage>
.
<pub-id pub-id-type="doi">10.1089/107999001317205204</pub-id>
<pub-id pub-id-type="pmid">11798465</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0048">
<label>48</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0048">
<string-name>
<surname>Turner</surname>
<given-names>RB</given-names>
</string-name>
,
<string-name>
<surname>Felton</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Kosak</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Kelsey</surname>
<given-names>DK</given-names>
</string-name>
,
<string-name>
<surname>Meschievitz</surname>
<given-names>CK</given-names>
</string-name>
.
<article-title>Prevention of experimental coronavirus colds with intranasal alpha‐2b interferon</article-title>
.
<source xml:lang="en">J Infect Dis</source>
.
<year>1986</year>
;
<volume>154</volume>
:
<fpage>443</fpage>
<lpage>447</lpage>
.
<pub-id pub-id-type="doi">10.1093/infdis/154.3.443</pub-id>
<pub-id pub-id-type="pmid">3016111</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0049">
<label>49</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0049">
<string-name>
<surname>Morgenstern</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Michaelis</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Baer</surname>
<given-names>PC</given-names>
</string-name>
,
<string-name>
<surname>Doerr</surname>
<given-names>HW</given-names>
</string-name>
,
<string-name>
<surname>Cinatl</surname>
<given-names>J</given-names>
<suffix>Jr.</suffix>
</string-name>
<article-title>Ribavirin and interferon‐beta synergistically inhibit SARS‐associated coronavirus replication in animal and human cell lines</article-title>
.
<source xml:lang="en">Biochem Biophys Res Commun</source>
.
<year>2005</year>
;
<volume>326</volume>
:
<fpage>905</fpage>
<lpage>908</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bbrc.2004.11.128</pub-id>
<pub-id pub-id-type="pmid">15607755</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0050">
<label>50</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0050">
<string-name>
<surname>Chen</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Chan</surname>
<given-names>KH</given-names>
</string-name>
,
<string-name>
<surname>Jiang</surname>
<given-names>Y</given-names>
</string-name>
, et al.
<article-title>In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds</article-title>
.
<source xml:lang="en">J Clin Virol</source>
.
<year>2004</year>
;
<volume>31</volume>
:
<fpage>69</fpage>
<lpage>75</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jcv.2004.03.003</pub-id>
<pub-id pub-id-type="pmid">15288617</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0051">
<label>51</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0051">
<string-name>
<surname>Kuri</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Habjan</surname>
<given-names>M</given-names>
</string-name>
, et al.
<article-title>Interferon priming enables cells to partially overturn the SARS coronavirus‐induced block in innate immune activation</article-title>
.
<source xml:lang="en">J Gen Virol</source>
.
<year>2009</year>
;
<volume>90</volume>
:
<fpage>2686</fpage>
<lpage>2694</lpage>
.
<pub-id pub-id-type="doi">10.1099/vir.0.013599-0</pub-id>
<pub-id pub-id-type="pmid">19625461</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0052">
<label>52</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0052">
<string-name>
<surname>Tan</surname>
<given-names>ELC</given-names>
</string-name>
,
<string-name>
<surname>Ooi</surname>
<given-names>EE</given-names>
</string-name>
,
<string-name>
<surname>Lin</surname>
<given-names>CY</given-names>
</string-name>
, et al.
<article-title>Inhibition of SARS coronavirus infection in vitro with clinically approved antiviral drugs</article-title>
.
<source xml:lang="en">Emerg Infect Dis</source>
.
<year>2004</year>
;
<volume>10</volume>
:
<fpage>581</fpage>
<lpage>586</lpage>
.
<pub-id pub-id-type="doi">10.3201/eid1004.030458</pub-id>
<pub-id pub-id-type="pmid">15200845</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0053">
<label>53</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0053">
<string-name>
<surname>Manns</surname>
<given-names>MP</given-names>
</string-name>
,
<string-name>
<surname>McHutchison</surname>
<given-names>JG</given-names>
</string-name>
,
<string-name>
<surname>Gordon</surname>
<given-names>SC</given-names>
</string-name>
, et al.
<article-title>Peginterferon alfa‐2b plus ribavirin compared with interferon alfa‐2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial</article-title>
.
<source xml:lang="en">Lancet</source>
.
<year>2001</year>
;
<volume>358</volume>
:
<fpage>958</fpage>
<lpage>965</lpage>
.
<pub-id pub-id-type="doi">10.1016/s0140-6736(01)06102-5</pub-id>
<pub-id pub-id-type="pmid">11583749</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0054">
<label>54</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0054">
<string-name>
<surname>Haagmans</surname>
<given-names>BL</given-names>
</string-name>
,
<string-name>
<surname>Kuiken</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Martina</surname>
<given-names>BE</given-names>
</string-name>
, et al.
<article-title>Pegylated interferon‐alpha protects type 1 pneumocytes against SARS coronavirus infection in macaques</article-title>
.
<source xml:lang="en">Nat Med</source>
.
<year>2004</year>
;
<volume>10</volume>
:
<fpage>290</fpage>
<lpage>293</lpage>
.
<pub-id pub-id-type="doi">10.1038/nm1001</pub-id>
<pub-id pub-id-type="pmid">14981511</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0055">
<label>55</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0055">
<string-name>
<surname>Bijlenga</surname>
<given-names>G</given-names>
</string-name>
.
<article-title>Proposal for vaccination against SARS coronavirus using avian infectious bronchitis virus strain H from The Netherlands</article-title>
.
<source xml:lang="en">J Infect</source>
.
<year>2005</year>
;
<volume>51</volume>
:
<fpage>263</fpage>
<lpage>265</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jinf.2005.04.010</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0056">
<label>56</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0056">
<string-name>
<surname>Loutfy</surname>
<given-names>MR</given-names>
</string-name>
,
<string-name>
<surname>Blatt</surname>
<given-names>LM</given-names>
</string-name>
,
<string-name>
<surname>Siminovitch</surname>
<given-names>KA</given-names>
</string-name>
, et al.
<article-title>Interferon alfacon‐1 plus corticosteroids in severe acute respiratory syndrome: a preliminary study</article-title>
.
<source xml:lang="en">JAMA</source>
.
<year>2003</year>
;
<volume>290</volume>
:
<fpage>3222</fpage>
<lpage>3228</lpage>
.
<pub-id pub-id-type="doi">10.1001/jama.290.24.3222</pub-id>
<pub-id pub-id-type="pmid">14693875</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0057">
<label>57</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0057">
<string-name>
<surname>Mustafa</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Balkhy</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Gabere</surname>
<given-names>MN</given-names>
</string-name>
.
<article-title>Current treatment options and the role of peptides as potential therapeutic components for Middle East Respiratory Syndrome (MERS): a review</article-title>
.
<source xml:lang="en">J Infect Public Health</source>
.
<year>2018</year>
;
<volume>11</volume>
:
<fpage>9</fpage>
<lpage>17</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jiph.2017.08.009</pub-id>
<pub-id pub-id-type="pmid">28864360</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0058">
<label>58</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0058">
<string-name>
<surname>Bussel</surname>
<given-names>JB</given-names>
</string-name>
,
<string-name>
<surname>Szatrowski</surname>
<given-names>TP</given-names>
</string-name>
.
<article-title>Uses of intravenous gammaglobulin in immune hematologic disease</article-title>
.
<source xml:lang="en">Immunol Invest</source>
.
<year>1995</year>
;
<volume>24</volume>
:
<fpage>451</fpage>
<lpage>456</lpage>
.
<pub-id pub-id-type="doi">10.3109/08820139509062794</pub-id>
<pub-id pub-id-type="pmid">7713605</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0059">
<label>59</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0059">
<string-name>
<surname>Lew</surname>
<given-names>TWK</given-names>
</string-name>
.
<article-title>Acute respiratory distress syndrome in critically ill patients with severe acute respiratory syndrome</article-title>
.
<source xml:lang="en">JAMA</source>
.
<year>2003</year>
;
<volume>290</volume>
:
<fpage>374</fpage>
<lpage>380</lpage>
.
<pub-id pub-id-type="doi">10.1001/jama.290.3.374</pub-id>
<pub-id pub-id-type="pmid">12865379</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0060">
<label>60</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0060">
<string-name>
<surname>Dalakas</surname>
<given-names>MC</given-names>
</string-name>
,
<string-name>
<surname>Clark</surname>
<given-names>WM</given-names>
</string-name>
.
<article-title>Strokes, thromboembolic events, and IVIg: rare incidents blemish an excellent safety record</article-title>
.
<source xml:lang="en">Neurology</source>
.
<year>2003</year>
;
<volume>60</volume>
:
<fpage>1736</fpage>
<lpage>1737</lpage>
.
<pub-id pub-id-type="doi">10.1212/01.wnl.0000074394.15882.83</pub-id>
<pub-id pub-id-type="pmid">12796522</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0061">
<label>61</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0061">
<string-name>
<surname>Matteucci</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Grelli</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Balestrieri</surname>
<given-names>E</given-names>
</string-name>
, et al.
<article-title>Thymosin alpha 1 and HIV‐1: recent advances and future perspectives</article-title>
.
<source xml:lang="en">Future Microbiol</source>
.
<year>2017</year>
;
<volume>12</volume>
:
<fpage>141</fpage>
<lpage>155</lpage>
.
<pub-id pub-id-type="doi">10.2217/fmb-2016-0125</pub-id>
<pub-id pub-id-type="pmid">28106477</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0062">
<label>62</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0062">
<string-name>
<surname>Costantini</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Bellet</surname>
<given-names>MM</given-names>
</string-name>
,
<string-name>
<surname>Pariano</surname>
<given-names>M</given-names>
</string-name>
, et al.
<article-title>A reappraisal of thymosin alpha1 in cancer therapy</article-title>
.
<source xml:lang="en">Front Oncol</source>
.
<year>2019</year>
;
<volume>9</volume>
:
<fpage>873</fpage>
<pub-id pub-id-type="doi">10.3389/fonc.2019.00873</pub-id>
<pub-id pub-id-type="pmid">31555601</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0063">
<label>63</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0063">
<string-name>
<surname>Pica</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Gaziano</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Casalinuovo</surname>
<given-names>IA</given-names>
</string-name>
, et al.
<article-title>Serum thymosin alpha 1 levels in normal and pathological conditions</article-title>
.
<source xml:lang="en">Expert Opin Biol Ther</source>
.
<year>2018</year>
;
<volume>18</volume>
:
<fpage>13</fpage>
<lpage>21</lpage>
.
<pub-id pub-id-type="doi">10.1080/14712598.2018.1474197</pub-id>
<pub-id pub-id-type="pmid">30063864</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0064">
<label>64</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0064">
<string-name>
<surname>Baumann</surname>
<given-names>CA</given-names>
</string-name>
,
<string-name>
<surname>Badamchian</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Goldstein</surname>
<given-names>AL</given-names>
</string-name>
.
<article-title>Thymosin alpha 1 antagonizes dexamethasone and CD3‐induced apoptosis of CD4+ CD8+ thymocytes through the activation of cAMP and protein kinase C dependent second messenger pathways</article-title>
.
<source xml:lang="en">Mech Ageing Dev</source>
.
<year>1997</year>
;
<volume>94</volume>
:
<fpage>85</fpage>
<lpage>101</lpage>
.
<pub-id pub-id-type="doi">10.1016/s0047-6374(96)01860-x</pub-id>
<pub-id pub-id-type="pmid">9147362</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0065">
<label>65</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0065">
<string-name>
<surname>Gao</surname>
<given-names>ZC</given-names>
</string-name>
,
<string-name>
<surname>Zhu</surname>
<given-names>JH</given-names>
</string-name>
,
<string-name>
<surname>Sun</surname>
<given-names>Y</given-names>
</string-name>
, et al.
<article-title>Clinical investigation of outbreak of nosocomial severe acute respiratory syndrome</article-title>
.
<source xml:lang="en">Zhongguo Wei Zhong Bing Ji Jiu Yi Xue</source>
.
<year>2003</year>
;
<volume>15</volume>
:
<fpage>332</fpage>
<lpage>335</lpage>
<pub-id pub-id-type="pmid">12837162</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0066">
<label>66</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0066">
<string-name>
<surname>Kumar</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Jung</surname>
<given-names>YS</given-names>
</string-name>
,
<string-name>
<surname>Liang</surname>
<given-names>PH</given-names>
</string-name>
.
<article-title>Anti‐SARS coronavirus agents: a patent review (2008‐present)</article-title>
.
<source xml:lang="en">Expert Opin Ther Pat</source>
.
<year>2013</year>
;
<volume>23</volume>
:
<fpage>1337</fpage>
<lpage>1348</lpage>
.
<pub-id pub-id-type="doi">10.1517/13543776.2013.823159</pub-id>
<pub-id pub-id-type="pmid">23905913</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0067">
<label>67</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0067">
<string-name>
<surname>Duchateau</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Servais</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Vreyens</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Delespesse</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Bolla</surname>
<given-names>K</given-names>
</string-name>
.
<article-title>Modulation of immune response in aged humans through different administration modes of thymopentin</article-title>
.
<source xml:lang="en">Surv Immunol Res</source>
.
<year>1985</year>
;
<volume>4</volume>
(
<issue>suppl 1</issue>
):
<fpage>94</fpage>
<lpage>101</lpage>
.
<pub-id pub-id-type="pmid">3898299</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0068">
<label>68</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0068">
<string-name>
<surname>Duchateau</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Delespesse</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Bolla</surname>
<given-names>K</given-names>
</string-name>
.
<article-title>Phase variation in the modulation of the human immune response</article-title>
.
<source xml:lang="en">Immunol Today</source>
.
<year>1983</year>
;
<volume>4</volume>
:
<fpage>213</fpage>
<lpage>214</lpage>
.
<pub-id pub-id-type="doi">10.1016/0167-5699(83)90028-2</pub-id>
<pub-id pub-id-type="pmid">25290112</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0069">
<label>69</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0069">
<string-name>
<surname>Zaruba</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Rastorfer</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Grob</surname>
<given-names>PJ</given-names>
</string-name>
,
<string-name>
<surname>Joller‐Jemelka</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Bolla</surname>
<given-names>K</given-names>
</string-name>
.
<article-title>Thymopentin as adjuvant in non‐responders or hyporesponders to hepatitis B vaccination</article-title>
.
<source xml:lang="en">Lancet</source>
.
<year>1983</year>
;
<volume>2</volume>
:
<fpage>1245</fpage>
<pub-id pub-id-type="doi">10.1016/s0140-6736(83)91284-9</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0070">
<label>70</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0070">
<string-name>
<surname>Renoux</surname>
<given-names>G</given-names>
</string-name>
.
<article-title>The general immunopharmacology of levamisole</article-title>
.
<source xml:lang="en">Drugs</source>
.
<year>1980</year>
;
<volume>20</volume>
:
<fpage>89</fpage>
<lpage>99</lpage>
.
<pub-id pub-id-type="doi">10.2165/00003495-198020020-00001</pub-id>
<pub-id pub-id-type="pmid">6995097</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0071">
<label>71</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0071">
<string-name>
<surname>Joffe</surname>
<given-names>MI</given-names>
</string-name>
,
<string-name>
<surname>Sukha</surname>
<given-names>NR</given-names>
</string-name>
,
<string-name>
<surname>Rabson</surname>
<given-names>AR</given-names>
</string-name>
.
<article-title>Lymphocyte subsets in measles. Depressed helper/inducer subpopulation reversed by in vitro treatment with levamisole and ascorbic acid</article-title>
.
<source xml:lang="en">J Clin Invest</source>
.
<year>1983</year>
;
<volume>72</volume>
:
<fpage>971</fpage>
<lpage>980</lpage>
.
<pub-id pub-id-type="doi">10.1172/JCI111069</pub-id>
<pub-id pub-id-type="pmid">6604071</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0072">
<label>72</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0072">
<string-name>
<surname>Ziaei</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Ziaei</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Manzouri</surname>
<given-names>B</given-names>
</string-name>
.
<article-title>Systemic cyclosporine and corneal transplantation</article-title>
.
<source xml:lang="en">Int Ophthalmol</source>
.
<year>2016</year>
;
<volume>36</volume>
:
<fpage>139</fpage>
<lpage>146</lpage>
.
<pub-id pub-id-type="doi">10.1007/s10792-015-0137-8</pub-id>
<pub-id pub-id-type="pmid">26463642</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0073">
<label>73</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0073">
<string-name>
<surname>Luo</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Luo</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Zheng</surname>
<given-names>S</given-names>
</string-name>
, et al.
<article-title>Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A</article-title>
.
<source xml:lang="en">Biochem Biophys Res Commun</source>
.
<year>2004</year>
;
<volume>321</volume>
:
<fpage>557</fpage>
<lpage>565</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bbrc.2004.07.003</pub-id>
<pub-id pub-id-type="pmid">15358143</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0074">
<label>74</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0074">
<string-name>
<surname>Dawar</surname>
<given-names>FU</given-names>
</string-name>
,
<string-name>
<surname>Tu</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Khattak</surname>
<given-names>MN</given-names>
</string-name>
, et al.
<article-title>Factor in virus replication and potential target for anti‐viral therapy</article-title>
.
<source xml:lang="en">Curr Issues Mol Biol</source>
.
<year>2017</year>
;
<volume>21</volume>
:
<fpage>1</fpage>
<lpage>20</lpage>
.
<pub-id pub-id-type="doi">10.21775/cimb.021.001</pub-id>
<pub-id pub-id-type="pmid">27033630</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0075">
<label>75</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0075">
<string-name>
<surname>Pfefferle</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Schöpf</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Kögl</surname>
<given-names>M</given-names>
</string-name>
, et al.
<article-title>The SARS‐coronavirus‐host interactome: identification of cyclophilins as target for pan‐coronavirus inhibitors</article-title>
.
<source xml:lang="en">PLOS Pathog</source>
.
<year>2011</year>
;
<volume>7</volume>
:
<elocation-id>e1002331</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.ppat.1002331</pub-id>
<pub-id pub-id-type="pmid">22046132</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0076">
<label>76</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0076">
<string-name>
<surname>Cinatl</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Morgenstern</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Bauer</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Chandra</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Rabenau</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Doerr</surname>
<given-names>H</given-names>
</string-name>
.
<article-title>Glycyrrhizin, an active component of liquorice roots, and replication of SARS‐associated coronavirus</article-title>
.
<source xml:lang="en">Lancet</source>
.
<year>2003</year>
;
<volume>361</volume>
:
<fpage>2045</fpage>
<lpage>2046</lpage>
.
<pub-id pub-id-type="doi">10.1016/s0140-6736(03)13615-x</pub-id>
<pub-id pub-id-type="pmid">12814717</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0077">
<label>77</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0077">
<string-name>
<surname>Park</surname>
<given-names>JY</given-names>
</string-name>
,
<string-name>
<surname>Jeong</surname>
<given-names>HJ</given-names>
</string-name>
,
<string-name>
<surname>Kim</surname>
<given-names>JH</given-names>
</string-name>
, et al.
<article-title>Diarylheptanoids from
<italic>Alnus japonica</italic>
inhibit papain‐like protease of severe acute respiratory syndrome coronavirus</article-title>
.
<source xml:lang="en">Biol Pharm Bull</source>
.
<year>2012</year>
;
<volume>35</volume>
:
<fpage>2036</fpage>
<lpage>2042</lpage>
.
<pub-id pub-id-type="doi">10.1248/bpb.b12-00623</pub-id>
<pub-id pub-id-type="pmid">22971649</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0078">
<label>78</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0078">
<string-name>
<surname>Chen</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Gui</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Luo</surname>
<given-names>X</given-names>
</string-name>
, et al.
<article-title>Cinanserin is an inhibitor of the 3C‐like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro</article-title>
.
<source xml:lang="en">J Virol</source>
.
<year>2005</year>
;
<volume>79</volume>
:
<fpage>7095</fpage>
<lpage>7103</lpage>
.
<pub-id pub-id-type="doi">10.1128/JVI.79.11.7095-7103.2005</pub-id>
<pub-id pub-id-type="pmid">15890949</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0079">
<label>79</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0079">
<string-name>
<surname>Panche</surname>
<given-names>AN</given-names>
</string-name>
,
<string-name>
<surname>Diwan</surname>
<given-names>AD</given-names>
</string-name>
,
<string-name>
<surname>Chandra</surname>
<given-names>SR</given-names>
</string-name>
.
<article-title>Flavonoids: an overview</article-title>
.
<source xml:lang="en">J Nutr Sci</source>
.
<year>2016</year>
;
<volume>5</volume>
:
<fpage>e47</fpage>
<pub-id pub-id-type="doi">10.1017/jns.2016.41</pub-id>
<pub-id pub-id-type="pmid">28620474</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0080">
<label>80</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0080">
<string-name>
<surname>Shimizu</surname>
<given-names>JF</given-names>
</string-name>
,
<string-name>
<surname>Lima</surname>
<given-names>CS</given-names>
</string-name>
,
<string-name>
<surname>Pereira</surname>
<given-names>CM</given-names>
</string-name>
, et al.
<article-title>Flavonoids from pterogyne nitens inhibit hepatitis C virus entry</article-title>
.
<source xml:lang="en">Sci Rep</source>
.
<year>2017</year>
;
<volume>7</volume>
(
<issue>1</issue>
):
<elocation-id>16127</elocation-id>
<pub-id pub-id-type="doi">10.1038/s41598-017-16336-y</pub-id>
<pub-id pub-id-type="pmid">29170411</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0081">
<label>81</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0081">
<string-name>
<surname>Jo</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Kim</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Shin</surname>
<given-names>DH</given-names>
</string-name>
,
<string-name>
<surname>Kim</surname>
<given-names>MS</given-names>
</string-name>
.
<article-title>Inhibition of SARS‐CoV 3CL protease by flavonoids</article-title>
.
<source xml:lang="en">J Enzyme Inhib Med Chem</source>
.
<year>2020</year>
;
<volume>35</volume>
:
<fpage>145</fpage>
<lpage>151</lpage>
.
<pub-id pub-id-type="doi">10.1080/14756366.2019.1690480</pub-id>
<pub-id pub-id-type="pmid">31724441</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0082">
<label>82</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0082">
<string-name>
<surname>Jo</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Kim</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Kim</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Shin</surname>
<given-names>DH</given-names>
</string-name>
,
<string-name>
<surname>Kim</surname>
<given-names>MS</given-names>
</string-name>
.
<article-title>Characteristics of flavonoids as potent MERS‐CoV 3C‐like protease inhibitors</article-title>
.
<source xml:lang="en">Chem Biol Drug Des</source>
.
<year>2019</year>
;
<volume>94</volume>
:
<fpage>2023</fpage>
<lpage>2030</lpage>
.
<pub-id pub-id-type="doi">10.1111/cbdd.13604</pub-id>
<pub-id pub-id-type="pmid">31436895</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0083">
<label>83</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0083">
<string-name>
<surname>Ryu</surname>
<given-names>YB</given-names>
</string-name>
,
<string-name>
<surname>Jeong</surname>
<given-names>HJ</given-names>
</string-name>
,
<string-name>
<surname>Kim</surname>
<given-names>JH</given-names>
</string-name>
, et al.
<article-title>Biflavonoids from
<italic>Torreya nucifera</italic>
displaying SARS‐CoV 3CL(pro) inhibition</article-title>
.
<source xml:lang="en">Bioorg Med Chem</source>
.
<year>2010</year>
;
<volume>18</volume>
:
<fpage>7940</fpage>
<lpage>7947</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bmc.2010.09.035</pub-id>
<pub-id pub-id-type="pmid">20934345</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0084">
<label>84</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0084">
<string-name>
<surname>Warner</surname>
<given-names>FJ</given-names>
</string-name>
,
<string-name>
<surname>Smith</surname>
<given-names>AI</given-names>
</string-name>
,
<string-name>
<surname>Hooper</surname>
<given-names>NM</given-names>
</string-name>
,
<string-name>
<surname>Turner</surname>
<given-names>AJ</given-names>
</string-name>
.
<article-title>Angiotensin‐converting enzyme‐2: a molecular and cellular perspective</article-title>
.
<source xml:lang="en">Cell Mol Life Sci</source>
.
<year>2004</year>
;
<volume>61</volume>
:
<fpage>2704</fpage>
<lpage>2713</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00018-004-4240-7</pub-id>
<pub-id pub-id-type="pmid">15549171</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0085">
<label>85</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0085">
<string-name>
<surname>Li</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Moore</surname>
<given-names>MJ</given-names>
</string-name>
,
<string-name>
<surname>Vasilieva</surname>
<given-names>N</given-names>
</string-name>
, et al.
<article-title>Angiotensin‐converting enzyme 2 is a functional receptor for the SARS coronavirus</article-title>
.
<source xml:lang="en">Nature</source>
.
<year>2003</year>
;
<volume>426</volume>
:
<fpage>450</fpage>
<lpage>454</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature02145</pub-id>
<pub-id pub-id-type="pmid">14647384</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0086">
<label>86</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0086">
<string-name>
<surname>Dimitrov</surname>
<given-names>DS</given-names>
</string-name>
.
<article-title>The secret life of ACE2 as a receptor for the SARS virus</article-title>
.
<source xml:lang="en">Cell</source>
.
<year>2003</year>
;
<volume>115</volume>
:
<fpage>652</fpage>
<lpage>653</lpage>
.
<pub-id pub-id-type="doi">10.1016/s0092-8674(03)00976-0</pub-id>
<pub-id pub-id-type="pmid">14675530</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0087">
<label>87</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0087">
<string-name>
<surname>Simmons</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Reeves</surname>
<given-names>JD</given-names>
</string-name>
,
<string-name>
<surname>Rennekamp</surname>
<given-names>AJ</given-names>
</string-name>
,
<string-name>
<surname>Amberg</surname>
<given-names>SM</given-names>
</string-name>
,
<string-name>
<surname>Piefer</surname>
<given-names>AJ</given-names>
</string-name>
,
<string-name>
<surname>Bates</surname>
<given-names>P</given-names>
</string-name>
.
<article-title>Characterization of severe acute respiratory syndrome‐associated coronavirus (SARS‐CoV) spike glycoprotein‐mediated viral entry</article-title>
.
<source xml:lang="en">Proc Natl Acad Sci USA</source>
.
<year>2004</year>
;
<volume>101</volume>
:
<fpage>4240</fpage>
<lpage>4245</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.0306446101</pub-id>
<pub-id pub-id-type="pmid">15010527</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0088">
<label>88</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0088">
<string-name>
<surname>Yeung</surname>
<given-names>KS</given-names>
</string-name>
,
<string-name>
<surname>Yamanaka</surname>
<given-names>GA</given-names>
</string-name>
,
<string-name>
<surname>Meanwell</surname>
<given-names>NA</given-names>
</string-name>
.
<article-title>Severe acute respiratory syndrome coronavirus entry into host cells: Opportunities for therapeutic intervention</article-title>
.
<source xml:lang="en">Med Res Rev</source>
.
<year>2006</year>
;
<volume>26</volume>
:
<fpage>414</fpage>
<lpage>433</lpage>
.
<pub-id pub-id-type="doi">10.1002/med.20055</pub-id>
<pub-id pub-id-type="pmid">16521129</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0089">
<label>89</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0089">
<string-name>
<surname>Sui</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Murakami</surname>
<given-names>A</given-names>
</string-name>
, et al.
<article-title>Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association</article-title>
.
<source xml:lang="en">Proc Natl Acad Sci USA</source>
.
<year>2004</year>
;
<volume>101</volume>
:
<fpage>2536</fpage>
<lpage>2541</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.0307140101</pub-id>
<pub-id pub-id-type="pmid">14983044</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0090">
<label>90</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0090">
<string-name>
<surname>Savarino</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Boelaert</surname>
<given-names>JR</given-names>
</string-name>
,
<string-name>
<surname>Cassone</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Majori</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Cauda</surname>
<given-names>R</given-names>
</string-name>
.
<article-title>Effects of chloroquine on viral infections: an old drug against today's diseases?</article-title>
<source xml:lang="en">Lancet Infect Dis</source>
.
<year>2003</year>
;
<volume>3</volume>
:
<fpage>722</fpage>
<lpage>727</lpage>
.
<pub-id pub-id-type="doi">10.1016/s1473-3099(03)00806-5</pub-id>
<pub-id pub-id-type="pmid">14592603</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0091">
<label>91</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0091">
<string-name>
<surname>Vincent</surname>
<given-names>MJ</given-names>
</string-name>
,
<string-name>
<surname>Bergeron</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Benjannet</surname>
<given-names>S</given-names>
</string-name>
, et al.
<article-title>Chloroquine is a potent inhibitor of SARS coronavirus infection and spread</article-title>
.
<source xml:lang="en">Virol J</source>
.
<year>2005</year>
;
<volume>2</volume>
:
<fpage>69</fpage>
<pub-id pub-id-type="doi">10.1186/1743-422X-2-69</pub-id>
<pub-id pub-id-type="pmid">16115318</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0092">
<label>92</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0092">
<string-name>
<surname>Alves</surname>
<given-names>DS</given-names>
</string-name>
,
<string-name>
<surname>Perez‐Fons</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Estepa</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Micol</surname>
<given-names>V</given-names>
</string-name>
.
<article-title>Membrane‐related effects underlying the biological activity of the anthraquinones emodin and barbaloin</article-title>
.
<source xml:lang="en">Biochem Pharmacol</source>
.
<year>2004</year>
;
<volume>68</volume>
:
<fpage>549</fpage>
<lpage>561</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bcp.2004.04.012</pub-id>
<pub-id pub-id-type="pmid">15242821</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0093">
<label>93</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0093">
<string-name>
<surname>Ho</surname>
<given-names>TY</given-names>
</string-name>
,
<string-name>
<surname>Wu</surname>
<given-names>SL</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>JC</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>CC</given-names>
</string-name>
,
<string-name>
<surname>Hsiang</surname>
<given-names>CY</given-names>
</string-name>
.
<article-title>Emodin blocks the SARS coronavirus spike protein and angiotensin‐converting enzyme 2 interaction</article-title>
.
<source xml:lang="en">Antiviral Res</source>
.
<year>2007</year>
;
<volume>74</volume>
:
<fpage>92</fpage>
<lpage>101</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.antiviral.2006.04.014</pub-id>
<pub-id pub-id-type="pmid">16730806</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0094">
<label>94</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0094">
<string-name>
<surname>Zhang</surname>
<given-names>XW</given-names>
</string-name>
,
<string-name>
<surname>Yap</surname>
<given-names>YL</given-names>
</string-name>
.
<article-title>Old drugs as lead compounds for a new disease? Binding analysis of SARS coronavirus main proteinase with HIV, psychotic and parasite drugs</article-title>
.
<source xml:lang="en">Bioorg Med Chem</source>
.
<year>2004</year>
;
<volume>12</volume>
:
<fpage>2517</fpage>
<lpage>2521</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bmc.2004.03.035</pub-id>
<pub-id pub-id-type="pmid">15110833</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0095">
<label>95</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0095">
<string-name>
<surname>Trampczynska</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Bottcher</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Clemens</surname>
<given-names>S</given-names>
</string-name>
.
<article-title>The transition metal chelator nicotianamine is synthesized by filamentous fungi</article-title>
.
<source xml:lang="en">FEBS Lett</source>
.
<year>2006</year>
;
<volume>580</volume>
:
<fpage>3173</fpage>
<lpage>3178</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.febslet.2006.04.073</pub-id>
<pub-id pub-id-type="pmid">16684531</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0096">
<label>96</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0096">
<string-name>
<surname>Takahashi</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Yoshiya</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Yoshizawa‐Kumagaye</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Sugiyama</surname>
<given-names>T</given-names>
</string-name>
.
<article-title>Nicotianamine is a novel angiotensin‐converting enzyme 2 inhibitor in soybean</article-title>
.
<source xml:lang="en">Biomed Res</source>
.
<year>2015</year>
;
<volume>36</volume>
:
<fpage>219</fpage>
<lpage>224</lpage>
.
<pub-id pub-id-type="doi">10.2220/biomedres.36.219</pub-id>
<pub-id pub-id-type="pmid">26106051</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0097">
<label>97</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0097">
<string-name>
<surname>Wenzel</surname>
<given-names>RP</given-names>
</string-name>
,
<string-name>
<surname>Edmond</surname>
<given-names>MB</given-names>
</string-name>
.
<article-title>Managing SARS amidst uncertainty</article-title>
.
<source xml:lang="en">N Engl J Med</source>
.
<year>2003</year>
;
<volume>348</volume>
:
<fpage>1947</fpage>
<lpage>1948</lpage>
.
<pub-id pub-id-type="doi">10.1056/NEJMp030072</pub-id>
<pub-id pub-id-type="pmid">12748313</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0098">
<label>98</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0098">
<string-name>
<surname>Cyranoski</surname>
<given-names>D</given-names>
</string-name>
.
<article-title>Critics slam treatment for SARS as ineffective and perhaps dangerous</article-title>
.
<source xml:lang="en">Nature</source>
.
<year>2003</year>
;
<volume>423</volume>
:
<fpage>4</fpage>
<pub-id pub-id-type="doi">10.1038/423004a</pub-id>
<pub-id pub-id-type="pmid">12721587</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0099">
<label>99</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0099">
<string-name>
<surname>Booth</surname>
<given-names>CM</given-names>
</string-name>
.
<article-title>Clinical features and short‐term outcomes of 144 patients with SARS in the greater Toronto area</article-title>
.
<source xml:lang="en">JAMA</source>
.
<year>2003</year>
;
<volume>289</volume>
:
<fpage>2801</fpage>
<lpage>2809</lpage>
.
<pub-id pub-id-type="doi">10.1001/jama.289.21.JOC30885</pub-id>
<pub-id pub-id-type="pmid">12734147</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0100">
<label>100</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0100">
<string-name>
<surname>Tsang</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Zhong</surname>
<given-names>NS</given-names>
</string-name>
.
<article-title>SARS: pharmacotherapy</article-title>
.
<source xml:lang="en">Respirology</source>
.
<year>2003</year>
;
<volume>8</volume>
(
<issue>suppl</issue>
):
<fpage>S25</fpage>
<lpage>S30</lpage>
.
<pub-id pub-id-type="doi">10.1046/j.1440-1843.2003.00525.x</pub-id>
<pub-id pub-id-type="pmid">15018130</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0101">
<label>101</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0101">
<string-name>
<surname>Sheahan</surname>
<given-names>TP</given-names>
</string-name>
,
<string-name>
<surname>Sims</surname>
<given-names>AC</given-names>
</string-name>
,
<string-name>
<surname>Leist</surname>
<given-names>SR</given-names>
</string-name>
, et al.
<article-title>Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS‐CoV</article-title>
.
<source xml:lang="en">Nat Commun</source>
.
<year>2020</year>
;
<volume>11</volume>
:
<fpage>222</fpage>
<pub-id pub-id-type="doi">10.1038/s41467-019-13940-6</pub-id>
<pub-id pub-id-type="pmid">31924756</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0102">
<label>102</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0102">
<string-name>
<surname>Chu</surname>
<given-names>CM</given-names>
</string-name>
.
<article-title>Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings</article-title>
.
<source xml:lang="en">Thorax</source>
.
<year>2004</year>
;
<volume>59</volume>
:
<fpage>252</fpage>
<lpage>256</lpage>
.
<pub-id pub-id-type="doi">10.1136/thorax.2003.012658</pub-id>
<pub-id pub-id-type="pmid">14985565</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0103">
<label>103</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0103">
<string-name>
<surname>Kim</surname>
<given-names>UJ</given-names>
</string-name>
,
<string-name>
<surname>Won</surname>
<given-names>EJ</given-names>
</string-name>
,
<string-name>
<surname>Kee</surname>
<given-names>SJ</given-names>
</string-name>
,
<string-name>
<surname>Jung</surname>
<given-names>SI</given-names>
</string-name>
,
<string-name>
<surname>Jang</surname>
<given-names>HC</given-names>
</string-name>
.
<article-title>Combination therapy with lopinavir/ritonavir, ribavirin and interferon‐alpha for Middle East respiratory syndrome</article-title>
.
<source xml:lang="en">Antivir Ther</source>
.
<year>2016</year>
;
<volume>21</volume>
:
<fpage>455</fpage>
<lpage>459</lpage>
.
<pub-id pub-id-type="doi">10.3851/IMP3002</pub-id>
<pub-id pub-id-type="pmid">26492219</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0104">
<label>104</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0104">
<string-name>
<surname>Agostini</surname>
<given-names>ML</given-names>
</string-name>
,
<string-name>
<surname>Andres</surname>
<given-names>EL</given-names>
</string-name>
,
<string-name>
<surname>Sims</surname>
<given-names>AC</given-names>
</string-name>
, et al.
<article-title>Coronavirus susceptibility to the antiviral remdesivir (GS‐5734) is mediated by the viral polymerase and the proofreading exoribonuclease</article-title>
.
<source xml:lang="en">mBio</source>
.
<year>2018</year>
;
<volume>9</volume>
(
<issue>2</issue>
):
<elocation-id>e00221‐18</elocation-id>
<pub-id pub-id-type="doi">10.1128/mBio.00221-18</pub-id>
<pub-id pub-id-type="pmid">29511076</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0105">
<label>105</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0105">
<string-name>
<surname>Holshue</surname>
<given-names>ML</given-names>
</string-name>
,
<string-name>
<surname>DeBolt</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Lindquist</surname>
<given-names>S</given-names>
</string-name>
, et al.
<article-title>First case of 2019 novel coronavirus in the United States</article-title>
.
<source xml:lang="en">N Engl J Med</source>
.
<year>2020</year>
:
<elocation-id>NEJMoa2001191</elocation-id>
<pub-id pub-id-type="doi">10.1056/NEJMoa2001191</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0106">
<label>106</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0106">
<string-name>
<surname>Jarvis</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Faulds</surname>
<given-names>D</given-names>
</string-name>
.
<article-title>Nelfinavir. A review of its therapeutic efficacy in HIV infection</article-title>
.
<source xml:lang="en">Drugs</source>
.
<year>1998</year>
;
<volume>56</volume>
:
<fpage>147</fpage>
<lpage>167</lpage>
.
<pub-id pub-id-type="doi">10.2165/00003495-199856010-00013</pub-id>
<pub-id pub-id-type="pmid">9664204</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0107">
<label>107</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0107">
<string-name>
<surname>Yamamoto</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Yoshinaka</surname>
<given-names>Y</given-names>
</string-name>
, et al.
<article-title>HIV protease inhibitor nelfinavir inhibits replication of SARS‐associated coronavirus</article-title>
.
<source xml:lang="en">Biochem Biophys Res Commun</source>
.
<year>2004</year>
;
<volume>318</volume>
:
<fpage>719</fpage>
<lpage>725</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bbrc.2004.04.083</pub-id>
<pub-id pub-id-type="pmid">15144898</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0108">
<label>108</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0108">
<string-name>
<surname>Blaising</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Polyak</surname>
<given-names>SJ</given-names>
</string-name>
,
<string-name>
<surname>Pecheur</surname>
<given-names>EI</given-names>
</string-name>
.
<article-title>Arbidol as a broad‐spectrum antiviral: an update</article-title>
.
<source xml:lang="en">Antiviral Res</source>
.
<year>2014</year>
;
<volume>107</volume>
:
<fpage>84</fpage>
<lpage>94</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.antiviral.2014.04.006</pub-id>
<pub-id pub-id-type="pmid">24769245</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0109">
<label>109</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0109">
<string-name>
<surname>Boriskin</surname>
<given-names>YS</given-names>
</string-name>
,
<string-name>
<surname>Leneva</surname>
<given-names>IA</given-names>
</string-name>
,
<string-name>
<surname>Pecheur</surname>
<given-names>EI</given-names>
</string-name>
,
<string-name>
<surname>Polyak</surname>
<given-names>SJ</given-names>
</string-name>
.
<article-title>Arbidol: a broad‐spectrum antiviral compound that blocks viral fusion</article-title>
.
<source xml:lang="en">Curr Med Chem</source>
.
<year>2008</year>
;
<volume>15</volume>
:
<fpage>997</fpage>
<lpage>1005</lpage>
.
<pub-id pub-id-type="doi">10.2174/092986708784049658</pub-id>
<pub-id pub-id-type="pmid">18393857</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0110">
<label>110</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0110">
<string-name>
<surname>Pécheur</surname>
<given-names>EI</given-names>
</string-name>
,
<string-name>
<surname>Borisevich</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Halfmann</surname>
<given-names>P</given-names>
</string-name>
, et al.
<article-title>The synthetic antiviral drug arbidol inhibits globally prevalent pathogenic viruses</article-title>
.
<source xml:lang="en">J Virol</source>
.
<year>2016</year>
;
<volume>90</volume>
:
<fpage>3086</fpage>
<lpage>3092</lpage>
.
<pub-id pub-id-type="doi">10.1128/JVI.02077-15</pub-id>
<pub-id pub-id-type="pmid">26739045</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0111">
<label>111</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0111">
<string-name>
<surname>Khamitov</surname>
<given-names>RA</given-names>
</string-name>
,
<string-name>
<surname>Loginova</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Shchukina</surname>
<given-names>VN</given-names>
</string-name>
,
<string-name>
<surname>Borisevich</surname>
<given-names>SV</given-names>
</string-name>
,
<string-name>
<surname>Maksimov</surname>
<given-names>VA</given-names>
</string-name>
,
<string-name>
<surname>Shuster</surname>
<given-names>AM</given-names>
</string-name>
.
<article-title>[Antiviral activity of arbidol and its derivatives against the pathogen of severe acute respiratory syndrome in the cell cultures]</article-title>
.
<source xml:lang="en">Vopr Virusol</source>
.
<year>2008</year>
;
<volume>53</volume>
:
<fpage>9</fpage>
<lpage>13</lpage>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0112">
<label>112</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0112">
<string-name>
<surname>Robbins</surname>
<given-names>RA</given-names>
</string-name>
,
<string-name>
<surname>Grisham</surname>
<given-names>MB</given-names>
</string-name>
.
<article-title>Nitric oxide</article-title>
.
<source xml:lang="en">Int J Biochem Cell Biol</source>
.
<year>1997</year>
;
<volume>29</volume>
:
<fpage>857</fpage>
<lpage>860</lpage>
.
<pub-id pub-id-type="doi">10.1016/s1357-2725(96)00167-7</pub-id>
<pub-id pub-id-type="pmid">9304799</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0113">
<label>113</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0113">
<string-name>
<surname>Barnes</surname>
<given-names>PJ</given-names>
</string-name>
.
<article-title>Nitric oxide and airway disease</article-title>
.
<source xml:lang="en">Ann Med</source>
.
<year>1995</year>
;
<volume>27</volume>
:
<fpage>389</fpage>
<lpage>393</lpage>
.
<pub-id pub-id-type="doi">10.3109/07853899509002592</pub-id>
<pub-id pub-id-type="pmid">7546629</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0114">
<label>114</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0114">
<string-name>
<surname>Rossaint</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Gerlach</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Schmidt‐Ruhnke</surname>
<given-names>H</given-names>
</string-name>
, et al.
<article-title>Efficacy of inhaled nitric oxide in patients with severe ARDS</article-title>
.
<source xml:lang="en">Chest</source>
.
<year>1995</year>
;
<volume>107</volume>
:
<fpage>1107</fpage>
<lpage>1115</lpage>
.
<pub-id pub-id-type="doi">10.1378/chest.107.4.1107</pub-id>
<pub-id pub-id-type="pmid">7705124</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0115">
<label>115</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0115">
<string-name>
<surname>Hui</surname>
<given-names>DS</given-names>
</string-name>
.
<article-title>An overview on severe acute respiratory syndrome (SARS)</article-title>
.
<source xml:lang="en">Monaldi Arch Chest Dis</source>
.
<year>2005</year>
;
<volume>63</volume>
:
<fpage>149</fpage>
<lpage>157</lpage>
.
<pub-id pub-id-type="doi">10.4081/monaldi.2005.632</pub-id>
<pub-id pub-id-type="pmid">16312205</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0116">
<label>116</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0116">
<string-name>
<surname>Akerstrom</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Mousavi‐Jazi</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Klingstrom</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Leijon</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Lundkvist</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Mirazimi</surname>
<given-names>A</given-names>
</string-name>
.
<article-title>Nitric oxide inhibits the replication cycle of severe acute respiratory syndrome coronavirus</article-title>
.
<source xml:lang="en">J Virol</source>
.
<year>2005</year>
;
<volume>79</volume>
:
<fpage>1966</fpage>
<lpage>1969</lpage>
.
<pub-id pub-id-type="doi">10.1128/JVI.79.3.1966-1969.2005</pub-id>
<pub-id pub-id-type="pmid">15650225</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0117">
<label>117</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0117">
<string-name>
<surname>Sachse</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Willms</surname>
<given-names>B</given-names>
</string-name>
.
<article-title>Efficacy of thioctic acid in the therapy of peripheral diabetic neuropathy</article-title>
.
<source xml:lang="en">Horm Metab Res Suppl</source>
.
<year>1980</year>
;
<volume>9</volume>
:
<fpage>105</fpage>
<lpage>107</lpage>
.
<pub-id pub-id-type="pmid">6769773</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0118">
<label>118</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0118">
<string-name>
<surname>Tibullo</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Li Volti</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Giallongo</surname>
<given-names>C</given-names>
</string-name>
, et al.
<article-title>Biochemical and clinical relevance of alpha lipoic acid: antioxidant and anti‐inflammatory activity, molecular pathways and therapeutic potential</article-title>
.
<source xml:lang="en">Inflamm Res</source>
.
<year>2017</year>
;
<volume>66</volume>
:
<fpage>947</fpage>
<lpage>959</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00011-017-1079-6</pub-id>
<pub-id pub-id-type="pmid">28676917</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0119">
<label>119</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0119">
<string-name>
<surname>El‐Senousey</surname>
<given-names>HK</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>JY</given-names>
</string-name>
,
<string-name>
<surname>Atta</surname>
<given-names>AM</given-names>
</string-name>
,
<string-name>
<surname>Mohamed</surname>
<given-names>FR</given-names>
</string-name>
,
<string-name>
<surname>Nie</surname>
<given-names>QH</given-names>
</string-name>
.
<article-title>Effects of dietary vitamin C, vitamin E, and alpha‐lipoic acid supplementation on the antioxidant defense system and immune‐related gene expression in broilers exposed to oxidative stress by dexamethasone</article-title>
.
<source xml:lang="en">Poult Sci</source>
.
<year>2018</year>
;
<volume>97</volume>
:
<fpage>30</fpage>
<lpage>38</lpage>
.
<pub-id pub-id-type="doi">10.3382/ps/pex298</pub-id>
<pub-id pub-id-type="pmid">29077914</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0120">
<label>120</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0120">
<string-name>
<surname>Wu</surname>
<given-names>YH</given-names>
</string-name>
,
<string-name>
<surname>Tseng</surname>
<given-names>CP</given-names>
</string-name>
,
<string-name>
<surname>Cheng</surname>
<given-names>ML</given-names>
</string-name>
,
<string-name>
<surname>Ho</surname>
<given-names>HY</given-names>
</string-name>
,
<string-name>
<surname>Shih</surname>
<given-names>SR</given-names>
</string-name>
,
<string-name>
<surname>Chiu</surname>
<given-names>DTY</given-names>
</string-name>
.
<article-title>Glucose‐6‐phosphate dehydrogenase deficiency enhances human coronavirus 229E infection</article-title>
.
<source xml:lang="en">J Infect Dis</source>
.
<year>2008</year>
;
<volume>197</volume>
:
<fpage>812</fpage>
<lpage>816</lpage>
.
<pub-id pub-id-type="doi">10.1086/528377</pub-id>
<pub-id pub-id-type="pmid">18269318</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0121">
<label>121</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0121">
<string-name>
<surname>Baur</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Harrer</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Peukert</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Jahn</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Kalden</surname>
<given-names>JR</given-names>
</string-name>
,
<string-name>
<surname>Fleckenstein</surname>
<given-names>B</given-names>
</string-name>
.
<article-title>Alpha‐lipoic acid is an effective inhibitor of human immuno‐deficiency virus (HIV‐1) replication</article-title>
.
<source xml:lang="en">Klin Wochenschr</source>
.
<year>1991</year>
;
<volume>69</volume>
:
<fpage>722</fpage>
<lpage>724</lpage>
.
<pub-id pub-id-type="doi">10.1007/bf01649442</pub-id>
<pub-id pub-id-type="pmid">1724477</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0122">
<label>122</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0122">
<string-name>
<surname>Marriott</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Huet‐Hudson</surname>
<given-names>YM</given-names>
</string-name>
.
<article-title>Sexual dimorphism in innate immune responses to infectious organisms</article-title>
.
<source xml:lang="en">Immunol Res</source>
.
<year>2006</year>
;
<volume>34</volume>
:
<fpage>177</fpage>
<lpage>192</lpage>
.
<pub-id pub-id-type="doi">10.1385/IR:34:3:177</pub-id>
<pub-id pub-id-type="pmid">16891670</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0123">
<label>123</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0123">
<string-name>
<surname>Karlberg</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Chong</surname>
<given-names>DS</given-names>
</string-name>
,
<string-name>
<surname>Lai</surname>
<given-names>WY</given-names>
</string-name>
.
<article-title>Do men have a higher case fatality rate of severe acute respiratory syndrome than women do?</article-title>
<source xml:lang="en">Am J Epidemiol</source>
.
<year>2004</year>
;
<volume>159</volume>
:
<fpage>229</fpage>
<lpage>231</lpage>
.
<pub-id pub-id-type="doi">10.1093/aje/kwh056</pub-id>
<pub-id pub-id-type="pmid">14742282</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0124">
<label>124</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0124">
<string-name>
<surname>Leong</surname>
<given-names>HN</given-names>
</string-name>
,
<string-name>
<surname>Earnest</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Lim</surname>
<given-names>HH</given-names>
</string-name>
, et al.
<article-title>SARS in Singapore‐‐predictors of disease severity</article-title>
.
<source xml:lang="en">Ann Acad Med Singapore</source>
.
<year>2006</year>
;
<volume>35</volume>
:
<fpage>326</fpage>
<lpage>331</lpage>
.
<pub-id pub-id-type="pmid">16829999</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0125">
<label>125</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0125">
<string-name>
<surname>Alghamdi</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Hussain</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Alghamdi</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Almalki</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Alghamdi</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Elsheemy</surname>
<given-names>M</given-names>
</string-name>
.
<article-title>The pattern of Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive epidemiological analysis of data from the Saudi Ministry of Health</article-title>
.
<source xml:lang="en">Int J Gen Med</source>
.
<year>2014</year>
;
<volume>7</volume>
:
<fpage>417</fpage>
<lpage>423</lpage>
.
<pub-id pub-id-type="doi">10.2147/IJGM.S67061</pub-id>
<pub-id pub-id-type="pmid">25187734</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0126">
<label>126</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0126">
<string-name>
<surname>Channappanavar</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Fett</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Mack</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Ten Eyck</surname>
<given-names>PP</given-names>
</string-name>
,
<string-name>
<surname>Meyerholz</surname>
<given-names>DK</given-names>
</string-name>
,
<string-name>
<surname>Perlman</surname>
<given-names>S</given-names>
</string-name>
.
<article-title>Sex‐based differences in susceptibility to severe acute respiratory syndrome coronavirus infection</article-title>
.
<source xml:lang="en">J Immunol</source>
.
<year>2017</year>
;
<volume>198</volume>
:
<fpage>4046</fpage>
<lpage>4053</lpage>
.
<pub-id pub-id-type="doi">10.4049/jimmunol.1601896</pub-id>
<pub-id pub-id-type="pmid">28373583</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0127">
<label>127</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0127">
<string-name>
<surname>Wei</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Sun</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>J</given-names>
</string-name>
, et al.
<article-title>Endocrine cells of the adenohypophysis in severe acute respiratory syndrome (SARS)</article-title>
.
<source xml:lang="en">Biochem Cell Biol</source>
.
<year>2010</year>
;
<volume>88</volume>
:
<fpage>723</fpage>
<lpage>730</lpage>
.
<pub-id pub-id-type="doi">10.1139/O10-022</pub-id>
<pub-id pub-id-type="pmid">20651845</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0128">
<label>128</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0128">
<string-name>
<surname>Peretz</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Pekosz</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Lane</surname>
<given-names>AP</given-names>
</string-name>
,
<string-name>
<surname>Klein</surname>
<given-names>SL</given-names>
</string-name>
.
<article-title>Estrogenic compounds reduce influenza A virus replication in primary human nasal epithelial cells derived from female, but not male, donors</article-title>
.
<source xml:lang="en">Am J Physiol Lung Cell Mol Physiol</source>
.
<year>2016</year>
;
<volume>310</volume>
:
<fpage>L415</fpage>
<lpage>L425</lpage>
.
<pub-id pub-id-type="doi">10.1152/ajplung.00398.2015</pub-id>
<pub-id pub-id-type="pmid">26684252</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0129">
<label>129</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0129">
<string-name>
<surname>Lin</surname>
<given-names>SC</given-names>
</string-name>
,
<string-name>
<surname>Ho</surname>
<given-names>CT</given-names>
</string-name>
,
<string-name>
<surname>Chuo</surname>
<given-names>WH</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>TT</given-names>
</string-name>
,
<string-name>
<surname>Lin</surname>
<given-names>CC</given-names>
</string-name>
.
<article-title>Effective inhibition of MERS‐CoV infection by resveratrol</article-title>
.
<source xml:lang="en">BMC Infect Dis</source>
.
<year>2017</year>
;
<volume>17</volume>
:
<fpage>144</fpage>
<pub-id pub-id-type="doi">10.1186/s12879-017-2253-8</pub-id>
<pub-id pub-id-type="pmid">28193191</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0130">
<label>130</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0130">
<string-name>
<surname>Li</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Zhao</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Zhou</surname>
<given-names>D</given-names>
</string-name>
, et al.
<article-title>Virucidal activity of a scorpion venom peptide variant mucroporin‐M1 against measles, SARS‐CoV and influenza H5N1 viruses</article-title>
.
<source xml:lang="en">Peptides</source>
.
<year>2011</year>
;
<volume>32</volume>
:
<fpage>1518</fpage>
<lpage>1525</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.peptides.2011.05.015</pub-id>
<pub-id pub-id-type="pmid">21620914</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0131">
<label>131</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0131">
<string-name>
<surname>Cavanagh</surname>
<given-names>D</given-names>
</string-name>
.
<article-title>Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus</article-title>
.
<source xml:lang="en">Avian Pathol</source>
.
<year>2003</year>
;
<volume>32</volume>
:
<fpage>567</fpage>
<lpage>582</lpage>
.
<pub-id pub-id-type="doi">10.1080/03079450310001621198</pub-id>
<pub-id pub-id-type="pmid">14676007</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0132">
<label>132</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0132">
<string-name>
<surname>Escriou</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Callendret</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Lorin</surname>
<given-names>V</given-names>
</string-name>
, et al.
<article-title>Protection from SARS coronavirus conferred by live measles vaccine expressing the spike glycoprotein</article-title>
.
<source xml:lang="en">Virology</source>
.
<year>2014</year>
;
<volume>452‐453</volume>
:
<fpage>32</fpage>
<lpage>41</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.virol.2014.01.002</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0133">
<label>133</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0133">
<string-name>
<surname>Bodmer</surname>
<given-names>BS</given-names>
</string-name>
,
<string-name>
<surname>Fiedler</surname>
<given-names>AH</given-names>
</string-name>
,
<string-name>
<surname>Hanauer</surname>
<given-names>JRH</given-names>
</string-name>
,
<string-name>
<surname>Prufer</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Muhlebach</surname>
<given-names>MD</given-names>
</string-name>
.
<article-title>Live‐attenuated bivalent measles virus‐derived vaccines targeting Middle East respiratory syndrome coronavirus induce robust and multifunctional T cell responses against both viruses in an appropriate mouse model</article-title>
.
<source xml:lang="en">Virology</source>
.
<year>2018</year>
;
<volume>521</volume>
:
<fpage>99</fpage>
<lpage>107</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.virol.2018.05.028</pub-id>
<pub-id pub-id-type="pmid">29902727</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0134">
<label>134</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0134">
<string-name>
<surname>Frantz</surname>
<given-names>PN</given-names>
</string-name>
,
<string-name>
<surname>Teeravechyan</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Tangy</surname>
<given-names>F</given-names>
</string-name>
.
<article-title>Measles‐derived vaccines to prevent emerging viral diseases</article-title>
.
<source xml:lang="en">Microbes Infect</source>
.
<year>2018</year>
;
<volume>20</volume>
:
<fpage>493</fpage>
<lpage>500</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.micinf.2018.01.005</pub-id>
<pub-id pub-id-type="pmid">29410084</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0135">
<label>135</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0135">
<string-name>
<surname>ter Meulen</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>van den Brink</surname>
<given-names>EN</given-names>
</string-name>
,
<string-name>
<surname>Poon</surname>
<given-names>LLM</given-names>
</string-name>
, et al.
<article-title>Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants</article-title>
.
<source xml:lang="en">PLOS Med</source>
.
<year>2006</year>
;
<volume>3</volume>
:
<elocation-id>e237</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pmed.0030237</pub-id>
<pub-id pub-id-type="pmid">16796401</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0136">
<label>136</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0136">
<string-name>
<surname>ter Meulen</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Bakker</surname>
<given-names>AB</given-names>
</string-name>
,
<string-name>
<surname>van den Brink</surname>
<given-names>EN</given-names>
</string-name>
, et al.
<article-title>Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets</article-title>
.
<source xml:lang="en">Lancet</source>
.
<year>2004</year>
;
<volume>363</volume>
:
<fpage>2139</fpage>
<lpage>2141</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0140-6736(04)16506-9</pub-id>
<pub-id pub-id-type="pmid">15220038</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0137">
<label>137</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0137">
<string-name>
<surname>Marano</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Vaglio</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Pupella</surname>
<given-names>S</given-names>
</string-name>
, et al.
<article-title>Convalescent plasma: new evidence for an old therapeutic tool?</article-title>
<source xml:lang="en">Blood Transfus</source>
.
<year>2016</year>
;
<volume>14</volume>
:
<fpage>152</fpage>
<lpage>157</lpage>
.
<pub-id pub-id-type="doi">10.2450/2015.0131-15</pub-id>
<pub-id pub-id-type="pmid">26674811</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0138">
<label>138</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0138">
<string-name>
<surname>Arabi</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Balkhy</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Hajeer</surname>
<given-names>AH</given-names>
</string-name>
, et al.
<article-title>Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with Middle East respiratory syndrome coronavirus infection: a study protocol</article-title>
.
<source xml:lang="en">Springerplus</source>
.
<year>2015</year>
;
<volume>4</volume>
:
<fpage>709</fpage>
<pub-id pub-id-type="doi">10.1186/s40064-015-1490-9</pub-id>
<pub-id pub-id-type="pmid">26618098</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0139">
<label>139</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0139">
<string-name>
<surname>Cheng</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Wong</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Soo</surname>
<given-names>YOY</given-names>
</string-name>
, et al.
<article-title>Use of convalescent plasma therapy in SARS patients in Hong Kong</article-title>
.
<source xml:lang="en">Eur J Clin Microbiol Infect Dis</source>
.
<year>2005</year>
;
<volume>24</volume>
:
<fpage>44</fpage>
<lpage>46</lpage>
.
<pub-id pub-id-type="doi">10.1007/s10096-004-1271-9</pub-id>
<pub-id pub-id-type="pmid">15616839</pub-id>
</mixed-citation>
</ref>
<ref id="jmv25707-bib-0140">
<label>140</label>
<mixed-citation publication-type="journal" id="jmv25707-cit-0140">
<string-name>
<surname>Soo</surname>
<given-names>YOY</given-names>
</string-name>
,
<string-name>
<surname>Cheng</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Wong</surname>
<given-names>R</given-names>
</string-name>
, et al.
<article-title>Retrospective comparison of convalescent plasma with continuing high‐dose methylprednisolone treatment in SARS patients</article-title>
.
<source xml:lang="en">Clin Microbiol Infect</source>
.
<year>2004</year>
;
<volume>10</volume>
:
<fpage>676</fpage>
<lpage>678</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1469-0691.2004.00956.x</pub-id>
<pub-id pub-id-type="pmid">15214887</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/StressCovidV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000951  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000951  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    StressCovidV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed May 6 16:44:09 2020. Site generation: Sun Mar 28 08:26:57 2021