Serveur d'exploration Stress et Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000917 ( Pmc/Corpus ); précédent : 0009169; suivant : 0009180 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bitter‐sweet symphony: glycan–lectin interactions in virus biology</title>
<author>
<name sortKey="Van Breedam, Wander" sort="Van Breedam, Wander" uniqKey="Van Breedam W" first="Wander" last="Van Breedam">Wander Van Breedam</name>
<affiliation>
<nlm:aff id="fmr12052-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pohlmann, Stefan" sort="Pohlmann, Stefan" uniqKey="Pohlmann S" first="Stefan" last="Pöhlmann">Stefan Pöhlmann</name>
<affiliation>
<nlm:aff id="fmr12052-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Favoreel, Herman W" sort="Favoreel, Herman W" uniqKey="Favoreel H" first="Herman W." last="Favoreel">Herman W. Favoreel</name>
<affiliation>
<nlm:aff id="fmr12052-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="De Groot, Raoul J" sort="De Groot, Raoul J" uniqKey="De Groot R" first="Raoul J." last="De Groot">Raoul J. De Groot</name>
<affiliation>
<nlm:aff id="fmr12052-aff-0003"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nauwynck, Hans J" sort="Nauwynck, Hans J" uniqKey="Nauwynck H" first="Hans J." last="Nauwynck">Hans J. Nauwynck</name>
<affiliation>
<nlm:aff id="fmr12052-aff-0001"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24188132</idno>
<idno type="pmc">7190080</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190080</idno>
<idno type="RBID">PMC:7190080</idno>
<idno type="doi">10.1111/1574-6976.12052</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">000917</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000917</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Bitter‐sweet symphony: glycan–lectin interactions in virus biology</title>
<author>
<name sortKey="Van Breedam, Wander" sort="Van Breedam, Wander" uniqKey="Van Breedam W" first="Wander" last="Van Breedam">Wander Van Breedam</name>
<affiliation>
<nlm:aff id="fmr12052-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pohlmann, Stefan" sort="Pohlmann, Stefan" uniqKey="Pohlmann S" first="Stefan" last="Pöhlmann">Stefan Pöhlmann</name>
<affiliation>
<nlm:aff id="fmr12052-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Favoreel, Herman W" sort="Favoreel, Herman W" uniqKey="Favoreel H" first="Herman W." last="Favoreel">Herman W. Favoreel</name>
<affiliation>
<nlm:aff id="fmr12052-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="De Groot, Raoul J" sort="De Groot, Raoul J" uniqKey="De Groot R" first="Raoul J." last="De Groot">Raoul J. De Groot</name>
<affiliation>
<nlm:aff id="fmr12052-aff-0003"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nauwynck, Hans J" sort="Nauwynck, Hans J" uniqKey="Nauwynck H" first="Hans J." last="Nauwynck">Hans J. Nauwynck</name>
<affiliation>
<nlm:aff id="fmr12052-aff-0001"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">FEMS Microbiology Reviews</title>
<idno type="ISSN">0168-6445</idno>
<idno type="eISSN">1574-6976</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Abstract</title>
<p>Glycans are carbohydrate modifications typically found on proteins or lipids, and can act as ligands for glycan‐binding proteins called lectins. Glycans and lectins play crucial roles in the function of cells and organs, and in the immune system of animals and humans. Viral pathogens use glycans and lectins that are encoded by their own or the host genome for their replication and spread. Recent advances in glycobiological research indicate that glycans and lectins mediate key interactions at the virus‐host interface, controlling viral spread and/or activation of the immune system. This review reflects on glycan–lectin interactions in the context of viral infection and antiviral immunity. A short introduction illustrates the nature of glycans and lectins, and conveys the basic principles of their interactions. Subsequently, examples are discussed highlighting specific glycan–lectin interactions and how they affect the progress of viral infections, either benefiting the host or the virus. Moreover, glycan and lectin variability and their potential biological consequences are discussed. Finally, the review outlines how recent advances in the glycan–lectin field might be transformed into promising new approaches to antiviral therapy.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">FEMS Microbiol Rev</journal-id>
<journal-id journal-id-type="iso-abbrev">FEMS Microbiol. Rev</journal-id>
<journal-id journal-id-type="doi">10.1111/(ISSN)1574-6976</journal-id>
<journal-id journal-id-type="publisher-id">FMR</journal-id>
<journal-title-group>
<journal-title>FEMS Microbiology Reviews</journal-title>
</journal-title-group>
<issn pub-type="ppub">0168-6445</issn>
<issn pub-type="epub">1574-6976</issn>
<publisher>
<publisher-name>John Wiley and Sons Inc.</publisher-name>
<publisher-loc>Hoboken</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24188132</article-id>
<article-id pub-id-type="pmc">7190080</article-id>
<article-id pub-id-type="doi">10.1111/1574-6976.12052</article-id>
<article-id pub-id-type="publisher-id">FMR12052</article-id>
<article-categories>
<subj-group subj-group-type="overline">
<subject>Review Article</subject>
</subj-group>
<subj-group subj-group-type="heading">
<subject>Review Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Bitter‐sweet symphony: glycan–lectin interactions in virus biology</article-title>
<alt-title alt-title-type="left-running-head">W. Van Breedam
<italic>et al</italic>
.</alt-title>
</title-group>
<contrib-group>
<contrib id="fmr12052-cr-0001" contrib-type="author" corresp="yes">
<name>
<surname>Van Breedam</surname>
<given-names>Wander</given-names>
</name>
<xref ref-type="aff" rid="fmr12052-aff-0001">
<sup>1</sup>
</xref>
</contrib>
<contrib id="fmr12052-cr-0002" contrib-type="author">
<name>
<surname>Pöhlmann</surname>
<given-names>Stefan</given-names>
</name>
<xref ref-type="aff" rid="fmr12052-aff-0002">
<sup>2</sup>
</xref>
</contrib>
<contrib id="fmr12052-cr-0003" contrib-type="author">
<name>
<surname>Favoreel</surname>
<given-names>Herman W.</given-names>
</name>
<xref ref-type="aff" rid="fmr12052-aff-0001">
<sup>1</sup>
</xref>
</contrib>
<contrib id="fmr12052-cr-0004" contrib-type="author">
<name>
<surname>de Groot</surname>
<given-names>Raoul J.</given-names>
</name>
<xref ref-type="aff" rid="fmr12052-aff-0003">
<sup>3</sup>
</xref>
</contrib>
<contrib id="fmr12052-cr-0005" contrib-type="author">
<name>
<surname>Nauwynck</surname>
<given-names>Hans J.</given-names>
</name>
<xref ref-type="aff" rid="fmr12052-aff-0001">
<sup>1</sup>
</xref>
</contrib>
</contrib-group>
<aff id="fmr12052-aff-0001">
<label>
<sup>1</sup>
</label>
<named-content content-type="organisation-division">Department of Virology, Parasitology and Immunology</named-content>
<named-content content-type="organisation-division">Faculty of Veterinary Medicine</named-content>
<institution>Ghent University</institution>
<city>Merelbeke</city>
<country country="BE">Belgium</country>
</aff>
<aff id="fmr12052-aff-0002">
<label>
<sup>2</sup>
</label>
<named-content content-type="organisation-division">Infection Biology Unit</named-content>
<institution>German Primate Center</institution>
<city>Göttingen</city>
<country country="DE">Germany</country>
</aff>
<aff id="fmr12052-aff-0003">
<label>
<sup>3</sup>
</label>
<named-content content-type="organisation-division">Department of Infectious Diseases and Immunology</named-content>
<named-content content-type="organisation-division">Faculty of Veterinary Medicine</named-content>
<institution>Utrecht University</institution>
<city>Utrecht</city>
<country country="NL">The Netherlands</country>
</aff>
<author-notes>
<corresp id="correspondenceTo">
<label>*</label>
<bold>Correspondence:</bold>
Wander Van Breedam, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
<break></break>
Tel.: +00 32 9 264 73 75;
<break></break>
fax: +00 32 9 264 74 95;
<break></break>
e‐mail:
<email>wander.vanbreedam@ugent.be</email>
<break></break>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>06</day>
<month>12</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="ppub">
<month>7</month>
<year>2014</year>
</pub-date>
<volume>38</volume>
<issue>4</issue>
<issue-id pub-id-type="doi">10.1111/fmr.2014.38.issue-4</issue-id>
<fpage>598</fpage>
<lpage>632</lpage>
<history>
<date date-type="received">
<day>29</day>
<month>4</month>
<year>2013</year>
</date>
<date date-type="rev-recd">
<day>27</day>
<month>9</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>14</day>
<month>10</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-statement content-type="article-copyright">© 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved</copyright-statement>
<license>
<license-p>This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:href="file:FMR-38-598.pdf"></self-uri>
<abstract id="fmr12052-abs-0001">
<title>Abstract</title>
<p>Glycans are carbohydrate modifications typically found on proteins or lipids, and can act as ligands for glycan‐binding proteins called lectins. Glycans and lectins play crucial roles in the function of cells and organs, and in the immune system of animals and humans. Viral pathogens use glycans and lectins that are encoded by their own or the host genome for their replication and spread. Recent advances in glycobiological research indicate that glycans and lectins mediate key interactions at the virus‐host interface, controlling viral spread and/or activation of the immune system. This review reflects on glycan–lectin interactions in the context of viral infection and antiviral immunity. A short introduction illustrates the nature of glycans and lectins, and conveys the basic principles of their interactions. Subsequently, examples are discussed highlighting specific glycan–lectin interactions and how they affect the progress of viral infections, either benefiting the host or the virus. Moreover, glycan and lectin variability and their potential biological consequences are discussed. Finally, the review outlines how recent advances in the glycan–lectin field might be transformed into promising new approaches to antiviral therapy.</p>
</abstract>
<abstract abstract-type="graphical" id="fmr12052-abs-0002">
<p>Glycans and lectins cover crucial roles in virus biology and their interplay often shapes the virus‐host interaction. This review reflects on glycan‐lectin interactions in the context of viral infection and anti‐viral immunity, and explores potential targets for antiviral strategies.
<boxed-text position="anchor" content-type="graphic" id="fmr12052-blkfxd-0001" orientation="portrait">
<graphic xlink:href="FMR-38-598-g007.jpg" position="anchor" id="nlm-graphic-1" orientation="portrait"></graphic>
</boxed-text>
</p>
</abstract>
<kwd-group kwd-group-type="author-generated">
<kwd id="fmr12052-kwd-0001">
<styled-content style="fixed-case" toggle="no">DC</styled-content>
<styled-content style="fixed-case" toggle="no">SIGN</styled-content>
</kwd>
<kwd id="fmr12052-kwd-0002">collectin</kwd>
<kwd id="fmr12052-kwd-0003">galectin</kwd>
<kwd id="fmr12052-kwd-0004">hemagglutinin</kwd>
<kwd id="fmr12052-kwd-0005">receptor‐destroying enzyme</kwd>
<kwd id="fmr12052-kwd-0006">antiviral</kwd>
</kwd-group>
<funding-group>
<award-group id="funding-0001">
<funding-source>Flemish Institute for the Promotion of Innovation by Science and Technology</funding-source>
<award-id>SB 61491 & 63491</award-id>
</award-group>
<award-group id="funding-0002">
<funding-source>Special Research Fund of Ghent University</funding-source>
</award-group>
<award-group id="funding-0003">
<funding-source>Leibniz Gemeinschaft</funding-source>
</award-group>
<award-group id="funding-0004">
<funding-source>F.W.O.‐Vlaanderen</funding-source>
</award-group>
</funding-group>
<counts>
<page-count count="35"></page-count>
</counts>
<custom-meta-group>
<custom-meta>
<meta-name>source-schema-version-number</meta-name>
<meta-value>2.0</meta-value>
</custom-meta>
<custom-meta>
<meta-name>cover-date</meta-name>
<meta-value>July 2014</meta-value>
</custom-meta>
<custom-meta>
<meta-name>details-of-publishers-convertor</meta-name>
<meta-value>Converter:WILEY_ML3GV2_TO_JATSPMC version:5.8.0 mode:remove_FC converted:15.04.2020</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body id="fmr12052-body-0001">
<sec id="fmr12052-sec-0001">
<title>Introduction</title>
<p>Many emerging and re‐emerging viral diseases in animals and humans pose significant global health problems for which novel antiviral measures are in urgent demand. In general, rational design of new prophylactic and curative antiviral strategies requires a detailed knowledge of the viral infection mechanism and the host's innate and adaptive immune defense. Historically, cell biological and microbiological research was mainly focussed on the nucleic acid and protein level. However, over the last few decades it has become clear that also glycans account to a great extent for the structural and functional diversity displayed by animal and human cells and their pathogens. At this moment, glycobiology is one of the most rapidly expanding disciplines in biology. A rapidly evolving array of powerful, novel techniques for the analysis of glycan structure and function (glycomics) has prompted many scientists to apply these tools to the field of virology, and this glycovirological approach has yielded a wealth of information on the various glycobiological aspects of viral infection and antiviral immunity. Particularly fascinating in this context are the many distinct glycan‐lectin interactions that may occur during viral infection of a host. Virion‐associated glycans often serve as ligands for specific host lectins. Conversely, the glycan portions of host glycoconjugates function as receptors for various viruses that employ viral lectins for host cell entry. This review reflects on glycan–lectin interactions in the context of viral infection and antiviral immunity. Following a general introduction on glycan and lectin biology, specific glycan–lectin interactions are highlighted and discussed within the larger framework of viral infection and immunity. Distinction is made between interactions that benefit the host and interactions that benefit the virus. In addition, different factors that contribute to glycan and lectin variation – and that consequently affect glycan–lectin interactions – are explored and various approaches to modulate specific glycan–lectin interactions in antiviral therapies are briefly discussed.</p>
</sec>
<sec id="fmr12052-sec-0002">
<title>Glycans vs. lectins</title>
<sec id="fmr12052-sec-0003">
<title>Glycans</title>
<p>Like nucleic acids, proteins and lipids, glycans are essential components of the animal cell and organism. The term ‘glycan’ refers to the carbohydrate portion of glycoproteins and glycolipids typically found at cell surfaces, in extracellular matrices and in cell secretions. Unlike nucleic acid and protein synthesis, the biosynthesis of glycans is not a template‐driven process. Instead, glycosylation depends on the concerted action of different glycosyltransferase, glycosidase, and other enzymes. Several important glycan types are exclusively assembled by the enzyme sets present in the endoplasmic reticulum (ER) and the Golgi network: glycan/glycoconjugate synthesis is typically initiated in the ER or early Golgi and gradual processing and diversification – or ‘maturation’ – occurs as these molecules move further through the different enzyme‐equipped compartments of the secretory pathway. The variability inherent to glycan synthesis and maturation forms the basis of the considerable diversity and complexity of the glycan repertoires found on animal glycoconjugates (Varki
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0310" ref-type="ref">2009</xref>
; Taylor & Drickamer,
<xref rid="fmr12052-bib-0286" ref-type="ref">2011</xref>
).</p>
<p>According to the basic glycan ‘core’ structure, the type of molecule the glycans are linked with and the type of the linkage, glycans and glycoconjugates can be categorized in different classes. Two major classes of protein‐linked glycosylation are the
<italic>N</italic>
‐ and
<italic>O</italic>
‐linked glycans.
<italic>N</italic>
‐linked glycans are covalently linked to the nitrogen atoms of specific amino acid (aa) residues (typically Asparagine) via an
<italic>N</italic>
‐glycosidic bond.
<italic>N</italic>
‐acetylglucosamine–to–Asparagine (GlcNAcβ‐Asn) type glycans represent the most common form of
<italic>N</italic>
‐linked protein glycosylation (Weerapana & Imperiali,
<xref rid="fmr12052-bib-0325" ref-type="ref">2006</xref>
; Varki
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0310" ref-type="ref">2009</xref>
; Larkin & Imperiali,
<xref rid="fmr12052-bib-0162" ref-type="ref">2011</xref>
; Schwarz & Aebi,
<xref rid="fmr12052-bib-0262" ref-type="ref">2011</xref>
; Taylor & Drickamer,
<xref rid="fmr12052-bib-0286" ref-type="ref">2011</xref>
).
<italic>O</italic>
‐linked glycans are covalently attached to the oxygen atoms of specific amino acid residues (typically Serine or Threonine) via an
<italic>O</italic>
‐glycosidic bond. A common
<italic>O</italic>
‐glycan type – and potentially the one most studied – is the
<italic>N</italic>
‐acetylgalactosamine–to–Serine/Threonine (GalNAcα‐Ser/Thr) type or mucin‐type
<italic>O</italic>
‐glycan. Other (nonmucin)
<italic>O</italic>
‐glycan types include α‐linked
<italic>O</italic>
‐mannose, α‐linked
<italic>O</italic>
‐fucose, β‐linked
<italic>O</italic>
‐xylose, β‐linked
<italic>O</italic>
‐GlcNAc (
<italic>N</italic>
‐acetylglucosamine), α‐/β‐linked
<italic>O</italic>
‐galactose, and α‐/β‐linked
<italic>O</italic>
‐glucose glycans (Van den Steen
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0300" ref-type="ref">1998</xref>
; Peter‐Katalinic,
<xref rid="fmr12052-bib-0228" ref-type="ref">2005</xref>
; Varki
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0310" ref-type="ref">2009</xref>
; Jensen
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0142" ref-type="ref">2010</xref>
; Gill
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0097" ref-type="ref">2011</xref>
; Taylor & Drickamer,
<xref rid="fmr12052-bib-0286" ref-type="ref">2011</xref>
). Interestingly, various proteins are also modified with glycosaminoglycans (GAGs), linear polysaccharide chains composed of repeated disaccharide subunits consisting of a uronic acid/galactose residue and an amino sugar. Glycosaminoglycan‐carrying glycoproteins are generally referred to as proteoglycans (Prydz & Dalen,
<xref rid="fmr12052-bib-0233" ref-type="ref">2000</xref>
; Varki
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0310" ref-type="ref">2009</xref>
; Taylor & Drickamer,
<xref rid="fmr12052-bib-0286" ref-type="ref">2011</xref>
). Figure 
<xref rid="fmr12052-fig-0001" ref-type="fig">1</xref>
illustrates the general structure and classification of some common types of protein glycosylation. Similarly as for protein‐linked glycosylation, different types of lipid‐linked glycosylation can be discerned: the glycosphingolipids (Varki
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0310" ref-type="ref">2009</xref>
; Taylor & Drickamer,
<xref rid="fmr12052-bib-0286" ref-type="ref">2011</xref>
; Yu
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0337" ref-type="ref">2011</xref>
) and the glycophospholipid anchors or glycosylphosphatidylinositol (GPI) anchors (Paulick & Bertozzi,
<xref rid="fmr12052-bib-0226" ref-type="ref">2008</xref>
; Varki
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0310" ref-type="ref">2009</xref>
; Taylor & Drickamer,
<xref rid="fmr12052-bib-0286" ref-type="ref">2011</xref>
) represent important glycolipid classes. Their basic structure is introduced in Fig. 
<xref rid="fmr12052-fig-0002" ref-type="fig">2</xref>
.</p>
<fig fig-type="Figure" xml:lang="en" id="fmr12052-fig-0001" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Classification and basic structure of common types of protein‐linked glycosylation. (a)
<styled-content style="fixed-case" toggle="no">G</styled-content>
lc
<styled-content style="fixed-case" toggle="no">NA</styled-content>
cβ‐Asn type
<italic>N</italic>
‐linked glycans are covalently attached to the amide nitrogen atoms of
<styled-content style="fixed-case" toggle="no">A</styled-content>
sn side chains and are almost exclusively found on
<styled-content style="fixed-case" toggle="no">A</styled-content>
sn residues within the sequence
<styled-content style="fixed-case" toggle="no">A</styled-content>
sn‐
<styled-content style="fixed-case" toggle="no">X</styled-content>
<styled-content style="fixed-case" toggle="no">S</styled-content>
er/
<styled-content style="fixed-case" toggle="no">T</styled-content>
hr, in which
<styled-content style="fixed-case" toggle="no">X</styled-content>
can be any amino acid except
<styled-content style="fixed-case" toggle="no">P</styled-content>
ro. The nature of the glycan structures that decorate the common glycan core – the glycan part shown in a dashed box – dictates classification of
<italic>N</italic>
‐linked glycans as high‐mannose type, hybrid type or complex type glycans, examples of which are shown in the panel. (b)
<styled-content style="fixed-case" toggle="no">G</styled-content>
al
<styled-content style="fixed-case" toggle="no">NA</styled-content>
cα‐
<styled-content style="fixed-case" toggle="no">S</styled-content>
er/
<styled-content style="fixed-case" toggle="no">T</styled-content>
hr type
<italic>O</italic>
‐linked glycans have a
<styled-content style="fixed-case" toggle="no">G</styled-content>
al
<styled-content style="fixed-case" toggle="no">NA</styled-content>
c residue α‐linked to the oxygen atom of the hydroxyl group of
<styled-content style="fixed-case" toggle="no">S</styled-content>
er or Thr residues. Unlike for
<styled-content style="fixed-case" toggle="no">G</styled-content>
lc
<styled-content style="fixed-case" toggle="no">NA</styled-content>
cβ‐
<styled-content style="fixed-case" toggle="no">A</styled-content>
sn type
<italic>N</italic>
‐linked protein glycosylation, there are no clear amino acid motifs that mark these
<italic>O</italic>
‐linked glycosylation sites. A single
<styled-content style="fixed-case" toggle="no">G</styled-content>
al
<styled-content style="fixed-case" toggle="no">N</styled-content>
ac residue linked to the
<styled-content style="fixed-case" toggle="no">S</styled-content>
er/
<styled-content style="fixed-case" toggle="no">T</styled-content>
hr is termed the ‘Tn antigen’. Depending on the basic structure of the glycan core, more complex (extended)
<italic>O</italic>
‐linked glycans are categorized into different ‘core types’. Cores 1–4 are the most common core structures, but also other core types exist. The Tn antigen and examples of extended core 1, 2, 3, and 4
<italic>O</italic>
‐glycans are shown in the panel. The distinct glycan cores are shown in dashed boxes. (c) Glycosaminoglycans (GAGs) are linear polysaccharide chains composed of repeated disaccharide subunits of a uronic acid/galactose residue and an amino sugar. Glycosaminoglycans are classified as hyaluronan (HA), heparan sulfate/heparin (
<styled-content style="fixed-case" toggle="no">HS</styled-content>
), chondroitin sulfate (
<styled-content style="fixed-case" toggle="no">CS</styled-content>
), dermatan sulfate (
<styled-content style="fixed-case" toggle="no">DS</styled-content>
), or keratan sulfate (
<styled-content style="fixed-case" toggle="no">KS</styled-content>
), depending on the structure of their basic disaccharide subunits (shown in square brackets) and further modification (e.g. sulfation at different positions) of the glycan chain. With exception of hyaluronan, all major glycosaminoglycan types are sulfated and occur covalently linked to proteins.
<styled-content style="fixed-case" toggle="no">HS</styled-content>
,
<styled-content style="fixed-case" toggle="no"> CS</styled-content>
, and
<styled-content style="fixed-case" toggle="no">DS</styled-content>
are found on
<styled-content style="fixed-case" toggle="no">S</styled-content>
er‐linked xylose residues. Although no unambiguous consensus sequence for xylosylation exists, the
<styled-content style="fixed-case" toggle="no">S</styled-content>
er attachment site is consistently flanked by a
<styled-content style="fixed-case" toggle="no">G</styled-content>
ly residue at its carboxy‐terminal side. As depicted in the figure, heparan sulfate and heparin have the same basic structure. Although they share a common biosynthesis, heparin generally undergoes more extensive sulfation and epimerization of uronic acid to iduronic acid. Moreover, heparin is synthesized only in connective tissue mast cells as part of serglycin proteoglycans, whereas heparan sulfate is synthesized in virtually all mammalian cells.
<styled-content style="fixed-case" toggle="no">KS</styled-content>
is found on
<styled-content style="fixed-case" toggle="no">A</styled-content>
sn‐linked
<italic>N</italic>
‐glycan core structures (
<styled-content style="fixed-case" toggle="no">KS</styled-content>
I) or
<styled-content style="fixed-case" toggle="no">S</styled-content>
er/
<styled-content style="fixed-case" toggle="no">T</styled-content>
hr‐linked
<italic>O</italic>
‐glycan core 2 structures (
<styled-content style="fixed-case" toggle="no">KS II</styled-content>
). Capping or further modification of the glycosaminoglycan chains – sulfation excepted – is not depicted (adapted from Varki
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0310" ref-type="ref">2009</xref>
).</p>
</caption>
<graphic id="nlm-graphic-3" xlink:href="FMR-38-598-g001"></graphic>
</fig>
<fig fig-type="Figure" xml:lang="en" id="fmr12052-fig-0002" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>Classification and basic structure of major types of lipid‐linked glycosylation. (a) Glycosphingolipids consist of a hydrophilic glycan moiety linked to a hydrophobic sphingolipid. In higher animals, a ceramide lipid molecule is initially modified with a β‐linked glucose or galactose residue, after which further extension and modification of the glycan moiety can occur. Extension to larger glycan chains is common on ceramide‐linked glucose residues, whereas further glycan extension on ceramide‐linked galactose residues is more rare. Depending on their glycan core structure, glycosphingolipids are classified in ‘series’. The figure depicts a number of glycosphingolipid core structures. The key features that characterize each series are shown in dashed boxes. Core structures can be further modified with sialic acids or sulfate groups, which allows subclassification of glycosphingolipids as neutral (lacking charged carbohydrates or ionic groups), sialylated or sulfated. (b) Glycosylphosphatidylinositol (GPI) anchors are found in association with certain membrane proteins and serve as linkers between the protein and the lipid membrane. Glycosylphosphatidylinositol anchors have a common core structure comprising ethanolamine‐
<styled-content style="fixed-case" toggle="no">PO</styled-content>
<sub>4</sub>
‐6
<styled-content style="fixed-case" toggle="no">M</styled-content>
anα1‐2
<styled-content style="fixed-case" toggle="no">M</styled-content>
anα1‐6
<styled-content style="fixed-case" toggle="no">M</styled-content>
anα1‐4
<styled-content style="fixed-case" toggle="no">G</styled-content>
lc
<styled-content style="fixed-case" toggle="no">N</styled-content>
α1‐6
<italic>myo</italic>
‐inositol‐1‐
<styled-content style="fixed-case" toggle="no">PO</styled-content>
<sub>4</sub>
‐lipid. Differential derivatization of this common core structure through lipid remodeling and modification of the glycan moiety can cause significant glycosylphosphatidylinositol anchor heterogeneity. The protein is linked to the glycosylphosphatidylinositol anchor via an amide linkage between the C‐terminal carboxyl group of the protein and the amino group of phosphatidylethanolamine (adapted from Varki
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0310" ref-type="ref">2009</xref>
).</p>
</caption>
<graphic id="nlm-graphic-5" xlink:href="FMR-38-598-g002"></graphic>
</fig>
<p>Despite their different core structures and linkages to carrier molecules, distinct glycan types can still share conserved structural characteristics as they often follow partially overlapping biosynthetic pathways. Although some glycan features may be exclusively found in one specific glycan class, many (sub)terminal glycan modifications can be found in different glycan classes. Common (sub)terminal modifications include poly‐
<italic>N</italic>
‐acetyllactosamine chains, ABH and Lewis histo‐blood group antigens (HBGA), and sialic acids in different linkages (Varki
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0310" ref-type="ref">2009</xref>
; Taylor & Drickamer,
<xref rid="fmr12052-bib-0286" ref-type="ref">2011</xref>
). Consequently, the glycan moieties of glycoproteins and glycolipids often have more in common than one would expect based on their core structure.</p>
<p>Apart from the different glycan types introduced here, several other forms of glycosylation exist. However, an in‐depth discussion of these is beyond the scope of this review. For more detailed information on glycan structure and biosynthesis, readers may refer to recent reference works on this topic (Varki
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0310" ref-type="ref">2009</xref>
; Taylor & Drickamer,
<xref rid="fmr12052-bib-0286" ref-type="ref">2011</xref>
).</p>
<p>Not only the animal and human hosts, but also their pathogens can benefit from the fine‐tuned cellular biosynthetic pathways that govern glycosylation. This is most obvious in the case of obligatory intracellular pathogens such as viruses. Glycans form an important part of the surface of many viruses. As the glycosylation of viral components is facilitated by the cellular glycosylation machinery, viral glycosylation is similar to that of the host. However, important differences have been noted: Viral glycoproteins are often more heavily glycosylated than their cellular counterparts and the composition of individual glycan chains can diverge greatly between virus and host. The biological basis of this variability is further situated later in this review (see ‘Glycan and lectin variation at the virus level’).</p>
<p>In line with the similarity between viral and host glycosylation, many of the basic functions covered by glycans in normal animal and human physiology and in viral infection biology – which is intrinsically linked to the biology of the host – are essentially the same. Glycans play important structural roles and are for instance implicated in protein folding and solubility, protease resistance, and masking of highly immunogenic protein stretches (‘glycan shielding’) (Varki
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0310" ref-type="ref">2009</xref>
; Taylor & Drickamer,
<xref rid="fmr12052-bib-0286" ref-type="ref">2011</xref>
). Alternatively, glycans can also have nonstructural roles and take part in specific recognition events, in which they usually interact with complementary glycan‐binding proteins called lectins (Varki
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0310" ref-type="ref">2009</xref>
; Taylor & Drickamer,
<xref rid="fmr12052-bib-0286" ref-type="ref">2011</xref>
).</p>
</sec>
<sec id="fmr12052-sec-0004">
<title>Lectins</title>
<p>Lectins may simply be defined as carbohydrate‐binding proteins, although some definitions are more restrictive and exclude mono‐/oligo‐saccharide transport proteins, enzymes, glycan‐specific antibodies, and even glycosaminoglycan‐binding proteins (Elgavish & Shaanan,
<xref rid="fmr12052-bib-0079" ref-type="ref">1997</xref>
; Weis,
<xref rid="fmr12052-bib-0328" ref-type="ref">1997</xref>
; Loris,
<xref rid="fmr12052-bib-0181" ref-type="ref">2002</xref>
; Varki
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0310" ref-type="ref">2009</xref>
; Gabius
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0086" ref-type="ref">2011</xref>
). According to the more strict definitions, glycosaminoglycan‐binding proteins and lectins are distinguished based on different factors, including their ligand range, the structural basis of their glycan recognition, and their conservation (Varki
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0310" ref-type="ref">2009</xref>
). In general, glycosaminoglycan‐binding proteins interact with negatively charged glycosaminoglycans via clusters of positively charged aa residues and – with exception of hyaluronan‐binding proteins, which seem to share an evolutionarily conserved fold – do not appear to be evolutionarily related to each other (Varki
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0310" ref-type="ref">2009</xref>
). In contrast, most strict sense lectins belong to protein families with defined ‘carbohydrate recognition domains’ (CRD). The CRDs within a lectin family share structural and functional properties and selectively recognize specific portions of
<italic>N</italic>
‐glycans,
<italic>O</italic>
‐glycans, or glycolipids (sometimes also glycosaminoglycans) (Varki
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0310" ref-type="ref">2009</xref>
). Although some CRDs can efficiently bind monosaccharides, other CRDs show no apparent affinity for monosaccharides and favor oligosaccharide ligands. The latter CRD type often has a preference for ligands with specific linkages between the monosaccharide subunits, as these linkages determine the 3D structure of the glycan ligand and therefore the portions of the glycan that are available for interaction with the CRD.</p>
<p>Interactions between a single CRD and a single mono‐/oligo‐saccharide (affinity) are often weak, and strong interactions are usually the result of multivalent binding, i.e. the interaction of multiple CRDs with multiple ligands (avidity). Whereas some lectins contain multiple CRDs that can participate in ligand binding, others contain only a single CRD and rely on clustering of individual lectin molecules for high avidity binding. Clustering of CRDs does not only allow stronger interactions with ligands, but also contributes to the specificity/selectivity of interactions at the multivalent level. The relative spacing of the CRDs allows highly avid, multivalent binding to specific saccharide ligands in a certain density and particular presentation. Ultimately, the avidity of lectins for specific glycoconjugates depends on the structure, multivalency, and density of glycans on these molecules (Elgavish & Shaanan,
<xref rid="fmr12052-bib-0079" ref-type="ref">1997</xref>
; Weis,
<xref rid="fmr12052-bib-0328" ref-type="ref">1997</xref>
; Loris,
<xref rid="fmr12052-bib-0181" ref-type="ref">2002</xref>
; Varki
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0310" ref-type="ref">2009</xref>
; Gabius
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0086" ref-type="ref">2011</xref>
).</p>
<p>Animal lectins are typically expressed in a cell‐ and/or tissue‐specific manner. They are involved in many different biological processes, including glycoprotein trafficking, cell adhesion and signaling, and their expression is usually tightly regulated (Varki
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0310" ref-type="ref">2009</xref>
). Particularly striking is the great number of membrane‐associated and soluble lectins that are linked with host immunity. Immune system lectins are involved in intercellular communication, positive and/or negative regulation of activation, regulation of inflammation, disposal of damaged and apoptotic cells, etc. Several of these lectins have also been identified as ‘pattern recognition receptors’ (PRRs), which act as molecular sensors for pathogens and endogenous stress signals and often trigger specific immune reactions/mechanisms in response to their detection (Gordon,
<xref rid="fmr12052-bib-0099" ref-type="ref">2002</xref>
; Janeway & Medzhitov,
<xref rid="fmr12052-bib-0141" ref-type="ref">2002</xref>
; Cambi & Figdor,
<xref rid="fmr12052-bib-0041" ref-type="ref">2003</xref>
; McGreal
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0199" ref-type="ref">2004</xref>
; Cambi
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0042" ref-type="ref">2005</xref>
; McGreal
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0200" ref-type="ref">2005</xref>
; Crocker
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0056" ref-type="ref">2007</xref>
; Crocker & Redelinghuys,
<xref rid="fmr12052-bib-0055" ref-type="ref">2008</xref>
; van Kooyk & Rabinovich,
<xref rid="fmr12052-bib-0306" ref-type="ref">2008</xref>
; Garcia‐Vallejo & van Kooyk,
<xref rid="fmr12052-bib-0089" ref-type="ref">2009</xref>
; Geijtenbeek & Gringhuis,
<xref rid="fmr12052-bib-0094" ref-type="ref">2009</xref>
; Sato
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0255" ref-type="ref">2009</xref>
; Bottazzi
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0035" ref-type="ref">2010</xref>
; Dam & Brewer,
<xref rid="fmr12052-bib-0060" ref-type="ref">2010</xref>
; Kumagai & Akira,
<xref rid="fmr12052-bib-0156" ref-type="ref">2010</xref>
; Svajger
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0279" ref-type="ref">2010</xref>
; Davicino
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0061" ref-type="ref">2011</xref>
; Osorio & Reis e Sousa,
<xref rid="fmr12052-bib-0219" ref-type="ref">2011</xref>
; Sancho & Reis e Sousa,
<xref rid="fmr12052-bib-0253" ref-type="ref">2012</xref>
). The capacity of many immune system lectins to couple glycan recognition events with specific signaling and/or effector functions gives them a key regulatory position in the immune system. Figure 
<xref rid="fmr12052-fig-0003" ref-type="fig">3</xref>
gives a schematic overview of different types of animal lectins that are considered in this review.</p>
<fig fig-type="Figure" xml:lang="en" id="fmr12052-fig-0003" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>Schematic overview of different types of membrane‐associated (a) and soluble (b) animal lectins that are considered in this review. The lectin domains are highlighted and listed in the key.
<italic>
<styled-content style="fixed-case" toggle="no">C</styled-content>
‐type lectin/
<styled-content style="fixed-case" toggle="no">C</styled-content>
‐type lectin domain</italic>
: Lectins are classified as
<styled-content style="fixed-case" toggle="no">C</styled-content>
‐type lectins based on their
<styled-content style="fixed-case" toggle="no">
<roman toggle="no">Ca
<sup>2+</sup>
</roman>
</styled-content>
‐dependency and shared primary structure. In the
<styled-content style="fixed-case" toggle="no">C</styled-content>
‐type
<styled-content style="fixed-case" toggle="no">CRD</styled-content>
, a
<styled-content style="fixed-case" toggle="no">
<roman toggle="no">Ca
<sup>2+</sup>
</roman>
</styled-content>
ion is directly involved in carbohydrate binding by making coordination bonds to both the
<styled-content style="fixed-case" toggle="no">CRD</styled-content>
surface and key hydroxyl groups of the carbohydrate. The
<styled-content style="fixed-case" toggle="no">C</styled-content>
‐type lectin family contains both membrane‐associated (a.1) and soluble (b.1) lectins. The collectins are soluble
<styled-content style="fixed-case" toggle="no">C</styled-content>
‐type lectins characterized by the presence of collagen‐like domains.
<italic>
<styled-content style="fixed-case" toggle="no">R</styled-content>
‐type lectin domain:</italic>
This term refers to a
<styled-content style="fixed-case" toggle="no">CRD</styled-content>
that is structurally similar to the
<styled-content style="fixed-case" toggle="no">CRD</styled-content>
in ricin, a toxin found in the plant
<italic>
<styled-content style="fixed-case" toggle="no">R</styled-content>
icinus communis</italic>
.
<italic>I‐type lectin/I‐type lectin domain:</italic>
I‐type lectins are glycan‐binding proteins that belong to the Ig superfamily, but are not antibodies or T‐cell receptors. The ‘sialic acid‐binding Ig‐like lectin (siglec)’ family of membrane‐associated lectins is currently the only well‐characterized group of I‐type lectins (a.2).
<italic>Ficolin:</italic>
Ficolins (b.2) are soluble lectins characterized by the presence of collagen‐like domains and fibrinogen‐like globular domains with a lectin activity.
<italic>
<styled-content style="fixed-case" toggle="no">G</styled-content>
alectin/
<styled-content style="fixed-case" toggle="no">S</styled-content>
‐type lectin (domain):</italic>
Galectins (b.3) are soluble lectins that typically bind β‐galactose‐containing glycoconjugates and show primary structural homology in their
<styled-content style="fixed-case" toggle="no">CRD</styled-content>
s. Galectins were initially referred to as
<styled-content style="fixed-case" toggle="no">S</styled-content>
‐type lectins to reflect their sulfhydryl dependency, the presence of cysteine residues and their solubility; however, at present, not all identified galectins fit this initial description anymore.
<italic>Pentraxin/pentraxin domain:</italic>
Pentraxins (b.4) are characterized by the presence of pentraxin domains, which contain an eight amino acid long conserved ‘pentraxin signature’ (
<styled-content style="fixed-case" toggle="no">H</styled-content>
x
<styled-content style="fixed-case" toggle="no">C</styled-content>
x
<styled-content style="fixed-case" toggle="no">S</styled-content>
/
<styled-content style="fixed-case" toggle="no">TW</styled-content>
x
<styled-content style="fixed-case" toggle="no">S</styled-content>
, where x is any amino acid) and display an
<styled-content style="fixed-case" toggle="no">L</styled-content>
‐type (Legume‐type) lectin fold.
<styled-content style="fixed-case" toggle="no">SAP</styled-content>
is a soluble lectin that requires
<styled-content style="fixed-case" toggle="no">
<roman toggle="no">Ca
<sup>2+</sup>
</roman>
</styled-content>
ions for carbohydrate ligand binding (adapted from Fujita,
<xref rid="fmr12052-bib-0085" ref-type="ref">2002</xref>
; Varki
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0310" ref-type="ref">2009</xref>
; Bottazzi
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0035" ref-type="ref">2010</xref>
).</p>
</caption>
<graphic id="nlm-graphic-7" xlink:href="FMR-38-598-g003"></graphic>
</fig>
<p>Lectins play a pivotal role in different aspects of the physiology, including the immune defense against (viral) pathogens. However, it has become apparent that several viruses exploit host lectins to promote their spread. In addition, many viruses encode lectins for the recognition of and infectious entry into target cells. The following section explores how glycan–lectin interactions shape the virus‐host interplay, mainly focussing on glycan–lectin interactions directly involving infectious virions.</p>
</sec>
</sec>
<sec id="fmr12052-sec-0005">
<title>Glycan–lectin interactions in virus biology</title>
<sec id="fmr12052-sec-0006">
<title>Glycan–lectin interactions that benefit the host</title>
<sec id="fmr12052-sec-0007">
<title>Membrane‐associated host lectins can capture viruses for degradation</title>
<p>Lectins cover essential roles in the animal host's immune defense. Importantly, several membrane‐associated host (immune system) lectins act as pathogen recognition molecules: they can bind pathogens and activate signaling mechanisms or capture pathogens for subsequent degradation and presentation to cells of the adaptive immune system (e.g. MHCII‐restricted presentation of antigens to T cells), resulting in the induction of a pathogen‐specific adaptive immune response. Alternatively, pathogens attached to such cell surface lectins may also be directly presented to neighboring immune cells
<italic>in trans</italic>
, a process that seems especially significant at sites with a high density of immune cells (e.g. the lymph nodes). Hence, binding of a viral pathogen to membrane‐associated (immune system) lectins can lead to its clearance and degradation.</p>
<p>A prominent example is the interaction between the human immunodeficiency virus type 1 (HIV‐1) and human langerin, a C‐type lectin mainly expressed on Langerhans cells (de Witte
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0063" ref-type="ref">2007</xref>
; van der Vlist & Geijtenbeek,
<xref rid="fmr12052-bib-0301" ref-type="ref">2010</xref>
). de Witte
<italic>et al</italic>
. (
<xref rid="fmr12052-bib-0063" ref-type="ref">2007</xref>
) reported that HIV‐1 interacts with langerin via high‐mannose glycans on the gp120 envelope protein and is subsequently internalized into Birbeck granules, leading to virus degradation (de Witte
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0063" ref-type="ref">2007</xref>
). Also DC‐SIGN, a mannose‐binding C‐type lectin mainly expressed on dendritic cells (DCs), can bind and internalize HIV‐1 virions for degradation and promotes MHCII‐restricted as well as exogenous MHCI‐restricted presentation of HIV‐1 antigens (Moris
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0207" ref-type="ref">2004</xref>
,
<xref rid="fmr12052-bib-0208" ref-type="ref">2006</xref>
). Similarly, various other membrane‐associated host lectins can aid as PRRs in the defense against viral pathogens. However, growing evidence illustrates that many of these lectins, including DC‐SIGN, are also abused by viruses to gain access to their target cells and facilitate viral spread, as is discussed further below.</p>
</sec>
<sec id="fmr12052-sec-0008">
<title>Soluble host lectins can block viral infection and target virions for destruction by the immune system</title>
<p>In contrast to the dual role played by different membrane‐associated host lectins, soluble host lectins have mainly been associated with protection against viral infection. Several soluble host lectins have been reported to aid in neutralization and clearance of various viral pathogens. Table 
<xref rid="fmr12052-tbl-0001" ref-type="table">1</xref>
gives an overview of membrane‐associated and soluble host lectins that are linked with the host's defense against different viruses. Current experimental data strongly implicate these host lectins in the defense against the listed viral pathogens and do not attribute explicit proviral effects to the host lectin – unlike for the lectin‐virus pairs listed further in Table 
<xref rid="fmr12052-tbl-0002" ref-type="table">2</xref>
.</p>
<table-wrap id="fmr12052-tbl-0001" xml:lang="en" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<p>Overview of host lectins that are linked with antiviral defense</p>
</caption>
<table frame="hsides" rules="groups">
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<thead valign="top">
<tr style="border-bottom:solid 1px #000000">
<th align="left" valign="top" rowspan="1" colspan="1">Host lectin</th>
<th align="left" valign="top" rowspan="1" colspan="1">Implicated in defense against …</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" colspan="2" rowspan="1">Membrane‐associated lectin</td>
</tr>
<tr>
<td align="left" style="padding-left:10%" rowspan="1" colspan="1">Langerin</td>
<td align="left" rowspan="1" colspan="1">Human immunodeficiency virus
<sup>
<italic>dimt</italic>
</sup>
, Measles virus
<sup>1</sup>
</td>
</tr>
<tr>
<td align="left" colspan="2" rowspan="1">Soluble lectin</td>
</tr>
<tr>
<td align="left" style="padding-left:10%" rowspan="1" colspan="1">Collectin‐11 (CL‐11)</td>
<td align="left" rowspan="1" colspan="1">Influenza A virus
<sup>2,3</sup>
</td>
</tr>
<tr>
<td align="left" style="padding-left:10%" rowspan="1" colspan="1">Collectin‐43 (CL‐43)</td>
<td align="left" rowspan="1" colspan="1">Bovine rotavirus,
<sup>4</sup>
Influenza A virus
<sup>4–6</sup>
</td>
</tr>
<tr>
<td align="left" style="padding-left:10%" rowspan="1" colspan="1">Collectin‐46 (CL‐46)</td>
<td align="left" rowspan="1" colspan="1">Influenza A virus
<sup>6,7</sup>
</td>
</tr>
<tr>
<td align="left" style="padding-left:10%" rowspan="1" colspan="1">Conglutinin</td>
<td align="left" rowspan="1" colspan="1">Bovine rotavirus,
<sup>4</sup>
Influenza A virus
<sup>4,6,8–12</sup>
</td>
</tr>
<tr>
<td align="left" style="padding-left:10%" rowspan="1" colspan="1">Ficolin A</td>
<td align="left" rowspan="1" colspan="1">Influenza A virus
<sup>13</sup>
</td>
</tr>
<tr>
<td align="left" style="padding-left:10%" rowspan="1" colspan="1">Ficolin‐α</td>
<td align="left" rowspan="1" colspan="1">Porcine reproductive and respiratory syndrome virus
<sup>14</sup>
</td>
</tr>
<tr>
<td align="left" style="padding-left:10%" rowspan="1" colspan="1">H‐ficolin</td>
<td align="left" rowspan="1" colspan="1">Influenza A virus
<sup>15</sup>
</td>
</tr>
<tr>
<td align="left" style="padding-left:10%" rowspan="1" colspan="1">L‐ficolin</td>
<td align="left" rowspan="1" colspan="1">Hepatitis C virus,
<sup>16,17</sup>
Influenza A virus
<sup>13</sup>
</td>
</tr>
<tr>
<td align="left" style="padding-left:10%" rowspan="1" colspan="1">Galectin‐1 (Gal‐1)</td>
<td align="left" rowspan="1" colspan="1">Hendra virus,
<sup>18</sup>
Nipah virus
<sup>
<italic>dimt</italic>
</sup>
, Parainfluenza virus type 3
<sup>18</sup>
</td>
</tr>
<tr>
<td align="left" style="padding-left:10%" rowspan="1" colspan="1">Mannose‐binding lectin (MBL)</td>
<td align="left" rowspan="1" colspan="1">Dengue virus,
<sup>19,20</sup>
Hepatitis C virus,
<sup>21</sup>
Human cytomegalovirus,
<sup>22</sup>
Human immunodeficiency virus,
<sup>23–29</sup>
Influenza A virus
<sup>
<italic>dimt</italic>
</sup>
, Marburg virus,
<sup>30</sup>
Severe acute respiratory syndrome coronavirus
<sup>31,32</sup>
</td>
</tr>
<tr>
<td align="left" style="padding-left:10%" rowspan="1" colspan="1">Serum amyloid P component (SAP)</td>
<td align="left" rowspan="1" colspan="1">Influenza A virus,
<sup>33–36</sup>
Influenza B virus,
<sup>34</sup>
Parainfluenza virus type 3
<sup>34</sup>
</td>
</tr>
<tr>
<td align="left" style="padding-left:10%" rowspan="1" colspan="1">Surfactant protein A (SP‐A)</td>
<td align="left" rowspan="1" colspan="1">Herpes simplex virus,
<sup>37–39</sup>
Human coronavirus 229E,
<sup>40</sup>
Influenza A virus
<sup>
<italic>dimt</italic>
</sup>
, Porcine reproductive and respiratory syndrome virus
<sup>41</sup>
</td>
</tr>
<tr>
<td align="left" style="padding-left:10%" rowspan="1" colspan="1">Surfactant protein D (SP‐D)</td>
<td align="left" rowspan="1" colspan="1">Bovine rotavirus,
<sup>4</sup>
Human coronavirus 229E,
<sup>40</sup>
Influenza A virus
<sup>
<italic>dimt</italic>
</sup>
, Respiratory syncytial virus,
<sup>42–44</sup>
Sendai virus
<sup>45</sup>
</td>
</tr>
</tbody>
</table>
<table-wrap-foot id="fmr12052-ntgp-0001">
<fn id="fmr12052-note-0001">
<p>Current experimental data implicate these host lectins in the defense against the listed viral pathogens and do not attribute explicit proviral effects to the host lectin.</p>
</fn>
<fn id="fmr12052-note-0002">
<p>References in Table 1 are listed in Supporting Information, Data S1.</p>
</fn>
<fn id="fmr12052-note-0003">
<p>dimt: discussed in main text.</p>
</fn>
</table-wrap-foot>
<permissions>
<copyright-holder>John Wiley & Sons, Ltd</copyright-holder>
<license>
<license-p>This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.</license-p>
</license>
</permissions>
</table-wrap>
<table-wrap id="fmr12052-tbl-0002" xml:lang="en" orientation="portrait" position="float">
<label>Table 2</label>
<caption>
<p>Overview of host lectins that have been linked with proviral effects</p>
</caption>
<table frame="hsides" rules="groups">
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<thead valign="top">
<tr style="border-bottom:solid 1px #000000">
<th align="left" valign="top" rowspan="1" colspan="1">Host lectin</th>
<th align="left" valign="top" rowspan="1" colspan="1">Implicated in infection with/spread or persistence of …</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" colspan="2" rowspan="1">Membrane‐associated lectin</td>
</tr>
<tr>
<td align="left" style="padding-left:10%" rowspan="1" colspan="1">Asialoglycoprotein receptor (ASGPR)</td>
<td align="left" rowspan="1" colspan="1">Ebola virus,
<sup>1–3</sup>
Hepatitis A virus,
<sup>4</sup>
Hepatitis B virus,
<sup>5–10</sup>
Marburg virus,
<sup>2,11</sup>
Sendai virus
<sup>12–14</sup>
</td>
</tr>
<tr>
<td align="left" style="padding-left:10%" rowspan="1" colspan="1">Blood dendritic cell antigen‐2 (BDCA‐2)</td>
<td align="left" rowspan="1" colspan="1">Hepatitis C virus,
<sup>15</sup>
Human immunodeficiency virus
<sup>16,17</sup>
</td>
</tr>
<tr>
<td align="left" style="padding-left:10%" rowspan="1" colspan="1">Dendritic cell immunoreceptor (DCIR)</td>
<td align="left" rowspan="1" colspan="1">Hepatitis C virus,
<sup>15</sup>
Human immunodeficiency virus
<sup>18–20</sup>
</td>
</tr>
<tr>
<td align="left" style="padding-left:10%" rowspan="1" colspan="1">Dendritic cell‐specific intercellular adhesion molecule 3‐ grabbing nonintegrin (DC‐SIGN)</td>
<td align="left" rowspan="1" colspan="1">Aura virus,
<sup>21</sup>
Dengue virus,
<sup>22–34</sup>
Ebola virus,
<sup>1–3,35–41</sup>
Feline coronavirus,
<sup>42,43</sup>
Feline immunodeficiency virus,
<sup>44</sup>
Hepatitis C virus,
<sup>41,45–53</sup>
Herpes simplex virus,
<sup>54</sup>
Human coronavirus NL‐63,
<sup>55</sup>
Human cytomegalovirus,
<sup>56–59</sup>
Human herpes virus 8/Kaposi's sarcoma‐associated herpes virus,
<sup>60–62</sup>
Human immunodeficiency virus
<sup>
<italic>dimt</italic>
</sup>
, Human T‐cell lymphotropic virus,
<sup>63–65</sup>
Influenza A virus,
<sup>66–68</sup>
Junin virus,
<sup>69</sup>
La Crosse virus,
<sup>70</sup>
Lassa virus,
<sup>71</sup>
Lymphocytic choriomeningitis virus,
<sup>72</sup>
Marburg virus,
<sup>2,41,73</sup>
Measles virus,
<sup>74–79</sup>
Porcine reproductive and respiratory syndrome virus,
<sup>80</sup>
Punta Toro virus,
<sup>81</sup>
Respiratory syncytial virus,
<sup>82</sup>
Rift Valley fever virus,
<sup>70,81</sup>
Semliki Forest virus,
<sup>83</sup>
Severe acute respiratory syndrome coronavirus,
<sup>2,41,55,84–87</sup>
Severe fever with thrombocytopenia syndrome virus,
<sup>70</sup>
Simian immunodeficiency virus,
<sup>1,40,88–99</sup>
Sindbis virus,
<sup>21,100</sup>
Toscana virus,
<sup>81</sup>
Uukuniemi virus,
<sup>81</sup>
West Nile virus
<sup>32,33,101</sup>
</td>
</tr>
<tr>
<td align="left" style="padding-left:10%" rowspan="1" colspan="1">Liver/lymph node‐specific intercellular adhesion molecule 3‐ grabbing nonintegrin (L‐SIGN; DC‐SIGN‐related protein; DC‐SIGNR)</td>
<td align="left" rowspan="1" colspan="1">Aura virus,
<sup>21</sup>
Dengue virus,
<sup>28–30,32,33</sup>
Ebola virus,
<sup>1,2,35,37–41</sup>
Hepatitis C virus,
<sup>45–52,102,103</sup>
Human coronavirus NL‐63,
<sup>55</sup>
Human coronavirus 229E,
<sup>104</sup>
Human cytomegalovirus,
<sup>56</sup>
Human immunodeficiency virus,
<sup>1,88,99,105–108</sup>
Influenza A virus,
<sup>66</sup>
Junin virus,
<sup>69</sup>
Marburg virus,
<sup>2,41</sup>
Respiratory syncytial virus,
<sup>82</sup>
Semliki Forest virus,
<sup>83</sup>
Severe acute respiratory syndrome coronavirus,
<sup>2,41,55,86,109,110</sup>
Severe fever with thrombocytopenia syndrome virus,
<sup>70</sup>
Simian immunodeficiency virus,
<sup>88,90,99</sup>
Sindbis virus,
<sup>21,100</sup>
West Nile virus
<sup>32,33</sup>
</td>
</tr>
<tr>
<td align="left" style="padding-left:10%" rowspan="1" colspan="1">Liver/lymph node sinusoidal endothelial cell C‐type lectin (LSECtin)</td>
<td align="left" rowspan="1" colspan="1">Ebola virus,
<sup>3,41,111,112</sup>
Lassa virus,
<sup>71</sup>
Lymphocytic choriomeningitis virus,
<sup>72</sup>
Marburg virus,
<sup>41,112</sup>
Severe acute respiratory syndrome coronavirus
<sup>41</sup>
</td>
</tr>
<tr>
<td align="left" style="padding-left:10%" rowspan="1" colspan="1">Macrophage Gal/GalNAc‐specific C‐type lectin (MGL)</td>
<td align="left" rowspan="1" colspan="1">Ebola virus,
<sup>113,114</sup>
Influenza A virus,
<sup>115</sup>
Marburg virus
<sup>73,113</sup>
</td>
</tr>
<tr>
<td align="left" style="padding-left:10%" rowspan="1" colspan="1">Mannose receptor (MR)</td>
<td align="left" rowspan="1" colspan="1">Dengue virus,
<sup>34</sup>
Human immunodeficiency virus,
<sup>116–123</sup>
Influenza A virus,
<sup>115,124</sup>
Visna/Maedi virus
<sup>125</sup>
</td>
</tr>
<tr>
<td align="left" style="padding-left:10%" rowspan="1" colspan="1">Paired immunoglobulin‐like type 2 receptor alpha (PILR‐α)</td>
<td align="left" rowspan="1" colspan="1">Herpes simplex virus,
<sup>126–132</sup>
Pseudorabies virus
<sup>129</sup>
</td>
</tr>
<tr>
<td align="left" style="padding-left:10%" rowspan="1" colspan="1">Siglec‐1 (Sialoadhesin)</td>
<td align="left" rowspan="1" colspan="1">Human immunodeficiency virus,
<sup>133–135</sup>
Porcine reproductive and respiratory syndrome virus
<sup>136–139</sup>
</td>
</tr>
<tr>
<td align="left" style="padding-left:10%" rowspan="1" colspan="1">Siglec‐4 (Myelin‐associated glycoprotein; MAG)</td>
<td align="left" rowspan="1" colspan="1">Herpes simplex virus,
<sup>140</sup>
Varicella‐zoster virus
<sup>140</sup>
</td>
</tr>
<tr>
<td align="left" colspan="2" rowspan="1">Soluble lectin</td>
</tr>
<tr>
<td align="left" style="padding-left:10%" rowspan="1" colspan="1">Galectin‐1 (Gal‐1)</td>
<td align="left" rowspan="1" colspan="1">Human immunodeficiency virus
<sup>
<italic>dimt</italic>
</sup>
, Human T‐cell lymphotropic virus
<sup>141</sup>
</td>
</tr>
<tr>
<td align="left" style="padding-left:10%" rowspan="1" colspan="1">Mannose‐binding lectin (MBL)</td>
<td align="left" rowspan="1" colspan="1">Ebola virus,
<sup>36,142–144</sup>
Hendra virus,
<sup>142,144</sup>
Nipah virus,
<sup>142,144</sup>
West Nile virus
<sup>144–146</sup>
</td>
</tr>
<tr>
<td align="left" style="padding-left:10%" rowspan="1" colspan="1">Surfactant protein A (SP‐A)</td>
<td align="left" rowspan="1" colspan="1">Human immunodeficiency virus,
<sup>147</sup>
Respiratory syncytial virus
<sup>148–152</sup>
</td>
</tr>
<tr>
<td align="left" style="padding-left:10%" rowspan="1" colspan="1">Surfactant protein D (SP‐D)</td>
<td align="left" rowspan="1" colspan="1">Human immunodeficiency virus
<sup>153,154</sup>
</td>
</tr>
</tbody>
</table>
<table-wrap-foot id="fmr12052-ntgp-0002">
<fn id="fmr12052-note-0004">
<p>Although capture of a virus by these lectins may have certain antiviral effects or promote the specific immunity against this pathogen, current experimental data suggest that the listed viruses may also employ these lectins to promote viral infection, spread or persistence.</p>
</fn>
<fn id="fmr12052-note-0005">
<p>References in Table 2 are listed in Supporting Information, Data S2.</p>
</fn>
<fn id="fmr12052-note-0006">
<p>dimt: discussed in main text.</p>
</fn>
</table-wrap-foot>
<permissions>
<copyright-holder>John Wiley & Sons, Ltd</copyright-holder>
<license>
<license-p>This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.</license-p>
</license>
</permissions>
</table-wrap>
<p>The basic principles of soluble lectin‐mediated antiviral protection are most easily conveyed using some specific, well‐characterized examples. For instance, various studies point out an important role of surfactant protein A (SP‐A), surfactant protein D (SP‐D), and mannose‐binding lectin (MBL) in the defense against influenza A virus (IAV) infection.</p>
<p>SP‐A, SP‐D, and MBL are all soluble C‐type lectins and share a similar basic structure: lectin monomers – consisting of an N‐terminal cysteine‐rich domain, a collagen‐like domain, a coiled coil neck domain, and a C‐terminal CRD – assemble into trimers which, under physiologic conditions, further multimerize via their N‐termini to form typical cruciform‐ (SP‐D) or bouquet‐ (SP‐A and MBL) like structures (van de Wetering
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0299" ref-type="ref">2004</xref>
; Veldhuizen
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0311" ref-type="ref">2011</xref>
). Despite their similar structure, these lectins show distinct glycan ligand specificities (Veldhuizen
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0311" ref-type="ref">2011</xref>
) and also their interaction with IAV and their effects on infection and spread appear to differ. Studies using distinct IAV isolates indicate that SP‐D and MBL bind mannose‐rich glycans on the viral surface glycoproteins hemagglutinin and neuraminidase (a viral lectin and a viral glycosidase, involved in IAV entry and release; see discussion on viral lectins) through their CRDs (Malhotra
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0185" ref-type="ref">1994</xref>
; Reading
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0238" ref-type="ref">1997</xref>
; Kase
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0145" ref-type="ref">1999</xref>
; Hartshorn
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0114" ref-type="ref">2000</xref>
; Hillaire
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0126" ref-type="ref">2011</xref>
). Although SP‐A may interact with some IAV isolates in a similar manner (Malhotra
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0185" ref-type="ref">1994</xref>
), binding of this molecule to most of the IAV variants tested to date appears not to involve the lectin activity of SP‐A; in contrast, virus binding depends on the interaction of the viral hemagglutinin with a sialylated
<italic>N</italic>
‐glycan on the SP‐A CRD (Hartshorn
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0111" ref-type="ref">1994</xref>
; Benne
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0025" ref-type="ref">1995</xref>
,
<xref rid="fmr12052-bib-0026" ref-type="ref">1997</xref>
; Hartshorn
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0113" ref-type="ref">1997</xref>
; van Eijk
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0304" ref-type="ref">2003</xref>
; Mikerov
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0204" ref-type="ref">2008</xref>
). In other words: SP‐D and MBL binding depend on viral glycosylation, whereas SP‐A binding mainly depends on the specificity of the hemagglutinin, and this is mirrored in the spectrum of IAV variants these lectins can effectively bind (Hartshorn
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0111" ref-type="ref">1994</xref>
; Malhotra
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0185" ref-type="ref">1994</xref>
; Benne
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0025" ref-type="ref">1995</xref>
,
<xref rid="fmr12052-bib-0026" ref-type="ref">1997</xref>
; Hartshorn
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0113" ref-type="ref">1997</xref>
; Reading
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0238" ref-type="ref">1997</xref>
; Kase
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0145" ref-type="ref">1999</xref>
; Hartshorn
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0114" ref-type="ref">2000</xref>
; van Eijk
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0304" ref-type="ref">2003</xref>
; Mikerov
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0204" ref-type="ref">2008</xref>
; Hillaire
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0126" ref-type="ref">2011</xref>
). Interestingly, the porcine variant of SP‐D appears to combine the above‐mentioned IAV‐binding functionalities: this molecule may not only bind IAV virions through interaction of its CRD with high mannose glycans on the virion surface (similar to other SP‐D molecules), but also through interaction of a sialylated glycan on the lateral surface of its CRD with the IAV hemagglutinin (similar to SP‐A) and can therefore bind to a broader array of IAV variants (van Eijk
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0303" ref-type="ref">2002</xref>
,
<xref rid="fmr12052-bib-0304" ref-type="ref">2003</xref>
,
<xref rid="fmr12052-bib-0305" ref-type="ref">2004</xref>
; Hillaire
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0126" ref-type="ref">2011</xref>
).</p>
<p>
<italic>In vitro</italic>
assays show that SP‐A and SP‐D can directly neutralize IAV infectivity (Benne
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0025" ref-type="ref">1995</xref>
; Reading
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0238" ref-type="ref">1997</xref>
; Hartshorn
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0114" ref-type="ref">2000</xref>
; van Eijk
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0304" ref-type="ref">2003</xref>
; Hawgood
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0116" ref-type="ref">2004</xref>
; Hillaire
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0126" ref-type="ref">2011</xref>
). Both SP‐A and SP‐D inhibit the viral hemagglutinating activity that is required for IAV attachment to target cells (Hartshorn
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0111" ref-type="ref">1994</xref>
; Malhotra
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0185" ref-type="ref">1994</xref>
; Benne
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0025" ref-type="ref">1995</xref>
; Hartshorn
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0112" ref-type="ref">1996</xref>
,
<xref rid="fmr12052-bib-0113" ref-type="ref">1997</xref>
,
<xref rid="fmr12052-bib-0114" ref-type="ref">2000</xref>
; van Eijk
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0303" ref-type="ref">2002</xref>
,
<xref rid="fmr12052-bib-0304" ref-type="ref">2003</xref>
,
<xref rid="fmr12052-bib-0305" ref-type="ref">2004</xref>
; Mikerov
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0204" ref-type="ref">2008</xref>
; Hillaire
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0126" ref-type="ref">2011</xref>
) and SP‐D was reported to inhibit the viral neuraminidase (Reading
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0238" ref-type="ref">1997</xref>
; Hillaire
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0126" ref-type="ref">2011</xref>
). Interestingly, both lectins also induce viral aggregation (Hartshorn
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0111" ref-type="ref">1994</xref>
,
<xref rid="fmr12052-bib-0112" ref-type="ref">1996</xref>
,
<xref rid="fmr12052-bib-0113" ref-type="ref">1997</xref>
; van Eijk
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0304" ref-type="ref">2003</xref>
) and function as potent opsonins. SP‐A for instance was identified as an opsonin for IAV phagocytosis by alveolar macrophages (Benne
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0026" ref-type="ref">1997</xref>
). Moreover, SP‐A and SP‐D were shown to enhance IAV binding to neutrophils (Hartshorn
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0111" ref-type="ref">1994</xref>
,
<xref rid="fmr12052-bib-0112" ref-type="ref">1996</xref>
,
<xref rid="fmr12052-bib-0113" ref-type="ref">1997</xref>
; van Eijk
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0304" ref-type="ref">2003</xref>
) and SP‐D‐IAV complexes were found to internalize upon attachment to neutrophils (Hartshorn
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0113" ref-type="ref">1997</xref>
; van Eijk
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0304" ref-type="ref">2003</xref>
). Pre‐incubation of IAV with SP‐A or SP‐D also enhances the virus‐induced H
<sub>2</sub>
O
<sub>2</sub>
responses in neutrophils (Hartshorn
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0111" ref-type="ref">1994</xref>
,
<xref rid="fmr12052-bib-0112" ref-type="ref">1996</xref>
,
<xref rid="fmr12052-bib-0113" ref-type="ref">1997</xref>
; van Eijk
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0304" ref-type="ref">2003</xref>
) and pre‐incubation of the virus with SP‐D can protect neutrophils from IAV‐induced deactivation (Hartshorn
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0111" ref-type="ref">1994</xref>
,
<xref rid="fmr12052-bib-0112" ref-type="ref">1996</xref>
,
<xref rid="fmr12052-bib-0113" ref-type="ref">1997</xref>
). MBL can counteract IAV by roughly the same mechanisms as SP‐D (Hartshorn
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0110" ref-type="ref">1993</xref>
; Anders
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0004" ref-type="ref">1994</xref>
; Malhotra
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0185" ref-type="ref">1994</xref>
; Hartshorn
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0112" ref-type="ref">1996</xref>
,
<xref rid="fmr12052-bib-0113" ref-type="ref">1997</xref>
; Reading
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0238" ref-type="ref">1997</xref>
; Kase
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0145" ref-type="ref">1999</xref>
), although its ability to activate the complement cascade expands its capabilities (Anders
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0004" ref-type="ref">1994</xref>
; Reading
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0237" ref-type="ref">1995</xref>
; Chang
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0049" ref-type="ref">2010</xref>
). Ligand binding by MBL (or alternatively ficolins) can lead to activation of MBL‐associated serine proteases (MASPs) and initiate the complement cascade via the so‐called lectin pathway (Blue
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0029" ref-type="ref">2004</xref>
; Bottazzi
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0035" ref-type="ref">2010</xref>
). Complement deposition on a virus may interfere directly with crucial steps in the viral infection process (e.g. receptor binding), but can also trigger complement receptor‐mediated uptake of the pathogen into immune cells. In addition, for enveloped viruses, complement activation may result in membrane attack complex (MAC) formation on the viral envelope and subsequent virolysis (Blue
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0029" ref-type="ref">2004</xref>
; Bottazzi
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0035" ref-type="ref">2010</xref>
).</p>
<p>In line with the available
<italic>in vitro</italic>
data, recent work with SP‐A‐, SP‐D‐, and MBL‐knockout mice also confirmed the antiviral potential of these soluble lectins
<italic>in vivo</italic>
(LeVine
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0170" ref-type="ref">2001</xref>
,
<xref rid="fmr12052-bib-0171" ref-type="ref">2002</xref>
; Zhang
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0338" ref-type="ref">2002</xref>
; Li
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0175" ref-type="ref">2002</xref>
; Hawgood
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0116" ref-type="ref">2004</xref>
; LeVine
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0172" ref-type="ref">2004</xref>
; Kingma
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0149" ref-type="ref">2006</xref>
; Chang
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0049" ref-type="ref">2010</xref>
). Noteworthy caveats regarding these
<italic>in vivo</italic>
studies are, however, that direct antiviral effects of these lectins can be hard to uncouple from other – e.g. immune‐regulatory – effects and that mice do not represent natural hosts for IAV.</p>
<p>Another interesting example of antiviral activity mediated by soluble host lectins was recently reported for Nipah virus (NiV): the physiologic, homodimeric form of the soluble lectin galectin‐1 can inhibit NiV envelope protein‐mediated membrane fusion (Levroney
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0173" ref-type="ref">2005</xref>
; Garner
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0091" ref-type="ref">2010</xref>
). NiV encodes two viral membrane glycoproteins – the attachment protein NiV‐G and the fusion protein NiV‐F – that mediate viral entry and direct the endothelial cell syncytia formation typically associated with NiV infection (Levroney
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0173" ref-type="ref">2005</xref>
; Garner
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0091" ref-type="ref">2010</xref>
; Lee & Ataman,
<xref rid="fmr12052-bib-0167" ref-type="ref">2011</xref>
). Binding of NiV‐G to cell surface receptors induces a conformational change in NiV‐F, thereby activating its fusogenic activity (Levroney
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0173" ref-type="ref">2005</xref>
; Garner
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0091" ref-type="ref">2010</xref>
; Lee & Ataman,
<xref rid="fmr12052-bib-0167" ref-type="ref">2011</xref>
). Galectin‐1 associates with glycans on the NiV envelope proteins and interferes with the membrane fusion process in multiple ways (Levroney
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0173" ref-type="ref">2005</xref>
; Garner
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0091" ref-type="ref">2010</xref>
). Not only does galectin‐1 binding directly inhibit the crucial conformational change in NiV‐F associated with membrane fusion, it also reduces the lateral mobility of NiV‐F and NiV‐G in the lipid membrane and consequently counteracts the physical separation of NiV‐F and NiV‐G that is essential for this conformation change (Garner
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0091" ref-type="ref">2010</xref>
). Moreover, galectin‐1 binding impedes endocytosis and maturation of the NiV‐F precursor NiV‐F
<sub>0</sub>
in infected cells (Garner
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0091" ref-type="ref">2010</xref>
), further illustrating the capacity of this lectin to block different stages of the viral infection/replication process.</p>
<p>In sum, soluble host lectins can counteract viral infection in various ways: they may directly neutralize virus by destabilizing or aggregating virions, interfere with crucial steps in the viral infection process (e.g. entry), and/or opsonize virus to facilitate uptake and degradation. Upon virus binding, some soluble lectins can trigger complement deposition on the virus, which may inhibit viral infection, enhance viral uptake via complement receptors and subsequent degradation in immune cells, and/or cause virolysis.</p>
<p>Considering the above, it is clear that lectins contribute significantly to the host's antiviral defense. Host lectins are involved in neutralization and clearance of free virus, immune regulation, and – although not extensively discussed in this overview – the detection and clearance of virus‐infected cells. Figure 
<xref rid="fmr12052-fig-0004" ref-type="fig">4</xref>
illustrates how membrane‐associated and soluble host lectins can aid in antiviral defense.</p>
<fig fig-type="Figure" xml:lang="en" id="fmr12052-fig-0004" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>Schematic overview of how membrane‐associated (a) and soluble (b) host lectins are implicated in antiviral defense. (a.1) Binding of virion‐associated glycans with membrane‐associated host lectins can lead to virus uptake, degradation, and presentation of viral antigens to cells of the adaptive immune system. Binding may trigger specific signaling that promotes an effective antiviral immunity. (a.2) Binding of virion‐associated glycans with membrane‐associated host lectins may promote direct presentation of the virus to immune cells
<italic>in trans</italic>
. Binding may trigger specific signaling that promotes an effective antiviral immunity. (b.1) Binding of soluble host lectins to virion‐associated glycans may interfere directly with viral infection by destabilizing virions, blocking interaction of the virus with its receptors or interfering with other crucial steps in the infection process (e.g. membrane fusion). Soluble host lectins may also aggregate virions, which often negatively impacts viral infectivity (not depicted). (b.2) Soluble host lectins can act as opsonins: lectin binding to virion‐associated glycans may facilitate viral uptake in immune cells via lectin receptors, leading to viral degradation and potential presentation of viral antigens to cells of the adaptive immune system. Lectin binding may also trigger complement deposition on the virus (through the lectin pathway) and facilitate viral uptake via complement receptors. (b.3) Detection of virion‐associated glycans by soluble host lectins may trigger complement deposition on the virus (through the lectin pathway), which may directly inhibit viral infection and/or elicit lysis of the (enveloped) virus.</p>
</caption>
<graphic id="nlm-graphic-9" xlink:href="FMR-38-598-g004"></graphic>
</fig>
</sec>
</sec>
<sec id="fmr12052-sec-0009">
<title>Glycan–lectin interactions that benefit the virus</title>
<sec id="fmr12052-sec-0010">
<title>Viruses encode lectins as keys for viral binding and entry into target cells</title>
<p>Like their animal hosts, also viruses can benefit from interactions between glycans and glycan‐binding proteins. For instance, many viruses, including HIV‐1, herpes simplex virus–1, and Dengue virus, have been shown to interact with glycosaminoglycan molecules present on target cells (Patel
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0225" ref-type="ref">1993</xref>
; Chen
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0050" ref-type="ref">1997</xref>
; Krusat & Streckert,
<xref rid="fmr12052-bib-0155" ref-type="ref">1997</xref>
; Summerford & Samulski,
<xref rid="fmr12052-bib-0274" ref-type="ref">1998</xref>
; Dechecchi
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0064" ref-type="ref">2000</xref>
,
<xref rid="fmr12052-bib-0065" ref-type="ref">2001</xref>
; Vanderheijden
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0308" ref-type="ref">2001</xref>
; Delputte
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0068" ref-type="ref">2002</xref>
; Trybala
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0291" ref-type="ref">2002</xref>
). Viral association with glycosaminoglycans is usually attributed to charge‐based attractions between clusters of positively charged aa residues on the virion surface and the negatively charged glycosaminoglycan chains. The interaction with glycosaminoglycans often constitutes the first contact between a virus and its target cell and typically increases infection efficiency. However, it has been documented for several viruses that the ability to interact with glycosaminoglycans can result from adaptation to growth in cell culture (Sa‐Carvalho
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0251" ref-type="ref">1997</xref>
; Klimstra
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0150" ref-type="ref">1998</xref>
; Hulst
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0135" ref-type="ref">2000</xref>
; Mandl
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0186" ref-type="ref">2001</xref>
). Clearly, use of primary virus isolates is of crucial importance when assessing the occurrence and relevance of such interactions
<italic>in vivo</italic>
.</p>
<p>Aside from potential glycosaminoglycan‐binding capacity, several viruses are endowed with a true lectin activity: they carry virally encoded lectins on their surface and use these as keys to gain entry into their target cells (Fig. 
<xref rid="fmr12052-fig-0005" ref-type="fig">5</xref>
a). Similar to animal lectins, such virally encoded lectins often possess characteristic glycan binding regions (‘glycan binding pockets’) and recognize specific portions of protein‐ and lipid‐linked glycans. The hemagglutinin protein of IAV is generally regarded as the prototype of a viral lectin. Hemagglutinin is a membrane glycoprotein that forms noncovalently linked homotrimers in the (viral) membrane and is responsible for both virus attachment and penetration (Skehel & Wiley,
<xref rid="fmr12052-bib-0268" ref-type="ref">2000</xref>
; Harrison,
<xref rid="fmr12052-bib-0106" ref-type="ref">2008</xref>
; Gamblin & Skehel,
<xref rid="fmr12052-bib-0088" ref-type="ref">2010</xref>
). The mature hemagglutinin protein consists of two disulfide‐linked subunits, termed HA1 and HA2 (Skehel & Wiley,
<xref rid="fmr12052-bib-0268" ref-type="ref">2000</xref>
; Harrison,
<xref rid="fmr12052-bib-0106" ref-type="ref">2008</xref>
; Gamblin & Skehel,
<xref rid="fmr12052-bib-0088" ref-type="ref">2010</xref>
). The HA1 subunit forms the globular ‘head’ region of hemagglutinin that covers the lectin function of this molecule: sialic acid‐binding pockets in the membrane distal part of HA1 allow interaction with sialic acid‐containing receptors on target cells (Skehel & Wiley,
<xref rid="fmr12052-bib-0268" ref-type="ref">2000</xref>
; Harrison,
<xref rid="fmr12052-bib-0106" ref-type="ref">2008</xref>
; Gamblin & Skehel,
<xref rid="fmr12052-bib-0088" ref-type="ref">2010</xref>
). Variation in the HA1 subunit determines the affinity and specificity (e.g. α2‐3‐ vs. α2‐6‐linked sialic acids) of this molecule (Skehel & Wiley,
<xref rid="fmr12052-bib-0268" ref-type="ref">2000</xref>
; Gamblin & Skehel,
<xref rid="fmr12052-bib-0088" ref-type="ref">2010</xref>
). As seen for animal lectins, also hemagglutinin binds with its glycan counterparts with a relatively low affinity and efficient virus attachment and entry depends on the interaction of multiple hemagglutinin molecules with multiple sialic acid‐containing receptors (Skehel & Wiley,
<xref rid="fmr12052-bib-0268" ref-type="ref">2000</xref>
; Gamblin & Skehel,
<xref rid="fmr12052-bib-0088" ref-type="ref">2010</xref>
). The stalk‐like HA2 subunit of hemagglutinin mediates the pH‐dependent fusion process upon internalization of the IAV virion in the endosomal compartment of the target cell (Skehel & Wiley,
<xref rid="fmr12052-bib-0268" ref-type="ref">2000</xref>
; Harrison,
<xref rid="fmr12052-bib-0106" ref-type="ref">2008</xref>
; Gamblin & Skehel,
<xref rid="fmr12052-bib-0088" ref-type="ref">2010</xref>
).</p>
<fig fig-type="Figure" xml:lang="en" id="fmr12052-fig-0005" orientation="portrait" position="float">
<label>Figure 5</label>
<caption>
<p>(a) illustrates how viral lectins promote target cell infection. (b) shows how many viruses that employ viral lectins also benefit from a matching receptor‐destroying enzyme (
<styled-content style="fixed-case" toggle="no">RDE</styled-content>
) activity, which provides a counterweight against (high avidity) lectin activity. (a) Interaction of viral lectins with glycosylated receptors on a target cell promotes viral entry and infection (attachment/internalization/fusion, depending on specific virus biology). (b) Although they clearly benefit the virus, the use of (high avidity) viral lectins comes with a price. For instance, viral lectin activity can cause virions to aggregate (b.1) and can impair efficient release of newly formed virions from (glycosylated) infected cells (b.2). Moreover, binding of viral lectins to nontarget cell‐associated glycoconjugates (decoy receptors) can prevent the virus from efficiently targeting susceptible host cells (b.3). Intriguingly, several lectin‐carrying viruses are also equipped with an
<styled-content style="fixed-case" toggle="no">RDE</styled-content>
that matches the specificity of the viral lectin and provides a counterweight against lectin‐mediated glycan binding. In fact, for viruses equipped with both viral lectins and
<styled-content style="fixed-case" toggle="no">RDE</styled-content>
s, a functional balance between these molecules appears to be an important determinant of the viral (replicative) fitness.</p>
</caption>
<graphic id="nlm-graphic-11" xlink:href="FMR-38-598-g005"></graphic>
</fig>
<p>Similar to IAV, various other enveloped [e.g. influenza B and C viruses (Nakada
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0211" ref-type="ref">1984</xref>
;Herrler
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0120" ref-type="ref">1985a</xref>
; Rogers
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0245" ref-type="ref">1986</xref>
; Vlasak
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0313" ref-type="ref">1987</xref>
; Herrler
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0122" ref-type="ref">1988</xref>
; Herrler & Klenk,
<xref rid="fmr12052-bib-0119" ref-type="ref">1991</xref>
; Herrler
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0123" ref-type="ref">1991</xref>
; Rosenthal
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0246" ref-type="ref">1998</xref>
; Lamb & Krug,
<xref rid="fmr12052-bib-0159" ref-type="ref">2001</xref>
; Suzuki & Nei,
<xref rid="fmr12052-bib-0277" ref-type="ref">2002</xref>
; Wang
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0319" ref-type="ref">2007b</xref>
; Wang
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0320" ref-type="ref">2008a</xref>
), mumps virus (Bowden
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0037" ref-type="ref">2010</xref>
; Harrison
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0107" ref-type="ref">2010</xref>
; Chang & Dutch,
<xref rid="fmr12052-bib-0048" ref-type="ref">2012</xref>
)] as well as nonenveloped [e.g. murine norovirus (Taube
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0283" ref-type="ref">2009</xref>
,
<xref rid="fmr12052-bib-0285" ref-type="ref">2012</xref>
), feline calicivirus (Stuart & Brown,
<xref rid="fmr12052-bib-0271" ref-type="ref">2007</xref>
), and rhesus rotavirus (Dormitzer
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0073" ref-type="ref">2002</xref>
), among others (Taube
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0284" ref-type="ref">2010</xref>
)] viruses employ sialic acid‐binding viral lectins to infect target cells. Importantly however, viral lectins with a different glycan specificity have also been identified. For instance, many viruses – including human noroviruses (Estes
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0080" ref-type="ref">2006</xref>
; Le Pendu
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0165" ref-type="ref">2006</xref>
; Cao
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0043" ref-type="ref">2007</xref>
; Tan & Jiang,
<xref rid="fmr12052-bib-0280" ref-type="ref">2007</xref>
; Bu
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0039" ref-type="ref">2008</xref>
; Choi
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0052" ref-type="ref">2008</xref>
; Donaldson
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0071" ref-type="ref">2008</xref>
; Shirato,
<xref rid="fmr12052-bib-0267" ref-type="ref">2011</xref>
), rabbit hemorrhagic disease viruses (Ruvoen‐Clouet
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0248" ref-type="ref">2000</xref>
; Rademacher
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0234" ref-type="ref">2008</xref>
; Guillon
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0104" ref-type="ref">2009</xref>
; Nystrom
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0216" ref-type="ref">2011</xref>
), and the rhesus monkey Tulane virus (Farkas
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0081" ref-type="ref">2010</xref>
) – were found to interact with specific HBGA types.</p>
<p>Although a broad spectrum of viruses has evolved to use viral lectins to secure efficient target cell infection, the use of viral lectins for cellular attachment comes with a price. The glycan receptors for viral lectins are not necessarily target cell‐specific and, whereas low affinity/avidity interactions may be reversible, high affinity/avidity binding of viral lectins to nontarget cell‐associated glycoconjugates (‘decoy receptors’) can prevent the virus from efficiently targeting susceptible host cells. In line with this, it was shown for IAV that interaction of the viral lectin hemagglutinin with soluble, sialylated host glycoproteins – e.g. SP‐A (cfr. supra) or α2‐macroglobulin – can interfere with the viral hemagglutinating activity that is crucial for receptor binding (Rogers
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0244" ref-type="ref">1983</xref>
; Pritchett & Paulson,
<xref rid="fmr12052-bib-0232" ref-type="ref">1989</xref>
; Ryan‐Poirier & Kawaoka,
<xref rid="fmr12052-bib-0249" ref-type="ref">1991</xref>
; Matrosovich
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0195" ref-type="ref">1992</xref>
; Ryan‐Poirier & Kawaoka,
<xref rid="fmr12052-bib-0250" ref-type="ref">1993</xref>
; Hartshorn
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0111" ref-type="ref">1994</xref>
; Malhotra
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0185" ref-type="ref">1994</xref>
; Benne
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0025" ref-type="ref">1995</xref>
; Gimsa
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0098" ref-type="ref">1996</xref>
; Benne
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0026" ref-type="ref">1997</xref>
; Hartshorn
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0113" ref-type="ref">1997</xref>
; Matrosovich
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0196" ref-type="ref">1998</xref>
; van Eijk
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0304" ref-type="ref">2003</xref>
; Mikerov
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0204" ref-type="ref">2008</xref>
; Chen
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0051" ref-type="ref">2010</xref>
; Cwach
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0058" ref-type="ref">2012</xref>
).</p>
<p>Although the presence of ‘high avidity’ glycan decoys invariably puts a strain on viral infection efficiency, this burden may be lighter on viruses that are equipped with a receptor destroying enzyme (RDE) that matches the specificity of the viral lectin. Intriguingly, the best‐known examples in this context are again influenza viruses. As situated above, both influenza A and B viruses display hemagglutinin proteins on their surface, which bind to sialic acids displayed on the host cell surface and mediate pH‐dependent fusion of the viral membrane with the host cell membrane (Skehel & Wiley,
<xref rid="fmr12052-bib-0268" ref-type="ref">2000</xref>
; Lamb & Krug,
<xref rid="fmr12052-bib-0159" ref-type="ref">2001</xref>
; Wang
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0319" ref-type="ref">2007b</xref>
; Wang
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0320" ref-type="ref">2008a</xref>
; Harrison,
<xref rid="fmr12052-bib-0106" ref-type="ref">2008</xref>
; Gamblin & Skehel,
<xref rid="fmr12052-bib-0088" ref-type="ref">2010</xref>
). An RDE activity was mapped to another viral membrane glycoprotein, designated neuraminidase (Gottschalk,
<xref rid="fmr12052-bib-0100" ref-type="ref">1957</xref>
; Colman,
<xref rid="fmr12052-bib-0053" ref-type="ref">1994</xref>
; Lamb & Krug,
<xref rid="fmr12052-bib-0159" ref-type="ref">2001</xref>
; Gamblin & Skehel,
<xref rid="fmr12052-bib-0088" ref-type="ref">2010</xref>
). This enzyme removes sialic acid moieties from glycoproteins and glycolipids by catalyzing the hydrolysis of the α‐ketosidic linkage to the subterminal sugar residue and consequently destroys potential receptors for the viral hemagglutinin (Gottschalk,
<xref rid="fmr12052-bib-0100" ref-type="ref">1957</xref>
; Colman,
<xref rid="fmr12052-bib-0053" ref-type="ref">1994</xref>
; Lamb & Krug,
<xref rid="fmr12052-bib-0159" ref-type="ref">2001</xref>
; Gamblin & Skehel,
<xref rid="fmr12052-bib-0088" ref-type="ref">2010</xref>
). Viral use of an enzyme that can actually destroy receptors for the virus may seem peculiar at first. Importantly, however, the neuraminidase activity can prevent virions from aggregating via hemagglutinin‐sialic acid interactions, promotes efficient release of newly formed virions from (sialic acid‐carrying) infected cells, and provides a counterweight to the interaction of hemagglutinin molecules with nontarget cell‐associated glycans: neuraminidase‐mediated removal of sialic acids from decoy receptors prevents virions from establishing high‐avidity interactions with these glycoconjugates and may even provide an escape route for virions after hemagglutinin‐mediated binding to nontarget cell‐associated glycans (Colman,
<xref rid="fmr12052-bib-0053" ref-type="ref">1994</xref>
; Suzuki
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0278" ref-type="ref">1994</xref>
; Gimsa
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0098" ref-type="ref">1996</xref>
; Barrere
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0020" ref-type="ref">1997</xref>
; Gamblin & Skehel,
<xref rid="fmr12052-bib-0088" ref-type="ref">2010</xref>
). Conceivably, a functional balance between the hemagglutinin and neuraminidase activities is an important determinant of the (replicative) fitness of IAV variants
<italic>in vivo</italic>
. Using IAV as a paradigm, Fig. 
<xref rid="fmr12052-fig-0005" ref-type="fig">5</xref>
b illustrates how viral RDE activity can balance the high avidity of viral lectins where favorable and consequently improve viral infection efficiency.</p>
<p>In contrast to influenza A and B viruses, other viruses combine both lectin and RDE functions in one protein complex. For example, the viral membranes of mumps virus, Newcastle disease virus, Sendai virus, and human parainfluenza virus 3 and 5 are studded with hemagglutinin‐neuraminidase proteins (Bowden
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0037" ref-type="ref">2010</xref>
; Harrison
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0107" ref-type="ref">2010</xref>
; Chang & Dutch,
<xref rid="fmr12052-bib-0048" ref-type="ref">2012</xref>
). Another example is the influenza C virus, which carries the hemagglutination, RDE and fusion protein functions in one single envelope protein named the hemagglutinin‐esterase‐fusion protein (Nakada
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0211" ref-type="ref">1984</xref>
; Herrler
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0120" ref-type="ref">1985a</xref>
<xref rid="fmr12052-bib-0121" ref-type="ref">b</xref>
; Rogers
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0245" ref-type="ref">1986</xref>
; Vlasak
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0313" ref-type="ref">1987</xref>
; Herrler
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0122" ref-type="ref">1988</xref>
; Schauer
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0259" ref-type="ref">1988</xref>
; Herrler & Klenk,
<xref rid="fmr12052-bib-0119" ref-type="ref">1991</xref>
; Herrler
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0123" ref-type="ref">1991</xref>
; Rosenthal
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0246" ref-type="ref">1998</xref>
; Pekosz & Lamb,
<xref rid="fmr12052-bib-0227" ref-type="ref">1999</xref>
; Lamb & Krug,
<xref rid="fmr12052-bib-0159" ref-type="ref">2001</xref>
; Suzuki & Nei,
<xref rid="fmr12052-bib-0277" ref-type="ref">2002</xref>
). Whereas the RDE of influenza A and B viruses is a neuraminidase, which cleaves off entire sialic acid residues, the RDE of influenza C functions as a sialate‐
<italic>O</italic>
‐acetylesterase and cleaves off specific
<italic>O</italic>
‐acetyl groups (Herrler
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0121" ref-type="ref">1985b</xref>
; Vlasak
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0313" ref-type="ref">1987</xref>
; Herrler
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0122" ref-type="ref">1988</xref>
; Schauer
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0259" ref-type="ref">1988</xref>
; Pekosz & Lamb,
<xref rid="fmr12052-bib-0227" ref-type="ref">1999</xref>
). A similar situation is seen for certain coronaviruses and toroviruses that carry an accessory protein called hemagglutinin‐esterase on their surface (de Groot,
<xref rid="fmr12052-bib-0062" ref-type="ref">2006</xref>
). As the name implies, functional hemagglutinin‐esterase proteins combine a hemagglutinating activity with a sialate‐
<italic>O</italic>
‐acetylesterase activity (de Groot,
<xref rid="fmr12052-bib-0062" ref-type="ref">2006</xref>
). Interestingly, for some coronaviruses, the hemagglutinin‐esterase protein is not the only envelope protein endowed with a lectin activity. For example, the spike proteins of bovine coronavirus and human coronavirus OC43 have been shown to be potent sialic acid‐binding lectins (Schultze
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0260" ref-type="ref">1991</xref>
; Kunkel & Herrler,
<xref rid="fmr12052-bib-0157" ref-type="ref">1993</xref>
). Also the spike protein of the transmissible gastroenteritis coronavirus of pigs has been shown to possess such a lectin activity (Schultze
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0261" ref-type="ref">1996</xref>
; Krempl
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0153" ref-type="ref">1997</xref>
,
<xref rid="fmr12052-bib-0154" ref-type="ref">2000</xref>
; Schwegmann‐Wessels
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0263" ref-type="ref">2011</xref>
). However, transmissible gastroenteritis coronavirus has no hemagglutinin‐esterase protein that serves as RDE to counteract the hemagglutinating activity of the spike protein.</p>
</sec>
<sec id="fmr12052-sec-0011">
<title>Viruses exploit membrane‐associated host lectins to promote infection of target cells and avoid immune recognition</title>
<p>Viruses do not only benefit from virally encoded lectins, but can also use host lectins to their advantage. Paradoxically, many of the host lectins that are exploited by viruses form part of the immune system. Although capture of viral pathogens by these lectins may have certain antiviral effects or promote the specific immunity against this pathogen (cfr. supra), many viruses can also employ such interactions to promote efficient infection and spread or to facilitate persistence (Table 
<xref rid="fmr12052-tbl-0002" ref-type="table">2</xref>
). Virus binding to membrane‐associated lectins can lead to concentration of virions at the cell surface and can facilitate infection of target cells. In many cases, host lectins appear to function as true portals for viral entry: the virus binds to the lectin, which drives subsequent internalization of the virus into specific cellular compartments from which the virus can initiate the next stage of infection. However, it has also been shown that lectins present on non‐target cells may facilitate infection of target cells, a process called
<italic>trans‐</italic>
infection. Many membrane‐associated (immune system) lectins also participate in specific signaling pathways and engagement of such lectins by a virus may modulate both viral infection and the immune response in favor of the pathogen.</p>
<p>An immune system lectin that can be used as a paradigm in this context is DC‐SIGN. This molecule is mainly expressed on dendritic cells (DCs), but expression on distinct other cell‐types – including macrophages, B lymphocytes, platelets, and (immortalized) podocytes – has also been described (Geijtenbeek
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0095" ref-type="ref">2000a</xref>
<xref rid="fmr12052-bib-0096" ref-type="ref">b</xref>
; Soilleux
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0269" ref-type="ref">2002</xref>
; Granelli‐Piperno
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0101" ref-type="ref">2005</xref>
; Gurney
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0105" ref-type="ref">2005</xref>
; Chaipan
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0046" ref-type="ref">2006</xref>
; Rappocciolo
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0235" ref-type="ref">2006</xref>
; Mikulak
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0205" ref-type="ref">2010</xref>
; Svajger
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0279" ref-type="ref">2010</xref>
). Prototypic DC‐SIGN molecules consist of a C‐terminal C‐type CRD, a neck region made up of 7 and a half 23 aa residue repeats, a transmembrane domain, and a cytoplasmic domain containing motifs involved in receptor internalization and signaling (Svajger
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0279" ref-type="ref">2010</xref>
; Tsegaye & Pohlmann,
<xref rid="fmr12052-bib-0292" ref-type="ref">2010</xref>
). Lectin monomers typically multimerize via their neck regions to form tetramers, which in turn organize in nanoclusters on the cell membrane (Svajger
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0279" ref-type="ref">2010</xref>
; Tsegaye & Pohlmann,
<xref rid="fmr12052-bib-0292" ref-type="ref">2010</xref>
; Manzo
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0187" ref-type="ref">2012</xref>
). DC‐SIGN functions as a receptor for various ligands. The T cell‐expressed molecule ICAM‐3 is probably its most prominent endogenous ligand: DC‐SIGN binds ICAM‐3 on the T cell surface and thereby contributes to the transient, nonantigen‐specific interaction of DC with T cells that is required for efficient screening of MHCII‐peptide complexes and eventual T cell priming (Geijtenbeek
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0095" ref-type="ref">2000a</xref>
; Svajger
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0279" ref-type="ref">2010</xref>
). Moreover, DC‐SIGN has been implicated in various other processes, including DC differentiation, migration, and antigen capture (Svajger
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0279" ref-type="ref">2010</xref>
). Over the last decade, it has become apparent that DC‐SIGN interacts with a wide variety of viral pathogens.</p>
<p>A textbook example of a virus that recruits DC‐SIGN is HIV‐1 (Lekkerkerker
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0169" ref-type="ref">2006</xref>
; Wu & KewalRamani,
<xref rid="fmr12052-bib-0333" ref-type="ref">2006</xref>
; Piguet & Steinman,
<xref rid="fmr12052-bib-0229" ref-type="ref">2007</xref>
; Tsegaye & Pohlmann,
<xref rid="fmr12052-bib-0292" ref-type="ref">2010</xref>
; da Silva
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0059" ref-type="ref">2011</xref>
; van der Vlist
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0302" ref-type="ref">2011</xref>
). DC‐SIGN can bind the enveloped HIV‐1 particle and mainly recognizes mannose‐rich glycans on the viral envelope glycoprotein gp120 (Curtis
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0057" ref-type="ref">1992</xref>
; Geijtenbeek
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0095" ref-type="ref">2000a</xref>
<xref rid="fmr12052-bib-0096" ref-type="ref">b</xref>
; Feinberg
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0082" ref-type="ref">2001</xref>
; Hong
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0131" ref-type="ref">2002</xref>
; Lin
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0179" ref-type="ref">2003</xref>
; Su
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0272" ref-type="ref">2004</xref>
; Hong
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0132" ref-type="ref">2007</xref>
). The efficiency of HIV‐1 capture by DC‐SIGN has been linked to receptor density. Experiments in 293 T‐Rex cells using an inducible DC‐SIGN expression system have shown that high surface expression levels of DC‐SIGN correlate with optimal binding of HIV‐1 particles, and that lowering the DC‐SIGN expression levels can significantly reduce the efficiency of HIV‐1 binding (Pohlmann
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0231" ref-type="ref">2001</xref>
). These data suggest that the high DC‐SIGN surface expression levels on certain (immature) DC subsets are compatible with optimal capture of HIV‐1 virions, whereas lower DC‐SIGN expression levels on B lymphocytes and especially platelets may be mirrored in a less efficient HIV‐1 capture (Baribaud
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0019" ref-type="ref">2002</xref>
; Boukour
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0036" ref-type="ref">2006</xref>
; Chaipan
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0046" ref-type="ref">2006</xref>
; Rappocciolo
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0235" ref-type="ref">2006</xref>
). Nevertheless, studies have shown that also B lymphocytes and platelets can effectively bind HIV‐1 virions via DC‐SIGN (Boukour
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0036" ref-type="ref">2006</xref>
; Chaipan
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0046" ref-type="ref">2006</xref>
; Rappocciolo
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0235" ref-type="ref">2006</xref>
). Evidently, the interaction between HIV‐1 and DC‐SIGN is also critically dependent on the viral glycome. Recent research has shown that virion‐associated gp120 of peripheral blood mononuclear cell (PBMC)‐grown virus predominantly carries oligomannose
<italic>N</italic>
‐glycans (Doores
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0072" ref-type="ref">2010</xref>
; Bonomelli
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0033" ref-type="ref">2011</xref>
), which constitute optimal ligands for DC‐SIGN (van Liempt
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0307" ref-type="ref">2006</xref>
). Nevertheless, virus originating from different host cell types can display a different glycosylation profile, and this may modulate the efficiency of DC‐SIGN recruitment (Lin
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0179" ref-type="ref">2003</xref>
).</p>
<p>Binding of HIV‐1 to DC‐SIGN can entail both negative and positive effects for the virus. In DC‐SIGN‐expressing antigen‐presenting cells, most of the DC‐SIGN‐captured virions appear to be internalized into the endolysosomal pathway and rapidly degraded (Moris
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0207" ref-type="ref">2004</xref>
; Turville
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0296" ref-type="ref">2004</xref>
). In line with this, DC‐SIGN was found to promote MHCII‐restricted presentation of HIV‐1 antigens (Moris
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0208" ref-type="ref">2006</xref>
). Intriguingly however, in cells that co‐express CD4 and CCR5/CXCR4 (HIV‐1 receptor and co‐receptors, respectively), DC‐SIGN expression also facilitates HIV‐1 fusion: DC‐SIGN efficiently captures and concentrates viral particles at the cell surface, and binding of this lectin to the HIV‐1 envelope protein appears to increase exposure of the CD4 binding site (Lee
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0168" ref-type="ref">2001</xref>
; Nobile
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0215" ref-type="ref">2005</xref>
; Burleigh
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0040" ref-type="ref">2006</xref>
; Hijazi
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0125" ref-type="ref">2011</xref>
). Although DC‐SIGN‐mediated enhancement of HIV‐1 fusion may promote MHCI‐restricted presentation of HIV‐1 antigen (proteasome and TAP‐dependent pathway) and activation of cytotoxic T lymphocytes (Moris
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0207" ref-type="ref">2004</xref>
), enhanced HIV fusion inevitably leads to more efficient infection. Indeed, several studies confirm that DC‐SIGN facilitates productive (
<italic>cis</italic>
‐) infection in DC‐SIGN‐expressing cells that also co‐express CD4 and CCR5/CXCR4 (Lee
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0168" ref-type="ref">2001</xref>
; Nobile
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0215" ref-type="ref">2005</xref>
; Burleigh
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0040" ref-type="ref">2006</xref>
; Hijazi
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0125" ref-type="ref">2011</xref>
).</p>
<p>DC‐SIGN has also been implicated in HIV‐1
<italic>trans‐</italic>
infection. An initial study showed that DC‐SIGN can efficiently capture HIV‐1 particles and transfer them to adjacent target T cells, without the need for productive infection of the DC‐SIGN‐expressing cell (Geijtenbeek
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0096" ref-type="ref">2000b</xref>
). Subsequent studies on the subject reported DC‐SIGN‐mediated internalization of infectious HIV‐1 virions into low pH nonlysosomal compartments, and advocated that the virus traffics in intracellular compartments towards the zone of T cell contact, where it is released into the infectious synapse (i.e. the contact zone between the virus‐loaded cell and the target T cell) (Kwon
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0158" ref-type="ref">2002</xref>
; McDonald
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0198" ref-type="ref">2003</xref>
). DC‐captured HIV‐1 virions as well as T‐cell‐expressed CD4 and CCR5/CXCR4 were found to concentrate at the DC‐T‐cell interface, rendering it an ideal micro‐environment for efficient infection of target T cells (McDonald
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0198" ref-type="ref">2003</xref>
). Moreover, it was postulated that DC‐SIGN‐mediated capture of HIV‐1 virions temporarily protects them from degradation and preserves viral infectivity (Geijtenbeek
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0096" ref-type="ref">2000b</xref>
; Kwon
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0158" ref-type="ref">2002</xref>
).</p>
<p>The above data supporting DC‐SIGN‐mediated capture, uptake, intracellular transport and ultimately transfer of intact HIV‐1 particles from DCs to target T cells were united in the ‘Trojan horse model’ of mucosal HIV‐1 transmission. This model posits that submucosal DCs capture and internalize HIV‐1 virions via DC‐SIGN and, by homing to the lymph nodes, provide a means of transport for the virus to a compartment rich in target cells. The virus‐loaded DCs then interact with CD4
<sup>+</sup>
T cells and the virions are transferred to the target T cell via the infectious synapse, ultimately resulting in efficient target cell infection (Geijtenbeek
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0096" ref-type="ref">2000b</xref>
; Baribaud
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0018" ref-type="ref">2001</xref>
; Sewell & Price,
<xref rid="fmr12052-bib-0266" ref-type="ref">2001</xref>
). However, recent research is not always in line with this initial model and has challenged several of its key features. Cavrois
<italic>et al</italic>
. (
<xref rid="fmr12052-bib-0044" ref-type="ref">2007</xref>
) reported that HIV‐1
<italic>trans‐</italic>
infection does not require intracellular virus trafficking, but primarily depends on cell surface‐associated virions that reach the infectious synapses via transport on the cell surface (Cavrois
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0044" ref-type="ref">2007</xref>
). In line with this, Yu
<italic>et al</italic>
. (
<xref rid="fmr12052-bib-0336" ref-type="ref">2008</xref>
) reported that HIV‐1 traffics towards the infectious synapse through a specialized, surface‐accessible intracellular compartment (Yu
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0336" ref-type="ref">2008</xref>
). In addition, reports stating that virus capture by DC‐SIGN mainly leads to virus internalization into the endolysosomal pathway and subsequent degradation (Moris
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0207" ref-type="ref">2004</xref>
; Turville
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0296" ref-type="ref">2004</xref>
; Moris
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0208" ref-type="ref">2006</xref>
) and that DC‐SIGN‐mediated
<italic>trans‐</italic>
infection can only occur within the first hours after virus attachment (Turville
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0296" ref-type="ref">2004</xref>
) seem to downplay the importance of DC‐SIGN‐mediated
<italic>trans‐</italic>
infection for efficient HIV‐1 infection and spread. These and other data counter the theory that HIV‐1 capture by DCs preserves viral infectivity, and suggest that the presence – and transfer – of infectious virus at later time points may be ascribed to productive DC infection (Turville
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0296" ref-type="ref">2004</xref>
; Nobile
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0215" ref-type="ref">2005</xref>
; Burleigh
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0040" ref-type="ref">2006</xref>
; Wang
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0318" ref-type="ref">2007a</xref>
). It is also noteworthy that, whereas initial studies identified DC‐SIGN as the main factor involved in HIV‐1 capture and transmission by DCs (Geijtenbeek
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0096" ref-type="ref">2000b</xref>
), recent studies also implicate other lectins in this process (Turville
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0295" ref-type="ref">2002</xref>
; Izquierdo‐Useros
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0139" ref-type="ref">2012</xref>
) or even conclude that DC‐SIGN is not involved in DC‐mediated HIV‐1
<italic>trans‐</italic>
infection (Boggiano
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0030" ref-type="ref">2007</xref>
). Differences in virus strains, cell types, and experimental setup might in part explain these conflicting data. Intriguingly, other recent work indicates that DC‐SIGN‐expressing B lymphocytes and platelets may effectively capture and transfer infectious HIV‐1 via DC‐SIGN (Boukour
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0036" ref-type="ref">2006</xref>
; Chaipan
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0046" ref-type="ref">2006</xref>
; Rappocciolo
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0235" ref-type="ref">2006</xref>
), potentially implicating these cells/cell fragments in HIV‐1 dissemination in infected patients, although recent work suggests that platelets might negatively regulate viral spread by secretion of CXCL4 (Auerbach
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0006" ref-type="ref">2012</xref>
; Tsegaye
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0293" ref-type="ref">2013</xref>
). Clearly, further research is necessary to allow a better understanding of DC‐SIGN‐mediated HIV‐1
<italic>trans‐</italic>
infection and its relevance for viral infection and spread
<italic>in vivo</italic>
.</p>
<p>Importantly, the role of DC‐SIGN in HIV‐1 infection appears not to be restricted to purely physical capture of virions for subsequent degradation or
<italic>cis‐</italic>
or
<italic>trans‐</italic>
infection. Recruitment of DC‐SIGN by HIV‐1 also triggers signal transduction that modulates immune responses and infection of DCs and adjacent target cells more indirectly. For example, Hodges
<italic>et al</italic>
. (
<xref rid="fmr12052-bib-0129" ref-type="ref">2007</xref>
) reported that binding of HIV‐1 to DC‐SIGN compromises DC maturation and primes these cells for
<italic>trans‐</italic>
infection: Upregulation of CD86 and MHCII is suppressed, whereas synapse formation between DCs and CD4
<sup>+</sup>
T cells is promoted (Hodges
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0129" ref-type="ref">2007</xref>
). Moreover, HIV‐1 binding to DC‐SIGN was shown to activate Cdc42 and promote formation of membrane extensions that facilitate HIV‐1 transfer to CD4
<sup>+</sup>
lymphocytes (Nikolic
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0214" ref-type="ref">2011</xref>
). Other work by Gringhuis
<italic>et al</italic>
. (
<xref rid="fmr12052-bib-0102" ref-type="ref">2007</xref>
,
<xref rid="fmr12052-bib-0103" ref-type="ref">2010</xref>
) showed that binding of HIV‐1 to DC‐SIGN triggers Raf‐1 dependent signaling, which modulates toll‐like receptor (TLR)‐elicited signals to induce synthesis of full‐length HIV transcripts as well as production of the immunosuppressive cytokine IL‐10 (Gringhuis
<italic>et al</italic>
., (
<xref rid="fmr12052-bib-0102" ref-type="ref">2007</xref>
,
<xref rid="fmr12052-bib-0103" ref-type="ref">2010</xref>
). In general, the data discussed above suggest that DC‐SIGN recruitment by HIV‐1 might affect viral infection and transmission, as well as the host defense against this pathogen in several ways.</p>
<p>Over the last decade, DC‐SIGN has become a prototype for lectin‐mediated
<italic>cis‐</italic>
and
<italic>trans‐</italic>
infection and has been implicated in the infection process of various viruses, including HIV, Dengue virus, Ebola virus, and IAV (see Table 
<xref rid="fmr12052-tbl-0002" ref-type="table">2</xref>
). Importantly, however, DC‐SIGN is not the only host lectin that is (ab)used by viruses to promote target cell infection or avoid immune recognition and clearance. Various other membrane‐associated host lectins seem to be exploited by viruses – in ways similar to DC‐SIGN – to aid
<italic>cis</italic>
‐infection,
<italic>trans</italic>
‐infection and/or viral persistence. Analysis of recent literature suggests that membrane‐associated host lectins may constitute weak links in the host's defense against viral pathogens (Table 
<xref rid="fmr12052-tbl-0002" ref-type="table">2</xref>
).</p>
</sec>
<sec id="fmr12052-sec-0012">
<title>Soluble host lectins can promote viral infection</title>
<p>Although generally implicated in antiviral defense, soluble host lectins may also support viral infection (Table 
<xref rid="fmr12052-tbl-0002" ref-type="table">2</xref>
). For example, galectin‐1 has been proposed to promote HIV‐1 infection (Ouellet
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0220" ref-type="ref">2005</xref>
; Mercier
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0202" ref-type="ref">2008</xref>
; St‐Pierre
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0270" ref-type="ref">2011</xref>
; Sato
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0256" ref-type="ref">2012</xref>
).
<italic>In vitro</italic>
experiments pointed out that galectin‐1 can enhance HIV‐1 infection of different cell types – including human lymphoid cell lines, PBMC, CD4
<sup>+</sup>
T lymphocytes, and monocyte‐derived macrophages (Ouellet
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0220" ref-type="ref">2005</xref>
; Mercier
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0202" ref-type="ref">2008</xref>
) – and increase HIV‐1 infection in an
<italic>ex vivo</italic>
lymphoid tissue model (Ouellet
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0220" ref-type="ref">2005</xref>
). Further experiments showed that galectin‐1 accelerates virion binding to the target cell surface, probably by crosslinking viral and cellular glycans (Ouellet
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0220" ref-type="ref">2005</xref>
; Mercier
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0202" ref-type="ref">2008</xref>
). A more recent study confirmed these findings and showed that galectin‐1 binds to clusters of
<italic>N</italic>
‐linked glycans on the viral gp120 envelope protein in a β‐galactoside‐dependent manner (St‐Pierre
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0270" ref-type="ref">2011</xref>
). Data from the same study identify the HIV‐1 receptor CD4 as a ligand for galectin‐1 and suggest that galectin‐1 can cross‐link gp120 and CD4 (St‐Pierre
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0270" ref-type="ref">2011</xref>
). In sum, it appears that the dimeric lectin galectin‐1 can enhance HIV‐1 infection efficiency by cross‐linking viral and host cell glycans and thereby promoting firmer adhesion of the virus to the target cell surface and facilitating virus‐receptor interactions (Ouellet
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0220" ref-type="ref">2005</xref>
; Mercier
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0202" ref-type="ref">2008</xref>
; St‐Pierre
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0270" ref-type="ref">2011</xref>
; Sato
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0256" ref-type="ref">2012</xref>
).</p>
<p>Some studies have also attributed proviral effects to the collectins MBL, SP‐A, and SP‐D. For some viruses, it was reported that – under certain conditions – viral recognition by collectins may enhance
<italic>cis</italic>
‐ or
<italic>trans</italic>
‐infection (Hickling
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0124" ref-type="ref">2000</xref>
; Sano
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0254" ref-type="ref">2003</xref>
; Gaiha
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0087" ref-type="ref">2008</xref>
; Brudner
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0038" ref-type="ref">2013</xref>
; Madsen
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0183" ref-type="ref">2013</xref>
). It is conceivable that these collectins can bind the virus and subsequently associate with collectin receptors on the surface of target/transmitting cells, thereby concentrating virions at the cell surface and facilitating infection or viral transfer. Nevertheless, involvement of other mechanisms (e.g. collectin‐mediated cross‐linking of virus‐ and host cell‐displayed glycans, cfr. the galectin‐1‐HIV‐1 example described above) can currently not be excluded. Further research is necessary to elucidate the biology behind the potential proviral effects of collectins and to estimate the occurrence and relevance of these events in an
<italic>in vivo</italic>
context.</p>
<p>Figure 
<xref rid="fmr12052-fig-0006" ref-type="fig">6</xref>
gives a schematic overview of how membrane‐associated and soluble host lectins can be implicated in interactions that benefit the virus and facilitate viral infection and spread.</p>
<fig fig-type="Figure" xml:lang="en" id="fmr12052-fig-0006" orientation="portrait" position="float">
<label>Figure 6</label>
<caption>
<p>Schematic overview of how membrane‐associated (a) and soluble (b) host lectins can be implicated in interactions that benefit the virus and facilitate viral infection and spread. (a.1) Binding of virion‐associated glycans to membrane‐associated host lectins can promote (
<italic>cis</italic>
‐) infection of the lectin‐expressing cell: host lectins may facilitate viral attachment, internalization, and fusion (depending on specific virus biology). Viral attachment to membrane‐associated host lectins may trigger signaling mechanisms that facilitate viral infection, spread, and/or immune evasion. (a.2) Binding of virion‐associated glycans to membrane‐associated host lectins can promote presentation of the virus to susceptible target cells
<italic>in trans</italic>
, thereby facilitating target cell infection. Viral attachment to membrane‐associated host lectins may trigger signaling mechanisms that facilitate viral infection, spread, and/or immune evasion. (b.1) Multivalent soluble host lectins may facilitate virus attachment and promote viral infection by crosslinking virus‐ and host cell‐displayed glycans. (b.2) Virus recognition by soluble host lectins and subsequent association with target cell‐expressed lectin receptors may promote
<italic>cis</italic>
‐infection of target cells. In a similar manner, soluble host lectins may capture and concentrate virions on a cell surface for subsequent presentation to target cells
<italic>in trans</italic>
(not depicted). Moreover, lectin binding can trigger complement deposition on the virus (through the lectin pathway), which may potentially promote
<italic>cis‐</italic>
or
<italic>trans</italic>
‐infection via cell surface‐expressed complement receptors (not depicted).</p>
</caption>
<graphic id="nlm-graphic-13" xlink:href="FMR-38-598-g006"></graphic>
</fig>
</sec>
</sec>
</sec>
<sec id="fmr12052-sec-0013">
<title>Glycan and lectin: the variable parameters in a biological equation</title>
<p>As glycan–lectin interactions often represent key events in viral infection and/or antiviral immunity, variation in glycan or lectin expression and structure – either at the host or at the virus level – may significantly shift the balance between host and pathogen. A basic insight into the nature and origin of this variability is therefore germane to a proper understanding of glycan–lectin interactions in the context of viral infection biology and immunology.</p>
<sec id="fmr12052-sec-0014">
<title>Glycan and lectin variation at the host level</title>
<p>Glycan formation is a very complex and versatile biosynthetic process. In contrast to the primary amino acid sequences of proteins, glycan structures are not directly encoded in the host genome. Instead, they are synthesized in a step‐wise manner via the concerted action of various host‐encoded glycosyltransferase, glycosidase, and other enzymes. The availability of these glycoenzymes, the availability of precursor molecules and the accessibility of specific glycosylation sites govern (the efficiency of) glycan addition and modification and hence determine glycan variability. The genetic make‐up of the host evidently has a major impact on glycosylation, but also other host‐related factors can have pronounced effects. Recent research has shown that different cell types within a host can assemble radically different glycomes (Roth,
<xref rid="fmr12052-bib-0247" ref-type="ref">1996</xref>
; Haslam
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0115" ref-type="ref">2008</xref>
) and that factors such as the activation (Comelli
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0054" ref-type="ref">2006</xref>
; Bax
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0021" ref-type="ref">2007</xref>
; Haslam
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0115" ref-type="ref">2008</xref>
) or infection (Lanteri
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0161" ref-type="ref">2003</xref>
) status of a cell can significantly influence glycosylation processes. Clearly, various biological factors contribute to the high glycan heterogeneity that is seen for many animal glycoconjugates.</p>
<p>Although host glycan variation may influence virtually all viral infections in several ways, its potential impact is probably most evident for viruses that are equipped with viral lectins. A notable example in this context are the noroviruses, a major cause of nonbacterial gastroenteritis in humans. It is well known that the viral capsids of most human noroviruses display an affinity for HBGAs, structurally related but highly polymorphic carbohydrate structures found on proteins and lipids of epithelial cells in the gastrointestinal and respiratory tract, on the surfaces of red blood cells and as free antigens in body fluids such as saliva, blood, and intestinal contents (Bu
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0039" ref-type="ref">2008</xref>
; Choi
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0052" ref-type="ref">2008</xref>
; Shirato,
<xref rid="fmr12052-bib-0267" ref-type="ref">2011</xref>
). Different noroviruses display distinct HBGA specificities and can be categorized according to the (range of) HBGA structures they preferentially bind (Huang
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0134" ref-type="ref">2005</xref>
; Shirato,
<xref rid="fmr12052-bib-0267" ref-type="ref">2011</xref>
). Human HBGA synthesis is controlled by various enzymes, including the glycosyltransferase enzymes encoded in the
<italic>ABO</italic>
,
<italic> FUT2</italic>
, and
<italic>FUT3</italic>
gene loci. The presence of variant (functional or nonfunctional) alleles at these and other relevant gene loci is a key determinant of HBGA phenotype, as it controls which ABH and Lewis antigens an individual can synthesize (Le Pendu
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0165" ref-type="ref">2006</xref>
; Shirato,
<xref rid="fmr12052-bib-0267" ref-type="ref">2011</xref>
). Although it is still unclear whether they function as primary receptors for noroviruses, current data indicate that HBGAs are important determinants of the noroviral tissue specificity. Moreover, several studies have established a link between HBGA geno‐/phenotype and individual susceptibility to (clinical) infection with specific norovirus variants: HBGA phenotypes matching the specificity of the viral lectin correlate with a higher risk of (clinical) infection, whereas nonmatching HBGA phenotypes correlate with relative resistance (Le Pendu
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0165" ref-type="ref">2006</xref>
; Shirato,
<xref rid="fmr12052-bib-0267" ref-type="ref">2011</xref>
).</p>
<p>Several studies have revealed significant heterogeneity relating to animal lectins. Lectin expression is governed by various genetic and nongenetic (e.g. hormone balance, immune status) factors. Importantly, gene polymorphisms that affect protein expression and/or functionality have been described for several animal lectins, including MBL and DC‐SIGN.</p>
<p>For MBL, mutations in the promoter region of the
<italic>MBL2</italic>
gene were found to affect protein expression levels, probably by influencing binding of transcription factors (Eisen & Minchinton,
<xref rid="fmr12052-bib-0078" ref-type="ref">2003</xref>
; Dommett
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0070" ref-type="ref">2006</xref>
; Heitzeneder
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0117" ref-type="ref">2012</xref>
). Moreover, specific polymorphisms in
<italic>MBL2</italic>
exon 1, encoding the collagen‐like domain of MBL, appear to hinder correct and stable oligomerization of MBL protein chains and impede efficient ligand binding and activation of the lectin complement pathway (Eisen & Minchinton,
<xref rid="fmr12052-bib-0078" ref-type="ref">2003</xref>
; Dommett
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0070" ref-type="ref">2006</xref>
; Heitzeneder
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0117" ref-type="ref">2012</xref>
). Several studies suggest a correlation between MBL deficiency and susceptibility to HIV infection, but conflicting data have been reported and further research is clearly necessary to corroborate this link (Eisen & Minchinton,
<xref rid="fmr12052-bib-0078" ref-type="ref">2003</xref>
; Dommett
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0070" ref-type="ref">2006</xref>
; Heitzeneder
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0117" ref-type="ref">2012</xref>
).</p>
<p>Similar findings have been recorded for DC‐SIGN. Polymorphisms in the promoter region of the DC‐SIGN‐encoding
<italic>CD209</italic>
gene can affect protein expression levels and have been linked with altered susceptibility to and/or altered disease progression after infection with several viral pathogens, including HIV‐1 and Dengue virus (Martin
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0191" ref-type="ref">2004</xref>
; Sakuntabhai
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0252" ref-type="ref">2005</xref>
; Koizumi
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0152" ref-type="ref">2007</xref>
; Selvaraj
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0264" ref-type="ref">2009</xref>
; Wang
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0323" ref-type="ref">2011</xref>
; Boily‐Larouche
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0031" ref-type="ref">2012</xref>
). Moreover, distinct gene polymorphisms in the DC‐SIGN‐encoding region as well as alternative splicing events give rise to different isoforms of the protein, ranging from variants containing single nucleotide polymorphisms (SNPs) to variants with truncated lectin domains, variable numbers of 23‐aa‐residue repeats in the neck domain, alternative cytoplasmic domains or a lacking transmembrane region (Mummidi
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0209" ref-type="ref">2001</xref>
; Liu
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0180" ref-type="ref">2004</xref>
; Serrano‐Gomez
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0265" ref-type="ref">2008</xref>
; Boily‐Larouche
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0031" ref-type="ref">2012</xref>
). Information on the expression and biological activity of most of these DC‐SIGN variants is rather limited. Recently, however, Boily‐Larouche
<italic>et al</italic>
. (
<xref rid="fmr12052-bib-0031" ref-type="ref">2012</xref>
) reported that naturally occurring genetic variants of DC‐SIGN, carrying specific SNPs in the neck domain‐encoding exon 4, have an enhanced capacity to capture and transfer HIV‐1 virions to CD4
<sup>+</sup>
T lymphocytes. Moreover, Liu
<italic>et al</italic>
. (
<xref rid="fmr12052-bib-0180" ref-type="ref">2004</xref>
) described different neck domain length variants of DC‐SIGN – carrying variable numbers of 23‐aa‐residue repeats in the neck region – and correlated neck domain length heterozygosity with a reduced risk of HIV‐1 infection. Recent experimental data provide evidence that naturally occurring DC‐SIGN neck domain variants can differ in multimerization competence in the cell membrane and display altered glycan binding capacity (Serrano‐Gomez
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0265" ref-type="ref">2008</xref>
). Moreover, the presence of such neck domain variants appears to modulate multimerization of the prototypic DC‐SIGN molecule (Serrano‐Gomez
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0265" ref-type="ref">2008</xref>
). The fact that neck domain variation may influence the presence, stability, and functionality of DC‐SIGN multimers on the cell surface can provide a molecular explanation for the link between DC‐SIGN polymorphisms and susceptibility to HIV‐1 and other pathogens, although further research is needed to substantiate this (Serrano‐Gomez
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0265" ref-type="ref">2008</xref>
).</p>
</sec>
<sec id="fmr12052-sec-0015">
<title>Glycan and lectin variation at the virus level</title>
<p>Although viruses rely on the host cell machinery for glycoconjugate synthesis, viral glycosylation profiles can significantly differ from the standard glycosylation profile of their host cell. For instance, it is well known that viral glycoproteins are often more heavily glycosylated than host glycoproteins, and that also the nature of their glycan modifications can significantly differ. A prototypic example in this context is the gp120 glycoprotein of HIV‐1. The HIV‐1 envelope is studded with trimers of noncovalently associated gp120/gp41 heterodimers (White
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0329" ref-type="ref">2010</xref>
). Gp120 is one of the most heavily
<italic>N</italic>
‐glycosylated proteins in nature: it contains more than 20 
<italic>N</italic>
‐linked glycosylation sites, and
<italic>N</italic>
‐glycans account for about half of its molecular weight (Zhu
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0339" ref-type="ref">2000</xref>
; Wei
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0326" ref-type="ref">2003</xref>
; Pantophlet & Burton,
<xref rid="fmr12052-bib-0222" ref-type="ref">2006</xref>
; Scanlan
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0258" ref-type="ref">2007</xref>
). Intriguingly, whereas mammalian glycoproteins typically carry mainly complex type
<italic>N</italic>
‐glycans, this is not the case for the viral gp120 glycoprotein. Recent reasearch has shown that virion‐associated gp120 of PBMC‐grown virus – as opposed to recombinantly expressed monomeric gp120 – predominantly carries oligomannose
<italic>N</italic>
‐glycans (Doores
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0072" ref-type="ref">2010</xref>
; Bonomelli
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0033" ref-type="ref">2011</xref>
). The synthesis of this unusual glycosylation profile appears to be partially directed by the structure of the gp120/gp41 spike itself: the presence of a dense
<italic>N</italic>
‐glycan cluster in gp120, combined with the steric consequences of gp120/gp41 trimerization, seems to hinder further processing of (normally transient) biosynthetic glycan intermediates by ER and Golgi α‐mannosidases, ultimately yielding HIV‐1 virions with oligomannose‐enriched gp120 glycoproteins (Zhu
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0339" ref-type="ref">2000</xref>
; Doores
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0072" ref-type="ref">2010</xref>
; Eggink
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0077" ref-type="ref">2010</xref>
; Bonomelli
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0033" ref-type="ref">2011</xref>
). Clearly, although viral glycosylation is critically dependent on the glycosylation machinery of the host cell, the genetic and structural background of a virus can have a decisive influence in this process.</p>
<p>Importantly, viral infection itself may also have strong repercussions on the glycosylation biology of a host cell. Considering the restricted glycosylation enzyme and precursor availabilities, it is conceivable that overexpression of viral glycoproteins in an infected target cell can result in an increased glycan heterogeneity of both viral and cellular glycoconjugates. Moreover, viruses may also actively modify the host and viral glycome by modulating the expression of host cell glycoenzymes (Hiraiwa
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0127" ref-type="ref">1997</xref>
; Cebulla
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0045" ref-type="ref">2000</xref>
; Hiraiwa
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0128" ref-type="ref">2003</xref>
) or via expression of virally encoded glycoenzymes in infected cells (Jackson
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0140" ref-type="ref">1999</xref>
; Willer
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0330" ref-type="ref">1999</xref>
; Nash
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0212" ref-type="ref">2000</xref>
; Sujino
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0273" ref-type="ref">2000</xref>
; Vanderplasschen
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0309" ref-type="ref">2000</xref>
; Markine‐Goriaynoff
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0188" ref-type="ref">2003</xref>
,
<xref rid="fmr12052-bib-0189" ref-type="ref">2004a</xref>
<xref rid="fmr12052-bib-0190" ref-type="ref">b</xref>
).</p>
<p>An additional source of glycan variation can be discerned for viruses that can infect multiple cell types, or even different host species. For instance, it is well known that HIV can productively infect multiple cell types, and that HIV glycosylation is cell type‐dependent (Liedtke
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0177" ref-type="ref">1994</xref>
; Willey
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0331" ref-type="ref">1996</xref>
; Liedtke
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0178" ref-type="ref">1997</xref>
; Lin
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0179" ref-type="ref">2003</xref>
). Cell type‐dependent glycosylation differences for HIV have been shown to impact viral interaction with and
<italic>trans‐</italic>
infection via DC‐SIGN (Lin
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0179" ref-type="ref">2003</xref>
), as well as viral sensitivity to antibody neutralization (Willey
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0331" ref-type="ref">1996</xref>
). Another, particularly fascinating example in this context is Dengue virus (DV). DV is a mosquito‐borne flavivirus that can replicate in mosquitos as well as in humans (Navarro‐Sanchez
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0213" ref-type="ref">2003</xref>
; Dejnirattisai
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0066" ref-type="ref">2011</xref>
). In humans, immature skin DCs are considered the primary target cell for the virus after a mosquito bite, and DC‐SIGN is believed to be the main DV receptor on these cells (Navarro‐Sanchez
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0213" ref-type="ref">2003</xref>
; Dejnirattisai
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0066" ref-type="ref">2011</xref>
). In a recent study, it was shown that insect cell‐derived DV can efficiently infect DCs, whereas DC‐derived DV is not able to reinfect DCs (Dejnirattisai
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0066" ref-type="ref">2011</xref>
). Similarly, insect cell‐derived DV could efficiently bind and infect a DC‐SIGN‐expessing cell line, whereas this was not the case for DC‐derived DV (Dejnirattisai
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0066" ref-type="ref">2011</xref>
). Finally, it was found that insect cell‐derived DV predominantly contains high‐/pauci‐mannose‐type
<italic>N</italic>
‐glycans, whereas DC‐derived virus contains only complex type
<italic>N</italic>
‐glycans (Dejnirattisai
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0066" ref-type="ref">2011</xref>
). Projected against the background of DV infection, these data outline a tentative model of the first stages of DV infection in humans: during DV replication in mosquito cells, newly formed DV virions obtain mannose‐rich glycans. Upon viral transfer to a human host, these virions efficiently infect immature skin DCs via DC‐SIGN. Importantly, DV replication in skin DCs yields virions with complex type
<italic>N</italic>
‐glycans, thus creating a ‘glycan mismatch’ with DC‐SIGN. Due to this mismatch, newly synthesized DC‐derived virus will not readily reinfect DCs via DC‐SIGN, but preferentially infect other potential host cells via other receptors (Dejnirattisai
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0066" ref-type="ref">2011</xref>
). Although much more research is needed to verify this tentative model, it elegantly illustrates how cell type‐dependent glycan variability may impact a viral infection process.</p>
<p>Another notable factor to be considered in the context of virus‐related variability is the rapid evolution of many viral pathogens. This seems especially significant for RNA viruses, as these viruses generally evolve more rapidly than DNA viruses due to factors inherent to their biology and infection strategy (Belshaw
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0024" ref-type="ref">2008</xref>
; Holmes,
<xref rid="fmr12052-bib-0130" ref-type="ref">2009</xref>
; Lauring & Andino,
<xref rid="fmr12052-bib-0163" ref-type="ref">2010</xref>
). The higher mutation frequency of many RNA viruses directly implies a higher chance for addition or deletion of putative glycosylation sites. As has been shown for IAV, acquisition or deletion of glycosylation sites may affect crucial steps in the viral infection/replication process (e.g. receptor binding, fusion, release of newly formed virions) (Ohuchi
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0218" ref-type="ref">1997</xref>
; Wagner
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0316" ref-type="ref">2000</xref>
; Tsuchiya
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0294" ref-type="ref">2002</xref>
; Kim & Park,
<xref rid="fmr12052-bib-0147" ref-type="ref">2012</xref>
), alter the capacity of the virus to avoid induction of/recognition by virus‐specific antibodies (glycan shielding) (Wang
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0322" ref-type="ref">2009</xref>
; Wei
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0327" ref-type="ref">2010</xref>
; Wanzeck
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0324" ref-type="ref">2011</xref>
; Kim & Park,
<xref rid="fmr12052-bib-0147" ref-type="ref">2012</xref>
; Job
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0143" ref-type="ref">2013</xref>
; Sun
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0275" ref-type="ref">2013</xref>
), and modulate viral interaction with various immune system lectins (Reading
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0239" ref-type="ref">2007</xref>
; Vigerust
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0312" ref-type="ref">2007</xref>
; Reading
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0240" ref-type="ref">2009</xref>
; Tate
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0281" ref-type="ref">2011a</xref>
<xref rid="fmr12052-bib-0282" ref-type="ref">b</xref>
). Clearly, mutational changes in the viral glycome may affect the virus‐host interactome in various ways. Ultimately, the net benefit of a specific glycome change will determine if a glycosylation variant may become dominant in the virus population.</p>
<p>However, not only the viral glycosylation status, but also the affinity and specificity of viral lectins for specific glycoconjugates may change as a result of mutations. For instance, ample data show that amino acid changes at specific sites of the IAV hemagglutinin protein can significantly alter its affinity and/or specificity for particular sialic acid‐containing receptors – a factor that is crucial for the virus to infect new host species (Skehel & Wiley,
<xref rid="fmr12052-bib-0268" ref-type="ref">2000</xref>
; Wagner
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0317" ref-type="ref">2002</xref>
; Suzuki,
<xref rid="fmr12052-bib-0276" ref-type="ref">2005</xref>
; Gamblin & Skehel,
<xref rid="fmr12052-bib-0088" ref-type="ref">2010</xref>
). Finally, functional alterations in the viral RDE due to mutations may also have a strong impact on the interaction of viral lectins with host cell glycans. In the case of IAV, balanced lectin and RDE functions appear to be crucial for efficient viral replication. For IAV variants that are well adapted to a certain host species, the substrate specificity and activity of the neuraminidase generally match the ligand specificity and affinity of the hemagglutinin (Wagner
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0317" ref-type="ref">2002</xref>
). Disruption of this balance – for instance due to reassortment or transmission to a new host species – often results in a decreased replicative fitness (Wagner
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0317" ref-type="ref">2002</xref>
). Interestingly, however, the virus may overcome this hurdle and evolve towards replicative competence by selecting for compensatory mutations in hemagglutinin and/or neuraminidase that restore the functional balance between these molecules (Wagner
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0317" ref-type="ref">2002</xref>
). Considering these data on IAV, it is conceivable that the balance between viral lectin and RDE is also an important determinant of the replicative fitness of several other viruses.</p>
<p>On a related note, glycan–lectin interactions in virus biology are typically studied using a limited number of (prototypic) virus variants. Although the information obtained in these studies can often be extrapolated to include other virus variants, there are important exceptions. For IAV, for instance, it is well documented that different virus variants can carry hemagglutinin lectins with distinct glycan ligand specificities and therefore associate with distinct spectra of (decoy) receptors. Moreover, IAV variants can display different glycan arrays on their surface, which has been shown to modulate viral infection, glycan shielding, and recognition by various immune system lectins (cfr. supra). The fact that the specific genetic make‐up of a virus determines specificity/affinity of viral lectins, co‐directs viral glycosylation, etc., and that this can be mirrored in a distinct virus‐host interactome remains an important issue in glycovirology.</p>
<p>In sum, an intricate web of glycan–lectin interactions can modulate viral infection, and host and virus inherent variability in glycans and lectins adds a further layer of complexity to this matter.</p>
</sec>
</sec>
<sec id="fmr12052-sec-0016">
<title>Targeting glycan‐lectin interactions in antiviral strategies</title>
<p>Considering the pivotal roles of glycan–lectin interactions in many viral infections, interfering with these interactions seems an attractive strategy in the combat against these pathogens. Conversely, strategies that promote recognition of viruses by specific immune system lectins – involved in viral inhibition and clearance – may also prove useful in antiviral therapies. Several possibilities have been and are currently being explored.</p>
<p>Perhaps the most obvious strategy to modulate glycan–lectin binding is the use of molecules that can physically interfere with these interactions. Glycan decoys (e.g. carbohydrate‐containing drugs, sugar analogs/glycomimetics) or carbohydrate‐binding agents (CBAs) may be used in antiviral therapies to directly block key glycan–lectin interactions at the side of the lectin and at the side of the glycan, respectively. Binding of glycan decoys with a specific lectin can inhibit binding of other ligands by this lectin. For instance, it has been shown that multivalent mannose‐containing molecules or mannose‐based glycomimetics can compromise binding of HIV‐1 gp120 with DC‐SIGN (Wang
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0321" ref-type="ref">2008b</xref>
; Luallen
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0182" ref-type="ref">2009</xref>
; Martinez‐Avila
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0193" ref-type="ref">2009b</xref>
; Becer
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0022" ref-type="ref">2010</xref>
) and inhibit DC‐SIGN‐mediated
<italic>trans‐</italic>
infection of CD4
<sup>+</sup>
T lymphocytes (Martinez‐Avila
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0192" ref-type="ref">2009a</xref>
; Sattin
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0257" ref-type="ref">2010</xref>
; Berzi
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0028" ref-type="ref">2012</xref>
). Likewise, sialic acid‐containing glycan decoys and sialic acid analogs are being evaluated for their capacity to block the sialic acid binding site of IAV hemagglutinin to inhibit interaction of the virus with sialic acid‐containing receptor molecules on the surface of target cells (Landers
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0160" ref-type="ref">2002</xref>
; Matrosovich & Klenk,
<xref rid="fmr12052-bib-0194" ref-type="ref">2003</xref>
; Matsubara
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0197" ref-type="ref">2010</xref>
; Papp
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0223" ref-type="ref">2010</xref>
,
<xref rid="fmr12052-bib-0224" ref-type="ref">2011</xref>
).</p>
<p>Alternatively, binding of CBAs to glycans displayed on the virion surface can inhibit viral
<italic>cis‐</italic>
or
<italic>trans‐</italic>
infection via host cell lectins. This is elegantly exemplified in several recent studies, showing that mannose‐ as well as
<italic>N</italic>
‐acetylglucosamine‐specific CBAs can effectively prevent DC‐SIGN‐mediated HIV‐1 capture and subsequent transmission to T lymphocytes (Balzarini
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0700" ref-type="ref">2010</xref>
; Balzarini
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0008" ref-type="ref">2007a</xref>
; Bertaux
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0027" ref-type="ref">2007</xref>
; Huskens
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0137" ref-type="ref">2010</xref>
; Hoorelbeke
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0133" ref-type="ref">2011</xref>
; Alexandre
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0002" ref-type="ref">2012</xref>
). Although CBA binding to host cell‐associated glycans may inhibit viruses that employ viral lectins, the potential of this strategy for antiviral therapy remains virtually unexplored. It is noteworthy that the antiviral activity of CBAs or glycan decoys that bind to virion surfaces is not necessarily limited to direct inhibition of crucial glycan–lectin interactions, as they can mask greater portions of the virus and interfere with other crucial (including non‐glycan‐lectin) interactions or steps in the infection process. Moreover, recent research on HIV‐1 highlights the antiviral potential of CBAs from yet another angle. Although the heavily glycosylated HIV‐1 gp120 protein generally provides multiple ligands for mannose‐ and GlcNAc‐specific CBAs, prolonged CBA pressure selects for HIV‐1 variants with multiple
<italic>N</italic>
‐glycosylation site deletions in the gp120 protein that are less sensitive to CBA‐mediated neutralization (Balzarini
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0012" ref-type="ref">2004</xref>
,
<xref rid="fmr12052-bib-0013" ref-type="ref">2005a</xref>
<xref rid="fmr12052-bib-0014" ref-type="ref">b</xref>
; Witvrouw
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0332" ref-type="ref">2005</xref>
; Balzarini
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0015" ref-type="ref">2006</xref>
; Balzarini,
<xref rid="fmr12052-bib-0009" ref-type="ref">2007b</xref>
<xref rid="fmr12052-bib-0010" ref-type="ref">c</xref>
; Balzarini
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0017" ref-type="ref">2007b</xref>
; Huskens
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0136" ref-type="ref">2007</xref>
). Interestingly, however, deletion of
<italic>N</italic>
‐glycosylation sites can also increase the immunogenicity of the virus and weaken the glycan shield that protects the virus from recognition by virus‐specific antibodies and other (nonlectin) immune receptors (Botarelli
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0034" ref-type="ref">1991</xref>
; Back
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0007" ref-type="ref">1994</xref>
; Reitter
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0241" ref-type="ref">1998</xref>
; Bolmstedt
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0032" ref-type="ref">2001</xref>
; Kang
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0144" ref-type="ref">2005</xref>
), and may decrease the efficiency of HIV‐1
<italic>trans</italic>
‐infection via immune system lectins like DC‐SIGN (Hong
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0132" ref-type="ref">2007</xref>
; Liao
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0176" ref-type="ref">2011</xref>
). In addition, it appears that accumulation of mutations under CBA pressure is often paralleled by a significant reduction of the viral fitness, which is obviously advantageous in the context of an antiviral treatment (Balzarini
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0013" ref-type="ref">2005a</xref>
; Balzarini,
<xref rid="fmr12052-bib-0009" ref-type="ref">2007b</xref>
<xref rid="fmr12052-bib-0010" ref-type="ref">c</xref>
). For further information on CBAs and their potential in antiviral therapy, readers may refer to recent expert reviews on this topic (Balzarini,
<xref rid="fmr12052-bib-0010" ref-type="ref">2007c</xref>
; Francois & Balzarini,
<xref rid="fmr12052-bib-0084" ref-type="ref">2012</xref>
).</p>
<p>Although the use of glycan decoys and CBAs may seem the most intuitive strategy to interfere directly with glycan–lectin interaction, other options exist as well. For instance, similar to glycan decoys and CBAs, lectin‐ or glycoconjugate‐specific immunoglobulins may be used to block specific interactions. Evidently, the increasing availability of such ‘direct’ modulators of glycan–lectin interaction is mirrored in an increasing number of potential antiviral applications.</p>
<p>Apart from direct modulation, also strategies that influence glycan–lectin interactions more indirectly can be employed. In fact, many of the molecules used to examine glycan–lectin interactions
<italic>in vitro</italic>
suggest themselves as potential therapeutics.</p>
<p>One approach to indirectly govern glycan–lectin interaction is via the use of drugs that alter the host and/or viral glycome. Glycosidases and other enzymes may be used to alter the glycan portions of fully formed and matured glycoconjugates. Alternatively, various drugs may be employed to directly modify glycan synthesis: glycoconjugates produced in the presence of such molecules will obtain aberrant glycosylation, which may promote or annihilate their interaction with specific lectins. Promising results in glycovirological research have highlighted the antiviral potential of such compounds. For instance, ample data indicate that sialidases may be used to counteract infections where sialic acids play important roles as cellular receptors for viral lectins [e.g. IAV binds to sialic acid receptors on the airway epithelium (Skehel & Wiley,
<xref rid="fmr12052-bib-0268" ref-type="ref">2000</xref>
; Malakhov
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0184" ref-type="ref">2006</xref>
; Belser
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0023" ref-type="ref">2007</xref>
; Harrison,
<xref rid="fmr12052-bib-0106" ref-type="ref">2008</xref>
; Chan
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0047" ref-type="ref">2009</xref>
; Triana‐Baltzer
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0287" ref-type="ref">2009a</xref>
<xref rid="fmr12052-bib-0288" ref-type="ref">b</xref>
,
<xref rid="fmr12052-bib-0289" ref-type="ref">2010</xref>
,
<xref rid="fmr12052-bib-0290" ref-type="ref">2011</xref>
)] or as viral ligands for host lectins that serve as portals for viral entry [e.g. sialic acids on the porcine reproductive and respiratory syndrome virus bind the macrophage‐specific entry mediator sialoadhesin (Delputte & Nauwynck,
<xref rid="fmr12052-bib-0067" ref-type="ref">2004</xref>
; Delputte
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0069" ref-type="ref">2007</xref>
; Van Breedam
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0297" ref-type="ref">2010a</xref>
<xref rid="fmr12052-bib-0298" ref-type="ref">b</xref>
)]. Sialidase treatment may also enhance recognition of viral glycoconjugates by mannose‐specific immune system lectins that can limit viral infection:
<italic>in vitro</italic>
experiments have shown that enzymatic removal of sialic acids from the HIV‐1 virion surface can significantly enhance virus binding and neutralization by MBL (Hart
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0108" ref-type="ref">2002</xref>
,
<xref rid="fmr12052-bib-0109" ref-type="ref">2003</xref>
). In line with this, production of HIV‐1 in the presence of the Golgi α1‐2‐mannosidase I inhibitor 1‐deoxymannojirimycin – which blocks the biosynthesis of complex‐type, sialylated oligosaccharides – increased susceptibility of the virus to MBL‐mediated neutralization (Hart
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0109" ref-type="ref">2003</xref>
). Interestingly, 1‐deoxymannojirimycin treatment of HIV‐1‐infected cells was also shown to potentiate the antiviral effects of mannose‐specific plant CBAs towards the newly produced HIV‐1 virions (Balzarini,
<xref rid="fmr12052-bib-0010" ref-type="ref">2007c</xref>
). These and other examples illustrate the potential of these molecules as antiviral drugs.</p>
<p>Considering the various structural and nonstructural roles of glycans, it is clear that glycome modulation can also have effects beyond the alteration of glycan–lectin binding events. For instance, interfering with host cell glycosylation processes using specific inhibitors may inhibit assembly of infectious virions (Leavitt
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0166" ref-type="ref">1977</xref>
; Katz
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0146" ref-type="ref">1980</xref>
; Pizer
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0230" ref-type="ref">1980</xref>
; Herrler & Compans,
<xref rid="fmr12052-bib-0118" ref-type="ref">1983</xref>
; Montefiori
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0206" ref-type="ref">1988</xref>
; Pal
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0221" ref-type="ref">1989</xref>
; Mehta
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0201" ref-type="ref">1998</xref>
; Dwek
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0076" ref-type="ref">2002</xref>
; Wu
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0334" ref-type="ref">2002</xref>
; Durantel
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0075" ref-type="ref">2007</xref>
; Lazar
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0164" ref-type="ref">2007</xref>
; Scanlan
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0258" ref-type="ref">2007</xref>
; Durantel,
<xref rid="fmr12052-bib-0074" ref-type="ref">2009</xref>
; Merry & Astrautsova,
<xref rid="fmr12052-bib-0203" ref-type="ref">2010</xref>
). Moreover, glycome modulation may significantly alter the capacity of the virus to evade recognition by virus‐specific antibodies and B‐ and T‐cell receptors via glycan shielding (Botarelli
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0034" ref-type="ref">1991</xref>
; Back
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0007" ref-type="ref">1994</xref>
; Willey
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0331" ref-type="ref">1996</xref>
; Reitter
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0241" ref-type="ref">1998</xref>
; Bolmstedt
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0032" ref-type="ref">2001</xref>
; Kang
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0144" ref-type="ref">2005</xref>
; Aguilar
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0001" ref-type="ref">2006</xref>
; Wang
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0322" ref-type="ref">2009</xref>
; Francica
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0083" ref-type="ref">2010</xref>
; Kobayashi & Suzuki,
<xref rid="fmr12052-bib-0151" ref-type="ref">2012</xref>
). Clearly, glycome‐modifying drugs can counteract viruses in various ways and constitute versatile tools in the control of viral infection.</p>
<p>Also other strategies that can indirectly influence glycan–lectin interactions are certainly worth exploring. For instance, drugs that alter host or viral lectin expression (e.g. cytokines or RNAi) may prove useful in antiviral strategies (Ochiel
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0217" ref-type="ref">2010</xref>
; Relloso
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0242" ref-type="ref">2002</xref>
; Ge
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0092" ref-type="ref">2003</xref>
; Arrighi
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0005" ref-type="ref">2004</xref>
; Ge
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0093" ref-type="ref">2004</xref>
; Nair
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0210" ref-type="ref">2005</xref>
; Yagi
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0335" ref-type="ref">2010</xref>
; Raza
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0236" ref-type="ref">2011</xref>
). Furthermore, patients infected with a virus that employs both viral lectins and RDEs may also benefit from treatment with RDE‐specific inhibitors, as these can alter the balance between viral lectin and RDE activity which is often crucial for efficient viral replication and spread. Notable examples in this context are the several neuraminidase inhibitors that have been used successfully for the treatment of IAV infections (Kim
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0148" ref-type="ref">1999</xref>
; Lew
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0174" ref-type="ref">2000</xref>
; Roberts,
<xref rid="fmr12052-bib-0243" ref-type="ref">2001</xref>
; Garman & Laver,
<xref rid="fmr12052-bib-0090" ref-type="ref">2004</xref>
; Alymova
<italic>et al</italic>
.,
<xref rid="fmr12052-bib-0003" ref-type="ref">2005</xref>
; von itzstein,
<xref rid="fmr12052-bib-0314" ref-type="ref">2007</xref>
; von itzstein & Thomson,
<xref rid="fmr12052-bib-0315" ref-type="ref">2009</xref>
; Gamblin & Skehel,
<xref rid="fmr12052-bib-0088" ref-type="ref">2010</xref>
; Ikematsu & Kawai,
<xref rid="fmr12052-bib-0138" ref-type="ref">2011</xref>
).</p>
<p>In sum, drugs that modulate glycan–lectin interactions – either directly or indirectly – can be powerful instruments in the combat against viral pathogens. However, the antiviral strategies suggested above can also have drawbacks. Intensive use of antiviral therapeutics may elicit rapid selection of drug‐resistant virus variants. Another possible drawback relates to the potential off‐target effects of these therapies: therapeutics aimed at influencing specific glycan–lectin interactions that play key roles in viral infection processes may also affect general host glycosylation, lectin expression or glycan–lectin interactions that are crucial for normal functioning of the host and its immune defense. It is also conceivable that such drugs, despite their antiviral effects, may benefit the virus in some ways. For instance, although a glycome‐modifying drug may promote viral recognition by specific immune system lectins that aid in viral clearance, it may also promote viral interaction with host lectins that can aid in
<italic>cis</italic>
‐ or
<italic>trans</italic>
‐infection. Ultimately, the potential of specific agents as antiviral drugs depends on their net (antiviral) effects
<italic>in vivo</italic>
. Other potential disadvantages concern the pharmacokinetic properties of specific drugs. For instance, if glycan decoys or CBAs used in antiviral therapy show a broad reactivity and can respectively bind with multiple (nontarget) lectins or glycans in the host, it is possible that much of the antiviral effect is lost. Also, when using peptidic CBAs that are not native to the host, an antibody response might be mounted against these components, leading to neutralization and/or faster clearance of the active compound. In spite of these and other potential pitfalls, it is clear that glycan decoys and CBAs, as well as various indirect approaches to modulate glycan–lectin interaction, show potential for the treatment of diverse viral infections, either or not in combination with other antiviral strategies. A good understanding of relevant glycan–lectin interactions facilitates specific targeting of these binding events and can help to minimize possible off‐target effects and to reduce the risk of drug resistance.</p>
</sec>
<sec id="fmr12052-sec-0017">
<title>Concluding remarks</title>
<p>Glycans and lectins cover crucial roles in virus biology and their interplay often shapes the virus‐host interaction. In general, the nature of the glycan, the lectin, and the specific conditions under which their interaction occurs determines the outcome of a specific binding event and directs the virus to a certain fate. Based on current knowledge, it is clear that viral lectins generally facilitate viral infection and spread. On the other hand, although it may seem intuitive that host lectin PRRs and other immune system lectins exclusively act in defense of the host, there is ample evidence that contradicts this. Although many host lectins are involved in the induction of an efficacious immune response against viral pathogens, many viruses can also abuse these lectins to promote infection and spread. Intriguingly, analysis of the many studies regarding the role of host lectins in viral infections suggests that soluble host lectins tend to be associated with antiviral activity, whereas membrane‐associated host lectins seem to play a more dubious role and are often implicated in pro‐ as well as antiviral mechanisms (Tables 
<xref rid="fmr12052-tbl-0001" ref-type="table">1</xref>
,
<xref rid="fmr12052-tbl-0002" ref-type="table">2</xref>
). It is however noteworthy that the information provided in this manuscript reflects current views on glycan–lectin interactions in virus biology, and that future research may alter our understanding and interpretation of specific interactions. The fact that (aspects of) viral glycobiology may change during virus‐host co‐evolution even advocates periodic re‐evaluation of specific glycan–lectin interactions.</p>
<p>The biology of glycans and lectins is complex and has long been poorly accessible to virologists and other scientists outside this field. This situation is changing with the emergence of international glycomics consortia (e.g. Consortium for Functional Glycomics), which can provide state‐of‐the‐art techniques and expertise to analyze and interpret virologically/immunologically relevant glycan–lectin interactions. Still, there are specific pitfalls associated with glycovirological research.
<italic>In vitro</italic>
experiments need to be designed and interpreted considering key issues like glycan and lectin variability, the cell‐type dependency of host and virus glycosylation and the influence of the lectin‐expressing cell type on the final outcome of a glycan–lectin interaction. In addition, the results of
<italic>in vitro</italic>
experiments must ultimately be compared with – and re‐interpreted in the context of – data obtained in animal models. In fact, our current understanding of specific glycan–lectin interactions in viral infection is mostly based on
<italic>in vitro</italic>
experiments, underlining the need for experimental validation of these results in the context of the infected host.</p>
<p>In the context of viral infections, many different (lectin‐dependent or ‐independent) interactions and processes take place simultaneously, resulting in a complex network of virus–host factor interaction, signaling, and effector mechanisms, the net effect of which may benefit the host or the virus. Many of the interactions taking place are not yet well defined and probably more are still unknown. Key to combating viral disease is to make these black boxes more transparent. Synergisms between different branches of life sciences are essential to sustain and advance our knowledge in this important field of research.</p>
</sec>
<sec sec-type="supplementary-material">
<title>Supporting information</title>
<supplementary-material content-type="local-data">
<caption>
<p>
<bold>Data S1.</bold>
References Table 1.</p>
</caption>
<media xlink:href="FMR-38-598-s001.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data">
<caption>
<p>
<bold>Data S2.</bold>
References Table 2.</p>
</caption>
<media xlink:href="FMR-38-598-s002.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack id="fmr12052-sec-0018">
<title>Acknowledgements</title>
<p>The authors thank Leslie Bosseler for critical reading of the manuscript and assistance in creating the figures. They also thank Dr Barbara Bottazzi, Dr Alberto Mantovani, and Dr Antonio Inforzato (Istituto Clinico Humanitas, Italy) for their advice on pentraxin biology. W.V.B. was supported by the Flemish Institute for the Promotion of Innovation by Science and Technology (I.W.T.‐Flanders; SB 61491 & 63491) and the Special Research Fund of Ghent University. S.P. was supported by the Leibniz Gemeinschaft. H.W.F. was supported by F.W.O.‐Vlaanderen and the Special Research Fund of Ghent University. The authors apologize to all colleagues whose work has not been cited due to space limitations.</p>
</ack>
<ref-list content-type="cited-references" id="fmr12052-bibl-0001">
<title>References</title>
<ref id="fmr12052-bib-0001">
<mixed-citation publication-type="journal" id="fmr12052-cit-0001">
<string-name>
<surname>Aguilar</surname>
<given-names>HC</given-names>
</string-name>
,
<string-name>
<surname>Matreyek</surname>
<given-names>KA</given-names>
</string-name>
,
<string-name>
<surname>Filone</surname>
<given-names>CM</given-names>
</string-name>
<italic>et al</italic>
(
<year>2006</year>
)
<article-title>N‐glycans on Nipah virus fusion protein protect against neutralization but reduce membrane fusion and viral entry</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>80</volume>
:
<fpage>4878</fpage>
<lpage>4889</lpage>
.
<pub-id pub-id-type="pmid">16641279</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0002">
<mixed-citation publication-type="journal" id="fmr12052-cit-0002">
<string-name>
<surname>Alexandre</surname>
<given-names>KB</given-names>
</string-name>
,
<string-name>
<surname>Gray</surname>
<given-names>ES</given-names>
</string-name>
,
<string-name>
<surname>Mufhandu</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>McMahon</surname>
<given-names>JB</given-names>
</string-name>
,
<string-name>
<surname>Chakauya</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>O'Keefe</surname>
<given-names>BR</given-names>
</string-name>
,
<string-name>
<surname>Chikwamba</surname>
<given-names>R</given-names>
</string-name>
&
<string-name>
<surname>Morris</surname>
<given-names>L</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>The lectins griffithsin, cyanovirin‐N and scytovirin inhibit HIV‐1 binding to the DC‐SIGN receptor and transfer to CD4(+) cells</article-title>
.
<source xml:lang="en">Virology</source>
<volume>423</volume>
:
<fpage>175</fpage>
<lpage>186</lpage>
.
<pub-id pub-id-type="pmid">22209231</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0003">
<mixed-citation publication-type="journal" id="fmr12052-cit-0003">
<string-name>
<surname>Alymova</surname>
<given-names>IV</given-names>
</string-name>
,
<string-name>
<surname>Taylor</surname>
<given-names>G</given-names>
</string-name>
&
<string-name>
<surname>Portner</surname>
<given-names>A</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>Neuraminidase inhibitors as antiviral agents</article-title>
.
<source xml:lang="en">Curr Drug Targets</source>
<volume>5</volume>
:
<fpage>401</fpage>
<lpage>409</lpage>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0004">
<mixed-citation publication-type="journal" id="fmr12052-cit-0004">
<string-name>
<surname>Anders</surname>
<given-names>EM</given-names>
</string-name>
,
<string-name>
<surname>Hartley</surname>
<given-names>CA</given-names>
</string-name>
,
<string-name>
<surname>Reading</surname>
<given-names>PC</given-names>
</string-name>
&
<string-name>
<surname>Ezekowitz</surname>
<given-names>RA</given-names>
</string-name>
(
<year>1994</year>
)
<article-title>Complement‐dependent neutralization of influenza virus by a serum mannose‐binding lectin</article-title>
.
<source xml:lang="en">J Gen Virol</source>
<volume>75</volume>
:
<fpage>615</fpage>
<lpage>622</lpage>
.
<pub-id pub-id-type="pmid">8126457</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0005">
<mixed-citation publication-type="journal" id="fmr12052-cit-0005">
<string-name>
<surname>Arrighi</surname>
<given-names>JF</given-names>
</string-name>
,
<string-name>
<surname>Pion</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Wiznerowicz</surname>
<given-names>M</given-names>
</string-name>
<italic>et al</italic>
(
<year>2004</year>
)
<article-title>Lentivirus‐mediated RNA interference of DC‐SIGN expression inhibits human immunodeficiency virus transmission from dendritic cells to T cells</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>78</volume>
:
<fpage>10848</fpage>
<lpage>10855</lpage>
.
<pub-id pub-id-type="pmid">15452205</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0006">
<mixed-citation publication-type="journal" id="fmr12052-cit-0006">
<string-name>
<surname>Auerbach</surname>
<given-names>DJ</given-names>
</string-name>
,
<string-name>
<surname>Lin</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Miao</surname>
<given-names>HY</given-names>
</string-name>
,
<string-name>
<surname>Cimbro</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>DiFiore</surname>
<given-names>MJ</given-names>
</string-name>
,
<string-name>
<surname>Gianolini</surname>
<given-names>ME</given-names>
</string-name>
,
<string-name>
<surname>Furci</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Biswas</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Fauci</surname>
<given-names>AS</given-names>
</string-name>
&
<string-name>
<surname>Lusso</surname>
<given-names>P</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>Identification of the platelet‐derived chemokine CXCL4/PF‐4 as a broad‐spectrum HIV‐1 inhibitor</article-title>
.
<source xml:lang="en">P Natl Acad Sci USA</source>
<volume>109</volume>
:
<fpage>9569</fpage>
<lpage>9574</lpage>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0007">
<mixed-citation publication-type="journal" id="fmr12052-cit-0007">
<string-name>
<surname>Back</surname>
<given-names>NK</given-names>
</string-name>
,
<string-name>
<surname>Smit</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>De Jong</surname>
<given-names>JJ</given-names>
</string-name>
,
<string-name>
<surname>Keulen</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Schutten</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Goudsmit</surname>
<given-names>J</given-names>
</string-name>
&
<string-name>
<surname>Tersmette</surname>
<given-names>M</given-names>
</string-name>
(
<year>1994</year>
)
<article-title>An N‐glycan within the human immunodeficiency virus type 1 gp120 V3 loop affects virus neutralization</article-title>
.
<source xml:lang="en">Virology</source>
<volume>199</volume>
:
<fpage>431</fpage>
<lpage>438</lpage>
.
<pub-id pub-id-type="pmid">8122371</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0008">
<mixed-citation publication-type="journal" id="fmr12052-cit-0008">
<string-name>
<surname>Balzarini</surname>
<given-names>J</given-names>
</string-name>
(
<year>2007a</year>
)
<article-title>The alpha(1,2)‐mannosidase I inhibitor 1‐deoxymannojirimycin potentiates the antiviral activity of carbohydrate‐binding agents against wild‐type and mutant HIV‐1 strains containing glycan deletions in gp120</article-title>
.
<source xml:lang="en">FEBS Lett</source>
<volume>581</volume>
:
<fpage>2060</fpage>
<lpage>2064</lpage>
.
<pub-id pub-id-type="pmid">17475258</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0009">
<mixed-citation publication-type="journal" id="fmr12052-cit-0009">
<string-name>
<surname>Balzarini</surname>
<given-names>J</given-names>
</string-name>
(
<year>2007b</year>
)
<article-title>Carbohydrate‐binding agents: a potential future cornerstone for the chemotherapy of enveloped viruses?</article-title>
<source xml:lang="en">Antiviral Chem Chemother</source>
<volume>18</volume>
:
<fpage>1</fpage>
<lpage>11</lpage>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0010">
<mixed-citation publication-type="journal" id="fmr12052-cit-0010">
<string-name>
<surname>Balzarini</surname>
<given-names>J</given-names>
</string-name>
(
<year>2007c</year>
)
<article-title>Targeting the glycans of glycoproteins: a novel paradigm for antiviral therapy</article-title>
.
<source xml:lang="en">Nat Rev Microbiol</source>
<volume>5</volume>
:
<fpage>583</fpage>
<lpage>597</lpage>
.
<pub-id pub-id-type="pmid">17632570</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0012">
<mixed-citation publication-type="journal" id="fmr12052-cit-0012">
<string-name>
<surname>Balzarini</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Van Laethem</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Hatse</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Vermeire</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>De Clercq</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Peumans</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Van Damme</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Vandamme</surname>
<given-names>AM</given-names>
</string-name>
,
<string-name>
<surname>Bolmstedt</surname>
<given-names>A</given-names>
</string-name>
&
<string-name>
<surname>Schols</surname>
<given-names>D</given-names>
</string-name>
(
<year>2004</year>
)
<article-title>Profile of resistance of human immunodeficiency virus to mannose‐specific plant lectins</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>78</volume>
:
<fpage>10617</fpage>
<lpage>10627</lpage>
.
<pub-id pub-id-type="pmid">15367629</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0013">
<mixed-citation publication-type="journal" id="fmr12052-cit-0013">
<string-name>
<surname>Balzarini</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Van Laethem</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Hatse</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Froeyen</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Peumans</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Van Damme</surname>
<given-names>E</given-names>
</string-name>
&
<string-name>
<surname>Schols</surname>
<given-names>D</given-names>
</string-name>
(
<year>2005a</year>
)
<article-title>Carbohydrate‐binding agents cause deletions of highly conserved glycosylation sites in HIV GP120: a new therapeutic concept to hit the achilles heel of HIV</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<volume>280</volume>
:
<fpage>41005</fpage>
<lpage>41014</lpage>
.
<pub-id pub-id-type="pmid">16183648</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0014">
<mixed-citation publication-type="journal" id="fmr12052-cit-0014">
<string-name>
<surname>Balzarini</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Van Laethem</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Hatse</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Froeyen</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Van Damme</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Bolmstedt</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Peumans</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>De Clercq</surname>
<given-names>E</given-names>
</string-name>
&
<string-name>
<surname>Schols</surname>
<given-names>D</given-names>
</string-name>
(
<year>2005b</year>
)
<article-title>Marked depletion of glycosylation sites in HIV‐1 gp120 under selection pressure by the mannose‐specific plant lectins of
<italic>Hippeastrum</italic>
hybrid and
<italic>Galanthus nivalis</italic>
</article-title>
.
<source xml:lang="en">Mol Pharmacol</source>
<volume>67</volume>
:
<fpage>1556</fpage>
<lpage>1565</lpage>
.
<pub-id pub-id-type="pmid">15718224</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0015">
<mixed-citation publication-type="journal" id="fmr12052-cit-0015">
<string-name>
<surname>Balzarini</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Van Laethem</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Peumans</surname>
<given-names>WJ</given-names>
</string-name>
,
<string-name>
<surname>Van Damme</surname>
<given-names>EJ</given-names>
</string-name>
,
<string-name>
<surname>Bolmstedt</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Gago</surname>
<given-names>F</given-names>
</string-name>
&
<string-name>
<surname>Schols</surname>
<given-names>D</given-names>
</string-name>
(
<year>2006</year>
)
<article-title>Mutational pathways, resistance profile, and side effects of cyanovirin relative to human immunodeficiency virus type 1 strains with N‐glycan deletions in their gp120 envelopes</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>80</volume>
:
<fpage>8411</fpage>
<lpage>8421</lpage>
.
<pub-id pub-id-type="pmid">16912292</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0016">
<mixed-citation publication-type="journal" id="fmr12052-cit-0016">
<string-name>
<surname>Balzarini</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Van Herrewege</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Vermeire</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Vanham</surname>
<given-names>G</given-names>
</string-name>
&
<string-name>
<surname>Schols</surname>
<given-names>D</given-names>
</string-name>
(
<year>2007a</year>
)
<article-title>Carbohydrate‐binding agents efficiently prevent dendritic cell‐specific intercellular adhesion molecule‐3‐grabbing nonintegrin (DC‐SIGN)‐directed HIV‐1 transmission to T lymphocytes</article-title>
.
<source xml:lang="en">Mol Pharmacol</source>
<volume>71</volume>
:
<fpage>3</fpage>
<lpage>11</lpage>
.
<pub-id pub-id-type="pmid">17056872</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0017">
<mixed-citation publication-type="journal" id="fmr12052-cit-0017">
<string-name>
<surname>Balzarini</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Van Laethem</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Daelemans</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Hatse</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Bugatti</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Rusnati</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Igarashi</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Oki</surname>
<given-names>T</given-names>
</string-name>
&
<string-name>
<surname>Schols</surname>
<given-names>D</given-names>
</string-name>
(
<year>2007b</year>
)
<article-title>Pradimicin A, a carbohydrate‐binding nonpeptidic lead compound for treatment of infections with viruses with highly glycosylated envelopes, such as human immunodeficiency virus</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>81</volume>
:
<fpage>362</fpage>
<lpage>373</lpage>
.
<pub-id pub-id-type="pmid">17050611</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0700">
<mixed-citation publication-type="journal" id="fmr12052-cit-0700">
<string-name>
<surname>Balzarini</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Francois</surname>
<given-names>KO</given-names>
</string-name>
,
<string-name>
<surname>Van Laethem</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Hoorelbeke</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Renders</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Auwerx</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Liekens</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Oki</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Igarashi</surname>
<given-names>Y</given-names>
</string-name>
&
<string-name>
<surname>Schols</surname>
<given-names>D</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>Pradimicin S, a highly soluble nonpeptidic small‐size carbohydrate‐binding antibiotic, is an anti‐HIV drug lead for both microbicidal and systemic use</article-title>
.
<source xml:lang="en">Antimicrob Agents Chemother</source>
<volume>54</volume>
:
<fpage>1425</fpage>
<lpage>1435</lpage>
.
<pub-id pub-id-type="pmid">20047920</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0018">
<mixed-citation publication-type="journal" id="fmr12052-cit-0018">
<string-name>
<surname>Baribaud</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Pohlmann</surname>
<given-names>S</given-names>
</string-name>
&
<string-name>
<surname>Doms</surname>
<given-names>RW</given-names>
</string-name>
(
<year>2001</year>
)
<article-title>The role of DC‐SIGN and DC‐SIGNR in HIV and SIV attachment, infection, and transmission</article-title>
.
<source xml:lang="en">Virology</source>
<volume>286</volume>
:
<fpage>1</fpage>
<lpage>6</lpage>
.
<pub-id pub-id-type="pmid">11448153</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0019">
<mixed-citation publication-type="journal" id="fmr12052-cit-0019">
<string-name>
<surname>Baribaud</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Pohlmann</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Leslie</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Mortari</surname>
<given-names>F</given-names>
</string-name>
&
<string-name>
<surname>Doms</surname>
<given-names>RW</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>Quantitative expression and virus transmission analysis of DC‐SIGN on monocyte‐derived dendritic cells</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>76</volume>
:
<fpage>9135</fpage>
<lpage>9142</lpage>
.
<pub-id pub-id-type="pmid">12186897</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0020">
<mixed-citation publication-type="journal" id="fmr12052-cit-0020">
<string-name>
<surname>Barrere</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Driguez</surname>
<given-names>PA</given-names>
</string-name>
,
<string-name>
<surname>Maudrin</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Doutheau</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Aymard</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Quash</surname>
<given-names>G</given-names>
</string-name>
(
<year>1997</year>
)
<article-title>A novel synthetic reversible inhibitor of sialidase efficiently blocks secondary but not primary influenza virus infection of MDCK cells in culture</article-title>
.
<source xml:lang="en">Arch Virol</source>
<volume>142</volume>
:
<fpage>1365</fpage>
<lpage>1380</lpage>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0021">
<mixed-citation publication-type="journal" id="fmr12052-cit-0021">
<string-name>
<surname>Bax</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Garcia‐Vallejo</surname>
<given-names>JJ</given-names>
</string-name>
,
<string-name>
<surname>Jang‐Lee</surname>
<given-names>J</given-names>
</string-name>
<italic>et al</italic>
(
<year>2007</year>
)
<article-title>Dendritic cell maturation results in pronounced changes in glycan expression affecting recognition by siglecs and galectins</article-title>
.
<source xml:lang="en">J Immunol</source>
<volume>179</volume>
:
<fpage>8216</fpage>
<lpage>8224</lpage>
.
<pub-id pub-id-type="pmid">18056365</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0022">
<mixed-citation publication-type="journal" id="fmr12052-cit-0022">
<string-name>
<surname>Becer</surname>
<given-names>CR</given-names>
</string-name>
,
<string-name>
<surname>Gibson</surname>
<given-names>MI</given-names>
</string-name>
,
<string-name>
<surname>Geng</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Ilyas</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Wallis</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Mitchell</surname>
<given-names>DA</given-names>
</string-name>
&
<string-name>
<surname>Haddleton</surname>
<given-names>DM</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>High‐affinity glycopolymer binding to human DC‐SIGN and disruption of DC‐SIGN interactions with HIV envelope glycoprotein</article-title>
.
<source xml:lang="en">J Am Chem Soc</source>
<volume>132</volume>
:
<fpage>15130</fpage>
<lpage>15132</lpage>
.
<pub-id pub-id-type="pmid">20932025</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0023">
<mixed-citation publication-type="journal" id="fmr12052-cit-0023">
<string-name>
<surname>Belser</surname>
<given-names>JA</given-names>
</string-name>
,
<string-name>
<surname>Lu</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Szretter</surname>
<given-names>KJ</given-names>
</string-name>
<italic>et al</italic>
(
<year>2007</year>
)
<article-title>DAS181, a novel sialidase fusion protein, protects mice from lethal avian influenza H5N1 virus infection</article-title>
.
<source xml:lang="en">J Infect Dis</source>
<volume>196</volume>
:
<fpage>1493</fpage>
<lpage>1499</lpage>
.
<pub-id pub-id-type="pmid">18008229</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0024">
<mixed-citation publication-type="journal" id="fmr12052-cit-0024">
<string-name>
<surname>Belshaw</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Gardner</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Rambaut</surname>
<given-names>A</given-names>
</string-name>
&
<string-name>
<surname>Pybus</surname>
<given-names>OG</given-names>
</string-name>
(
<year>2008</year>
)
<article-title>Pacing a small cage: mutation and RNA viruses</article-title>
.
<source xml:lang="en">Trends Ecol Evol</source>
<volume>23</volume>
:
<fpage>188</fpage>
<lpage>193</lpage>
.
<pub-id pub-id-type="pmid">18295930</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0025">
<mixed-citation publication-type="journal" id="fmr12052-cit-0025">
<string-name>
<surname>Benne</surname>
<given-names>CA</given-names>
</string-name>
,
<string-name>
<surname>Kraaijeveld</surname>
<given-names>CA</given-names>
</string-name>
,
<string-name>
<surname>van Strijp</surname>
<given-names>JA</given-names>
</string-name>
,
<string-name>
<surname>Brouwer</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Harmsen</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Verhoef</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>van Golde</surname>
<given-names>LM</given-names>
</string-name>
&
<string-name>
<surname>van Iwaarden</surname>
<given-names>JF</given-names>
</string-name>
(
<year>1995</year>
)
<article-title>Interactions of surfactant protein A with influenza A viruses: binding and neutralization</article-title>
.
<source xml:lang="en">J Infect Dis</source>
<volume>171</volume>
:
<fpage>335</fpage>
<lpage>341</lpage>
.
<pub-id pub-id-type="pmid">7844369</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0026">
<mixed-citation publication-type="journal" id="fmr12052-cit-0026">
<string-name>
<surname>Benne</surname>
<given-names>CA</given-names>
</string-name>
,
<string-name>
<surname>Benaissa‐Trouw</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>van Strijp</surname>
<given-names>JA</given-names>
</string-name>
,
<string-name>
<surname>Kraaijeveld</surname>
<given-names>CA</given-names>
</string-name>
&
<string-name>
<surname>van Iwaarden</surname>
<given-names>JF</given-names>
</string-name>
(
<year>1997</year>
)
<article-title>Surfactant protein A, but not surfactant protein D, is an opsonin for influenza A virus phagocytosis by rat alveolar macrophages</article-title>
.
<source xml:lang="en">Eur J Immunol</source>
<volume>27</volume>
:
<fpage>886</fpage>
<lpage>890</lpage>
.
<pub-id pub-id-type="pmid">9130640</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0027">
<mixed-citation publication-type="journal" id="fmr12052-cit-0027">
<string-name>
<surname>Bertaux</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Daelemans</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Meertens</surname>
<given-names>L</given-names>
</string-name>
<italic>et al</italic>
(
<year>2007</year>
)
<article-title>Entry of hepatitis C virus and human immunodeficiency virus is selectively inhibited by carbohydrate‐binding agents but not by polyanions</article-title>
.
<source xml:lang="en">Virology</source>
<volume>366</volume>
:
<fpage>40</fpage>
<lpage>50</lpage>
.
<pub-id pub-id-type="pmid">17498767</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0028">
<mixed-citation publication-type="journal" id="fmr12052-cit-0028">
<string-name>
<surname>Berzi</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Reina</surname>
<given-names>JJ</given-names>
</string-name>
,
<string-name>
<surname>Ottria</surname>
<given-names>R</given-names>
</string-name>
<italic>et al</italic>
(
<year>2012</year>
)
<article-title>A glycomimetic compound inhibits DC‐SIGN‐mediated HIV infection in cellular and cervical explant models</article-title>
.
<source xml:lang="en">AIDS</source>
<volume>26</volume>
:
<fpage>127</fpage>
<lpage>137</lpage>
.
<pub-id pub-id-type="pmid">22045343</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0029">
<mixed-citation publication-type="journal" id="fmr12052-cit-0029">
<string-name>
<surname>Blue</surname>
<given-names>CE</given-names>
</string-name>
,
<string-name>
<surname>Spiller</surname>
<given-names>OB</given-names>
</string-name>
&
<string-name>
<surname>Blackbourn</surname>
<given-names>DJ</given-names>
</string-name>
(
<year>2004</year>
)
<article-title>The relevance of complement to virus biology</article-title>
.
<source xml:lang="en">Virology</source>
<volume>319</volume>
:
<fpage>176</fpage>
<lpage>184</lpage>
.
<pub-id pub-id-type="pmid">15015499</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0030">
<mixed-citation publication-type="journal" id="fmr12052-cit-0030">
<string-name>
<surname>Boggiano</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Manel</surname>
<given-names>N</given-names>
</string-name>
&
<string-name>
<surname>Littman</surname>
<given-names>DR</given-names>
</string-name>
(
<year>2007</year>
)
<article-title>Dendritic cell‐mediated trans‐enhancement of human immunodeficiency virus type 1 infectivity is independent of DC‐SIGN</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>81</volume>
:
<fpage>2519</fpage>
<lpage>2523</lpage>
.
<pub-id pub-id-type="pmid">17182696</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0031">
<mixed-citation publication-type="journal" id="fmr12052-cit-0031">
<string-name>
<surname>Boily‐Larouche</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Milev</surname>
<given-names>MP</given-names>
</string-name>
,
<string-name>
<surname>Zijenah</surname>
<given-names>LS</given-names>
</string-name>
<italic>et al</italic>
(
<year>2012</year>
)
<article-title>Naturally‐occurring genetic variants in human DC‐SIGN increase HIV‐1 capture, cell‐transfer and risk of mother‐to‐child transmission</article-title>
.
<source xml:lang="en">PLoS One</source>
<volume>7</volume>
:
<fpage>e40706</fpage>
.
<pub-id pub-id-type="pmid">22808239</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0032">
<mixed-citation publication-type="journal" id="fmr12052-cit-0032">
<string-name>
<surname>Bolmstedt</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Hinkula</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Rowcliffe</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Biller</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Wahren</surname>
<given-names>B</given-names>
</string-name>
&
<string-name>
<surname>Olofsson</surname>
<given-names>S</given-names>
</string-name>
(
<year>2001</year>
)
<article-title>Enhanced immunogenicity of a human immunodeficiency virus type 1 env DNA vaccine by manipulating N‐glycosylation signals. Effects of elimination of the V3 N306 glycan</article-title>
.
<source xml:lang="en">Vaccine</source>
<volume>20</volume>
:
<fpage>397</fpage>
<lpage>405</lpage>
.
<pub-id pub-id-type="pmid">11672902</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0033">
<mixed-citation publication-type="journal" id="fmr12052-cit-0033">
<string-name>
<surname>Bonomelli</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Doores</surname>
<given-names>KJ</given-names>
</string-name>
,
<string-name>
<surname>Dunlop</surname>
<given-names>DC</given-names>
</string-name>
,
<string-name>
<surname>Thaney</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Dwek</surname>
<given-names>RA</given-names>
</string-name>
,
<string-name>
<surname>Burton</surname>
<given-names>DR</given-names>
</string-name>
,
<string-name>
<surname>Crispin</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Scanlan</surname>
<given-names>CN</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>The glycan shield of HIV is predominantly oligomannose independently of production system or viral clade</article-title>
.
<source xml:lang="en">PLoS One</source>
<volume>6</volume>
:
<fpage>e23521</fpage>
.
<pub-id pub-id-type="pmid">21858152</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0034">
<mixed-citation publication-type="journal" id="fmr12052-cit-0034">
<string-name>
<surname>Botarelli</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Houlden</surname>
<given-names>BA</given-names>
</string-name>
,
<string-name>
<surname>Haigwood</surname>
<given-names>NL</given-names>
</string-name>
,
<string-name>
<surname>Servis</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Montagna</surname>
<given-names>D</given-names>
</string-name>
&
<string-name>
<surname>Abrignani</surname>
<given-names>S</given-names>
</string-name>
(
<year>1991</year>
)
<article-title>N‐glycosylation of HIV‐gp120 may constrain recognition by T lymphocytes</article-title>
.
<source xml:lang="en">J Immunol</source>
<volume>147</volume>
:
<fpage>3128</fpage>
<lpage>3132</lpage>
.
<pub-id pub-id-type="pmid">1717587</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0035">
<mixed-citation publication-type="journal" id="fmr12052-cit-0035">
<string-name>
<surname>Bottazzi</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Doni</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Garlanda</surname>
<given-names>C</given-names>
</string-name>
&
<string-name>
<surname>Mantovani</surname>
<given-names>A</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>An integrated view of humoral innate immunity: pentraxins as a paradigm</article-title>
.
<source xml:lang="en">Annu Rev Immunol</source>
<volume>28</volume>
:
<fpage>157</fpage>
<lpage>183</lpage>
.
<pub-id pub-id-type="pmid">19968561</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0036">
<mixed-citation publication-type="journal" id="fmr12052-cit-0036">
<string-name>
<surname>Boukour</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Masse</surname>
<given-names>JM</given-names>
</string-name>
,
<string-name>
<surname>Benit</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Dubart‐Kupperschmitt</surname>
<given-names>A</given-names>
</string-name>
&
<string-name>
<surname>Cramer</surname>
<given-names>EM</given-names>
</string-name>
(
<year>2006</year>
)
<article-title>Lentivirus degradation and DC‐SIGN expression by human platelets and megakaryocytes</article-title>
.
<source xml:lang="en">J Thromb Haemost</source>
<volume>4</volume>
:
<fpage>426</fpage>
<lpage>435</lpage>
.
<pub-id pub-id-type="pmid">16420576</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0037">
<mixed-citation publication-type="journal" id="fmr12052-cit-0037">
<string-name>
<surname>Bowden</surname>
<given-names>TA</given-names>
</string-name>
,
<string-name>
<surname>Crispin</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Jones</surname>
<given-names>EY</given-names>
</string-name>
&
<string-name>
<surname>Stuart</surname>
<given-names>DI</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>Shared paramyxoviral glycoprotein architecture is adapted for diverse attachment strategies</article-title>
.
<source xml:lang="en">Biochem Soc Trans</source>
<volume>38</volume>
:
<fpage>1349</fpage>
<lpage>1355</lpage>
.
<pub-id pub-id-type="pmid">20863312</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0038">
<mixed-citation publication-type="journal" id="fmr12052-cit-0038">
<string-name>
<surname>Brudner</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Karpel</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Lear</surname>
<given-names>C</given-names>
</string-name>
<italic>et al</italic>
(
<year>2013</year>
)
<article-title>Lectin‐dependent enhancement of Ebola virus infection via soluble and transmembrane C‐type lectin receptors</article-title>
.
<source xml:lang="en">PLoS One</source>
<volume>8</volume>
:
<fpage>e60838</fpage>
.
<pub-id pub-id-type="pmid">23573288</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0039">
<mixed-citation publication-type="journal" id="fmr12052-cit-0039">
<string-name>
<surname>Bu</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Mamedova</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Tan</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Xia</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Jiang</surname>
<given-names>X</given-names>
</string-name>
&
<string-name>
<surname>Hegde</surname>
<given-names>RS</given-names>
</string-name>
(
<year>2008</year>
)
<article-title>Structural basis for the receptor binding specificity of Norwalk virus</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>82</volume>
:
<fpage>5340</fpage>
<lpage>5347</lpage>
.
<pub-id pub-id-type="pmid">18385236</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0040">
<mixed-citation publication-type="journal" id="fmr12052-cit-0040">
<string-name>
<surname>Burleigh</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Lozach</surname>
<given-names>PY</given-names>
</string-name>
,
<string-name>
<surname>Schiffer</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Staropoli</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Pezo</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Porrot</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Canque</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Virelizier</surname>
<given-names>JL</given-names>
</string-name>
,
<string-name>
<surname>Arenzana‐Seisdedos</surname>
<given-names>F</given-names>
</string-name>
&
<string-name>
<surname>Amara</surname>
<given-names>A</given-names>
</string-name>
(
<year>2006</year>
)
<article-title>Infection of dendritic cells (DCs), not DC‐SIGN‐mediated internalization of human immunodeficiency virus, is required for long‐term transfer of virus to T cells</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>80</volume>
:
<fpage>2949</fpage>
<lpage>2957</lpage>
.
<pub-id pub-id-type="pmid">16501104</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0041">
<mixed-citation publication-type="journal" id="fmr12052-cit-0041">
<string-name>
<surname>Cambi</surname>
<given-names>A</given-names>
</string-name>
&
<string-name>
<surname>Figdor</surname>
<given-names>CG</given-names>
</string-name>
(
<year>2003</year>
)
<article-title>Dual function of C‐type lectin‐like receptors in the immune system</article-title>
.
<source xml:lang="en">Curr Opin Cell Biol</source>
<volume>15</volume>
:
<fpage>539</fpage>
<lpage>546</lpage>
.
<pub-id pub-id-type="pmid">14519388</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0042">
<mixed-citation publication-type="journal" id="fmr12052-cit-0042">
<string-name>
<surname>Cambi</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Koopman</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Figdor</surname>
<given-names>CG</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>How C‐type lectins detect pathogens</article-title>
.
<source xml:lang="en">Cell Microbiol</source>
<volume>7</volume>
:
<fpage>481</fpage>
<lpage>488</lpage>
.
<pub-id pub-id-type="pmid">15760448</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0043">
<mixed-citation publication-type="journal" id="fmr12052-cit-0043">
<string-name>
<surname>Cao</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Lou</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Tan</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>XC</given-names>
</string-name>
,
<string-name>
<surname>Jiang</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>X</given-names>
</string-name>
&
<string-name>
<surname>Rao</surname>
<given-names>Z</given-names>
</string-name>
(
<year>2007</year>
)
<article-title>Structural basis for the recognition of blood group trisaccharides by norovirus</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>81</volume>
:
<fpage>5949</fpage>
<lpage>5957</lpage>
.
<pub-id pub-id-type="pmid">17392366</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0044">
<mixed-citation publication-type="journal" id="fmr12052-cit-0044">
<string-name>
<surname>Cavrois</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Neidleman</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Kreisberg</surname>
<given-names>JF</given-names>
</string-name>
&
<string-name>
<surname>Greene</surname>
<given-names>WC</given-names>
</string-name>
(
<year>2007</year>
)
<article-title>
<italic>In vitro</italic>
derived dendritic cells trans‐infect CD4 T cells primarily with surface‐bound HIV‐1 virions</article-title>
.
<source xml:lang="en">PLoS Pathog</source>
<volume>3</volume>
:
<fpage>e4</fpage>
.
<pub-id pub-id-type="pmid">17238285</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0045">
<mixed-citation publication-type="journal" id="fmr12052-cit-0045">
<string-name>
<surname>Cebulla</surname>
<given-names>CM</given-names>
</string-name>
,
<string-name>
<surname>Miller</surname>
<given-names>DM</given-names>
</string-name>
,
<string-name>
<surname>Knight</surname>
<given-names>DA</given-names>
</string-name>
,
<string-name>
<surname>Briggs</surname>
<given-names>BR</given-names>
</string-name>
,
<string-name>
<surname>McGaughy</surname>
<given-names>V</given-names>
</string-name>
&
<string-name>
<surname>Sedmak</surname>
<given-names>DD</given-names>
</string-name>
(
<year>2000</year>
)
<article-title>Cytomegalovirus induces sialyl Lewis(x) and Lewis(x) on human endothelial cells</article-title>
.
<source xml:lang="en">Transplantation</source>
<volume>69</volume>
:
<fpage>1202</fpage>
<lpage>1209</lpage>
.
<pub-id pub-id-type="pmid">10762227</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0046">
<mixed-citation publication-type="journal" id="fmr12052-cit-0046">
<string-name>
<surname>Chaipan</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Soilleux</surname>
<given-names>EJ</given-names>
</string-name>
,
<string-name>
<surname>Simpson</surname>
<given-names>P</given-names>
</string-name>
<italic>et al</italic>
(
<year>2006</year>
)
<article-title>DC‐SIGN and CLEC‐2 mediate human immunodeficiency virus type 1 capture by platelets</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>80</volume>
:
<fpage>8951</fpage>
<lpage>8960</lpage>
.
<pub-id pub-id-type="pmid">16940507</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0047">
<mixed-citation publication-type="journal" id="fmr12052-cit-0047">
<string-name>
<surname>Chan</surname>
<given-names>RW</given-names>
</string-name>
,
<string-name>
<surname>Chan</surname>
<given-names>MC</given-names>
</string-name>
,
<string-name>
<surname>Wong</surname>
<given-names>AC</given-names>
</string-name>
<italic>et al</italic>
(
<year>2009</year>
)
<article-title>DAS181 inhibits H5N1 influenza virus infection of human lung tissues</article-title>
.
<source xml:lang="en">Antimicrob Agents Chemother</source>
<volume>53</volume>
:
<fpage>3935</fpage>
<lpage>3941</lpage>
.
<pub-id pub-id-type="pmid">19596886</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0048">
<mixed-citation publication-type="journal" id="fmr12052-cit-0048">
<string-name>
<surname>Chang</surname>
<given-names>A</given-names>
</string-name>
&
<string-name>
<surname>Dutch</surname>
<given-names>RE</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>Paramyxovirus fusion and entry: multiple paths to a common end</article-title>
.
<source xml:lang="en">Viruses</source>
<volume>4</volume>
:
<fpage>613</fpage>
<lpage>636</lpage>
.
<pub-id pub-id-type="pmid">22590688</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0049">
<mixed-citation publication-type="journal" id="fmr12052-cit-0049">
<string-name>
<surname>Chang</surname>
<given-names>WC</given-names>
</string-name>
,
<string-name>
<surname>White</surname>
<given-names>MR</given-names>
</string-name>
,
<string-name>
<surname>Moyo</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>McClear</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Thiel</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Hartshorn</surname>
<given-names>KL</given-names>
</string-name>
&
<string-name>
<surname>Takahashi</surname>
<given-names>K</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>Lack of the pattern recognition molecule mannose‐binding lectin increases susceptibility to influenza A virus infection</article-title>
.
<source xml:lang="en">BMC Immunol</source>
<volume>11</volume>
:
<fpage>64</fpage>
.
<pub-id pub-id-type="pmid">21182784</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0050">
<mixed-citation publication-type="journal" id="fmr12052-cit-0050">
<string-name>
<surname>Chen</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Maguire</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Hileman</surname>
<given-names>RE</given-names>
</string-name>
,
<string-name>
<surname>Fromm</surname>
<given-names>JR</given-names>
</string-name>
,
<string-name>
<surname>Esko</surname>
<given-names>JD</given-names>
</string-name>
,
<string-name>
<surname>Linhardt</surname>
<given-names>RJ</given-names>
</string-name>
&
<string-name>
<surname>Marks</surname>
<given-names>RM</given-names>
</string-name>
(
<year>1997</year>
)
<article-title>Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate</article-title>
.
<source xml:lang="en">Nat Med</source>
<volume>3</volume>
:
<fpage>866</fpage>
<lpage>871</lpage>
.
<pub-id pub-id-type="pmid">9256277</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0051">
<mixed-citation publication-type="journal" id="fmr12052-cit-0051">
<string-name>
<surname>Chen</surname>
<given-names>CH</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>XQ</given-names>
</string-name>
,
<string-name>
<surname>Lo</surname>
<given-names>CW</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>PF</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>YT</given-names>
</string-name>
,
<string-name>
<surname>Gallo</surname>
<given-names>RL</given-names>
</string-name>
,
<string-name>
<surname>Hsieh</surname>
<given-names>MF</given-names>
</string-name>
,
<string-name>
<surname>Schooley</surname>
<given-names>RT</given-names>
</string-name>
&
<string-name>
<surname>Huang</surname>
<given-names>CM</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>The essentiality of alpha‐2‐macroglobulin in human salivary innate immunity against new H1N1 swine origin influenza A virus</article-title>
.
<source xml:lang="en">Proteomics</source>
<volume>10</volume>
:
<fpage>2396</fpage>
<lpage>2401</lpage>
.
<pub-id pub-id-type="pmid">20391540</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0052">
<mixed-citation publication-type="journal" id="fmr12052-cit-0052">
<string-name>
<surname>Choi</surname>
<given-names>JM</given-names>
</string-name>
,
<string-name>
<surname>Hutson</surname>
<given-names>AM</given-names>
</string-name>
,
<string-name>
<surname>Estes</surname>
<given-names>MK</given-names>
</string-name>
&
<string-name>
<surname>Prasad</surname>
<given-names>BV</given-names>
</string-name>
(
<year>2008</year>
)
<article-title>Atomic resolution structural characterization of recognition of histo‐blood group antigens by Norwalk virus</article-title>
.
<source xml:lang="en">P Natl Acad Sci USA</source>
<volume>105</volume>
:
<fpage>9175</fpage>
<lpage>9180</lpage>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0053">
<mixed-citation publication-type="journal" id="fmr12052-cit-0053">
<string-name>
<surname>Colman</surname>
<given-names>PM</given-names>
</string-name>
(
<year>1994</year>
)
<article-title>Influenza virus neuraminidase: structure, antibodies, and inhibitors</article-title>
.
<source xml:lang="en">Protein Sci</source>
<volume>3</volume>
:
<fpage>1687</fpage>
<lpage>1696</lpage>
.
<pub-id pub-id-type="pmid">7849585</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0054">
<mixed-citation publication-type="journal" id="fmr12052-cit-0054">
<string-name>
<surname>Comelli</surname>
<given-names>EM</given-names>
</string-name>
,
<string-name>
<surname>Sutton‐Smith</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Yan</surname>
<given-names>Q</given-names>
</string-name>
<italic>et al</italic>
(
<year>2006</year>
)
<article-title>Activation of murine CD4+ and CD8+ T lymphocytes leads to dramatic remodeling of N‐linked glycans</article-title>
.
<source xml:lang="en">J Immunol</source>
<volume>177</volume>
:
<fpage>2431</fpage>
<lpage>2440</lpage>
.
<pub-id pub-id-type="pmid">16888005</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0055">
<mixed-citation publication-type="journal" id="fmr12052-cit-0055">
<string-name>
<surname>Crocker</surname>
<given-names>PR</given-names>
</string-name>
&
<string-name>
<surname>Redelinghuys</surname>
<given-names>P</given-names>
</string-name>
(
<year>2008</year>
)
<article-title>Siglecs as positive and negative regulators of the immune system</article-title>
.
<source xml:lang="en">Biochem Soc Trans</source>
<volume>36</volume>
:
<fpage>1467</fpage>
<lpage>1471</lpage>
.
<pub-id pub-id-type="pmid">19021577</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0056">
<mixed-citation publication-type="journal" id="fmr12052-cit-0056">
<string-name>
<surname>Crocker</surname>
<given-names>PR</given-names>
</string-name>
,
<string-name>
<surname>Paulson</surname>
<given-names>JC</given-names>
</string-name>
&
<string-name>
<surname>Varki</surname>
<given-names>A</given-names>
</string-name>
(
<year>2007</year>
)
<article-title>Siglecs and their roles in the immune system</article-title>
.
<source xml:lang="en">Nat Rev</source>
<volume>7</volume>
:
<fpage>255</fpage>
<lpage>266</lpage>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0057">
<mixed-citation publication-type="journal" id="fmr12052-cit-0057">
<string-name>
<surname>Curtis</surname>
<given-names>BM</given-names>
</string-name>
,
<string-name>
<surname>Scharnowske</surname>
<given-names>S</given-names>
</string-name>
&
<string-name>
<surname>Watson</surname>
<given-names>AJ</given-names>
</string-name>
(
<year>1992</year>
)
<article-title>Sequence and expression of a membrane‐associated C‐type lectin that exhibits CD4‐independent binding of human immunodeficiency virus envelope glycoprotein gp120</article-title>
.
<source xml:lang="en">P Natl Acad Sci USA</source>
<volume>89</volume>
:
<fpage>8356</fpage>
<lpage>8360</lpage>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0058">
<mixed-citation publication-type="journal" id="fmr12052-cit-0058">
<string-name>
<surname>Cwach</surname>
<given-names>KT</given-names>
</string-name>
,
<string-name>
<surname>Sandbulte</surname>
<given-names>HR</given-names>
</string-name>
,
<string-name>
<surname>Klonoski</surname>
<given-names>JM</given-names>
</string-name>
&
<string-name>
<surname>Huber</surname>
<given-names>VC</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>Contribution of murine innate serum inhibitors toward interference within influenza virus immune assays</article-title>
.
<source xml:lang="en">Influenza Other Respir Viruses</source>
<volume>6</volume>
:
<fpage>127</fpage>
<lpage>135</lpage>
.
<pub-id pub-id-type="pmid">21883963</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0059">
<mixed-citation publication-type="journal" id="fmr12052-cit-0059">
<string-name>
<surname>da Silva</surname>
<given-names>RC</given-names>
</string-name>
,
<string-name>
<surname>Segat</surname>
<given-names>L</given-names>
</string-name>
&
<string-name>
<surname>Crovella</surname>
<given-names>S</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>Role of DC‐SIGN and L‐SIGN receptors in HIV‐1 vertical transmission</article-title>
.
<source xml:lang="en">Hum Immunol</source>
<volume>72</volume>
:
<fpage>305</fpage>
<lpage>311</lpage>
.
<pub-id pub-id-type="pmid">21277928</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0060">
<mixed-citation publication-type="journal" id="fmr12052-cit-0060">
<string-name>
<surname>Dam</surname>
<given-names>TK</given-names>
</string-name>
&
<string-name>
<surname>Brewer</surname>
<given-names>CF</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>Lectins as pattern recognition molecules: the effects of epitope density in innate immunity</article-title>
.
<source xml:lang="en">Glycobiology</source>
<volume>20</volume>
:
<fpage>270</fpage>
<lpage>279</lpage>
.
<pub-id pub-id-type="pmid">19939826</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0061">
<mixed-citation publication-type="journal" id="fmr12052-cit-0061">
<string-name>
<surname>Davicino</surname>
<given-names>RC</given-names>
</string-name>
,
<string-name>
<surname>Elicabe</surname>
<given-names>RJ</given-names>
</string-name>
,
<string-name>
<surname>Di Genaro</surname>
<given-names>MS</given-names>
</string-name>
&
<string-name>
<surname>Rabinovich</surname>
<given-names>GA</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>Coupling pathogen recognition to innate immunity through glycan‐dependent mechanisms</article-title>
.
<source xml:lang="en">Int Immunopharmacol</source>
<volume>11</volume>
:
<fpage>1457</fpage>
<lpage>1463</lpage>
.
<pub-id pub-id-type="pmid">21600310</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0062">
<mixed-citation publication-type="journal" id="fmr12052-cit-0062">
<string-name>
<surname>de Groot</surname>
<given-names>RJ</given-names>
</string-name>
(
<year>2006</year>
)
<article-title>Structure, function and evolution of the hemagglutinin‐esterase proteins of corona‐ and toroviruses</article-title>
.
<source xml:lang="en">Glycoconj J</source>
<volume>23</volume>
:
<fpage>59</fpage>
<lpage>72</lpage>
.
<pub-id pub-id-type="pmid">16575523</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0063">
<mixed-citation publication-type="journal" id="fmr12052-cit-0063">
<string-name>
<surname>de Witte</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Nabatov</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Pion</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Fluitsma</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>de Jong</surname>
<given-names>MA</given-names>
</string-name>
,
<string-name>
<surname>de Gruijl</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Piguet</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>van Kooyk</surname>
<given-names>Y</given-names>
</string-name>
&
<string-name>
<surname>Geijtenbeek</surname>
<given-names>TB</given-names>
</string-name>
(
<year>2007</year>
)
<article-title>Langerin is a natural barrier to HIV‐1 transmission by Langerhans cells</article-title>
.
<source xml:lang="en">Nat Med</source>
<volume>13</volume>
:
<fpage>367</fpage>
<lpage>371</lpage>
.
<pub-id pub-id-type="pmid">17334373</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0064">
<mixed-citation publication-type="journal" id="fmr12052-cit-0064">
<string-name>
<surname>Dechecchi</surname>
<given-names>MC</given-names>
</string-name>
,
<string-name>
<surname>Tamanini</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Bonizzato</surname>
<given-names>A</given-names>
</string-name>
&
<string-name>
<surname>Cabrini</surname>
<given-names>G</given-names>
</string-name>
(
<year>2000</year>
)
<article-title>Heparan sulfate glycosaminoglycans are involved in adenovirus type 5 and 2‐host cell interactions</article-title>
.
<source xml:lang="en">Virology</source>
<volume>268</volume>
:
<fpage>382</fpage>
<lpage>390</lpage>
.
<pub-id pub-id-type="pmid">10704346</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0065">
<mixed-citation publication-type="journal" id="fmr12052-cit-0065">
<string-name>
<surname>Dechecchi</surname>
<given-names>MC</given-names>
</string-name>
,
<string-name>
<surname>Melotti</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Bonizzato</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Santacatterina</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Chilosi</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Cabrini</surname>
<given-names>G</given-names>
</string-name>
(
<year>2001</year>
)
<article-title>Heparan sulfate glycosaminoglycans are receptors sufficient to mediate the initial binding of adenovirus types 2 and 5</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>75</volume>
:
<fpage>8772</fpage>
<lpage>8780</lpage>
.
<pub-id pub-id-type="pmid">11507222</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0066">
<mixed-citation publication-type="journal" id="fmr12052-cit-0066">
<string-name>
<surname>Dejnirattisai</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Webb</surname>
<given-names>AI</given-names>
</string-name>
,
<string-name>
<surname>Chan</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Jumnainsong</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Davidson</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Mongkolsapaya</surname>
<given-names>J</given-names>
</string-name>
&
<string-name>
<surname>Screaton</surname>
<given-names>G</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>Lectin switching during dengue virus infection</article-title>
.
<source xml:lang="en">J Infect Dis</source>
<volume>203</volume>
:
<fpage>1775</fpage>
<lpage>1783</lpage>
.
<pub-id pub-id-type="pmid">21606536</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0067">
<mixed-citation publication-type="journal" id="fmr12052-cit-0067">
<string-name>
<surname>Delputte</surname>
<given-names>PL</given-names>
</string-name>
&
<string-name>
<surname>Nauwynck</surname>
<given-names>HJ</given-names>
</string-name>
(
<year>2004</year>
)
<article-title>Porcine arterivirus infection of alveolar macrophages is mediated by sialic acid on the virus</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>78</volume>
:
<fpage>8094</fpage>
<lpage>8101</lpage>
.
<pub-id pub-id-type="pmid">15254181</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0068">
<mixed-citation publication-type="journal" id="fmr12052-cit-0068">
<string-name>
<surname>Delputte</surname>
<given-names>PL</given-names>
</string-name>
,
<string-name>
<surname>Vanderheijden</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Nauwynck</surname>
<given-names>HJ</given-names>
</string-name>
&
<string-name>
<surname>Pensaert</surname>
<given-names>MB</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>Involvement of the matrix protein in attachment of porcine reproductive and respiratory syndrome virus to a heparinlike receptor on porcine alveolar macrophages</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>76</volume>
:
<fpage>4312</fpage>
<lpage>4320</lpage>
.
<pub-id pub-id-type="pmid">11932397</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0069">
<mixed-citation publication-type="journal" id="fmr12052-cit-0069">
<string-name>
<surname>Delputte</surname>
<given-names>PL</given-names>
</string-name>
,
<string-name>
<surname>Van Breedam</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Delrue</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Oetke</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Crocker</surname>
<given-names>PR</given-names>
</string-name>
&
<string-name>
<surname>Nauwynck</surname>
<given-names>HJ</given-names>
</string-name>
(
<year>2007</year>
)
<article-title>Porcine arterivirus attachment to the macrophage‐specific receptor sialoadhesin is dependent on the sialic acid‐binding activity of the N‐terminal immunoglobulin domain of sialoadhesin</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>81</volume>
:
<fpage>9546</fpage>
<lpage>9550</lpage>
.
<pub-id pub-id-type="pmid">17567703</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0070">
<mixed-citation publication-type="journal" id="fmr12052-cit-0070">
<string-name>
<surname>Dommett</surname>
<given-names>RM</given-names>
</string-name>
,
<string-name>
<surname>Klein</surname>
<given-names>N</given-names>
</string-name>
&
<string-name>
<surname>Turner</surname>
<given-names>MW</given-names>
</string-name>
(
<year>2006</year>
)
<article-title>Mannose‐binding lectin in innate immunity: past, present and future</article-title>
.
<source xml:lang="en">Tissue Antigens</source>
<volume>68</volume>
:
<fpage>193</fpage>
<lpage>209</lpage>
.
<pub-id pub-id-type="pmid">16948640</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0071">
<mixed-citation publication-type="journal" id="fmr12052-cit-0071">
<string-name>
<surname>Donaldson</surname>
<given-names>EF</given-names>
</string-name>
,
<string-name>
<surname>Lindesmith</surname>
<given-names>LC</given-names>
</string-name>
,
<string-name>
<surname>Lobue</surname>
<given-names>AD</given-names>
</string-name>
&
<string-name>
<surname>Baric</surname>
<given-names>RS</given-names>
</string-name>
(
<year>2008</year>
)
<article-title>Norovirus pathogenesis: mechanisms of persistence and immune evasion in human populations</article-title>
.
<source xml:lang="en">Immunol Rev</source>
<volume>225</volume>
:
<fpage>190</fpage>
<lpage>211</lpage>
.
<pub-id pub-id-type="pmid">18837783</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0072">
<mixed-citation publication-type="journal" id="fmr12052-cit-0072">
<string-name>
<surname>Doores</surname>
<given-names>KJ</given-names>
</string-name>
,
<string-name>
<surname>Bonomelli</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Harvey</surname>
<given-names>DJ</given-names>
</string-name>
,
<string-name>
<surname>Vasiljevic</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Dwek</surname>
<given-names>RA</given-names>
</string-name>
,
<string-name>
<surname>Burton</surname>
<given-names>DR</given-names>
</string-name>
,
<string-name>
<surname>Crispin</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Scanlan</surname>
<given-names>CN</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>Envelope glycans of immunodeficiency virions are almost entirely oligomannose antigens</article-title>
.
<source xml:lang="en">P Natl Acad Sci USA</source>
<volume>107</volume>
:
<fpage>13800</fpage>
<lpage>13805</lpage>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0073">
<mixed-citation publication-type="journal" id="fmr12052-cit-0073">
<string-name>
<surname>Dormitzer</surname>
<given-names>PR</given-names>
</string-name>
,
<string-name>
<surname>Sun</surname>
<given-names>ZY</given-names>
</string-name>
,
<string-name>
<surname>Blixt</surname>
<given-names>O</given-names>
</string-name>
,
<string-name>
<surname>Paulson</surname>
<given-names>JC</given-names>
</string-name>
,
<string-name>
<surname>Wagner</surname>
<given-names>G</given-names>
</string-name>
&
<string-name>
<surname>Harrison</surname>
<given-names>SC</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>Specificity and affinity of sialic acid binding by the rhesus rotavirus VP8* core</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>76</volume>
:
<fpage>10512</fpage>
<lpage>10517</lpage>
.
<pub-id pub-id-type="pmid">12239329</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0074">
<mixed-citation publication-type="journal" id="fmr12052-cit-0074">
<string-name>
<surname>Durantel</surname>
<given-names>D</given-names>
</string-name>
(
<year>2009</year>
)
<article-title>Celgosivir, an alpha‐glucosidase I inhibitor for the potential treatment of HCV infection</article-title>
.
<source xml:lang="en">Curr Opin Investig Drugs</source>
<volume>10</volume>
:
<fpage>860</fpage>
<lpage>870</lpage>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0075">
<mixed-citation publication-type="journal" id="fmr12052-cit-0075">
<string-name>
<surname>Durantel</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Alotte</surname>
<given-names>C</given-names>
</string-name>
&
<string-name>
<surname>Zoulim</surname>
<given-names>F</given-names>
</string-name>
(
<year>2007</year>
)
<article-title>Glucosidase inhibitors as antiviral agents for hepatitis B and C</article-title>
.
<source xml:lang="en">Curr Opin Investig Drugs</source>
<volume>8</volume>
:
<fpage>125</fpage>
<lpage>129</lpage>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0076">
<mixed-citation publication-type="journal" id="fmr12052-cit-0076">
<string-name>
<surname>Dwek</surname>
<given-names>RA</given-names>
</string-name>
,
<string-name>
<surname>Butters</surname>
<given-names>TD</given-names>
</string-name>
,
<string-name>
<surname>Platt</surname>
<given-names>FM</given-names>
</string-name>
&
<string-name>
<surname>Zitzmann</surname>
<given-names>N</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>Targeting glycosylation as a therapeutic approach</article-title>
.
<source xml:lang="en">Nat Rev Drug Discov</source>
<volume>1</volume>
:
<fpage>65</fpage>
<lpage>75</lpage>
.
<pub-id pub-id-type="pmid">12119611</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0077">
<mixed-citation publication-type="journal" id="fmr12052-cit-0077">
<string-name>
<surname>Eggink</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Melchers</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Wuhrer</surname>
<given-names>M</given-names>
</string-name>
<italic>et al</italic>
(
<year>2010</year>
)
<article-title>Lack of complex N‐glycans on HIV‐1 envelope glycoproteins preserves protein conformation and entry function</article-title>
.
<source xml:lang="en">Virology</source>
<volume>401</volume>
:
<fpage>236</fpage>
<lpage>247</lpage>
.
<pub-id pub-id-type="pmid">20304457</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0078">
<mixed-citation publication-type="journal" id="fmr12052-cit-0078">
<string-name>
<surname>Eisen</surname>
<given-names>DP</given-names>
</string-name>
&
<string-name>
<surname>Minchinton</surname>
<given-names>RM</given-names>
</string-name>
(
<year>2003</year>
)
<article-title>Impact of mannose‐binding lectin on susceptibility to infectious diseases</article-title>
.
<source xml:lang="en">Clin Infect Dis</source>
<volume>37</volume>
:
<fpage>1496</fpage>
<lpage>1505</lpage>
.
<pub-id pub-id-type="pmid">14614673</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0079">
<mixed-citation publication-type="journal" id="fmr12052-cit-0079">
<string-name>
<surname>Elgavish</surname>
<given-names>S</given-names>
</string-name>
&
<string-name>
<surname>Shaanan</surname>
<given-names>B</given-names>
</string-name>
(
<year>1997</year>
)
<article-title>Lectin‐carbohydrate interactions: different folds, common recognition principles</article-title>
.
<source xml:lang="en">Trends Biochem Sci</source>
<volume>22</volume>
:
<fpage>462</fpage>
<lpage>467</lpage>
.
<pub-id pub-id-type="pmid">9433125</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0080">
<mixed-citation publication-type="journal" id="fmr12052-cit-0080">
<string-name>
<surname>Estes</surname>
<given-names>MK</given-names>
</string-name>
,
<string-name>
<surname>Prasad</surname>
<given-names>BV</given-names>
</string-name>
&
<string-name>
<surname>Atmar</surname>
<given-names>RL</given-names>
</string-name>
(
<year>2006</year>
)
<article-title>Noroviruses everywhere: has something changed?</article-title>
<source xml:lang="en">Curr Opin Infect Dis</source>
<volume>19</volume>
:
<fpage>467</fpage>
<lpage>474</lpage>
.
<pub-id pub-id-type="pmid">16940871</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0081">
<mixed-citation publication-type="journal" id="fmr12052-cit-0081">
<string-name>
<surname>Farkas</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Cross</surname>
<given-names>RW</given-names>
</string-name>
,
<string-name>
<surname>Hargitt</surname>
<given-names>E</given-names>
<suffix>3rd</suffix>
</string-name>
,
<string-name>
<surname>Lerche</surname>
<given-names>NW</given-names>
</string-name>
,
<string-name>
<surname>Morrow</surname>
<given-names>AL</given-names>
</string-name>
&
<string-name>
<surname>Sestak</surname>
<given-names>K</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>Genetic diversity and histo‐blood group antigen interactions of rhesus enteric caliciviruses</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>84</volume>
:
<fpage>8617</fpage>
<lpage>8625</lpage>
.
<pub-id pub-id-type="pmid">20554772</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0082">
<mixed-citation publication-type="journal" id="fmr12052-cit-0082">
<string-name>
<surname>Feinberg</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Mitchell</surname>
<given-names>DA</given-names>
</string-name>
,
<string-name>
<surname>Drickamer</surname>
<given-names>K</given-names>
</string-name>
&
<string-name>
<surname>Weis</surname>
<given-names>WI</given-names>
</string-name>
(
<year>2001</year>
)
<article-title>Structural basis for selective recognition of oligosaccharides by DC‐SIGN and DC‐SIGNR</article-title>
.
<source xml:lang="en">Science</source>
<volume>294</volume>
:
<fpage>2163</fpage>
<lpage>2166</lpage>
.
<pub-id pub-id-type="pmid">11739956</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0083">
<mixed-citation publication-type="journal" id="fmr12052-cit-0083">
<string-name>
<surname>Francica</surname>
<given-names>JR</given-names>
</string-name>
,
<string-name>
<surname>Varela‐Rohena</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Medvec</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Plesa</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Riley</surname>
<given-names>JL</given-names>
</string-name>
&
<string-name>
<surname>Bates</surname>
<given-names>P</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>Steric shielding of surface epitopes and impaired immune recognition induced by the ebola virus glycoprotein</article-title>
.
<source xml:lang="en">PLoS Pathog</source>
<volume>6</volume>
:
<fpage>e1001098</fpage>
.
<pub-id pub-id-type="pmid">20844579</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0084">
<mixed-citation publication-type="journal" id="fmr12052-cit-0084">
<string-name>
<surname>Francois</surname>
<given-names>KO</given-names>
</string-name>
&
<string-name>
<surname>Balzarini</surname>
<given-names>J</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>Potential of carbohydrate‐binding agents as therapeutics against enveloped viruses</article-title>
.
<source xml:lang="en">Med Res Rev</source>
<volume>32</volume>
:
<fpage>349</fpage>
<lpage>387</lpage>
.
<pub-id pub-id-type="pmid">20577974</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0085">
<mixed-citation publication-type="journal" id="fmr12052-cit-0085">
<string-name>
<surname>Fujita</surname>
<given-names>T</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>Evolution of the lectin‐complement pathway and its role in innate immunity</article-title>
.
<source xml:lang="en">Nat Rev</source>
<volume>2</volume>
:
<fpage>346</fpage>
<lpage>353</lpage>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0086">
<mixed-citation publication-type="journal" id="fmr12052-cit-0086">
<string-name>
<surname>Gabius</surname>
<given-names>HJ</given-names>
</string-name>
,
<string-name>
<surname>Andre</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Jimenez‐Barbero</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Romero</surname>
<given-names>A</given-names>
</string-name>
&
<string-name>
<surname>Solis</surname>
<given-names>D</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>From lectin structure to functional glycomics: principles of the sugar code</article-title>
.
<source xml:lang="en">Trends Biochem Sci</source>
<volume>36</volume>
:
<fpage>298</fpage>
<lpage>313</lpage>
.
<pub-id pub-id-type="pmid">21458998</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0087">
<mixed-citation publication-type="journal" id="fmr12052-cit-0087">
<string-name>
<surname>Gaiha</surname>
<given-names>GD</given-names>
</string-name>
,
<string-name>
<surname>Dong</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Palaniyar</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Mitchell</surname>
<given-names>DA</given-names>
</string-name>
,
<string-name>
<surname>Reid</surname>
<given-names>KB</given-names>
</string-name>
&
<string-name>
<surname>Clark</surname>
<given-names>HW</given-names>
</string-name>
(
<year>2008</year>
)
<article-title>Surfactant protein A binds to HIV and inhibits direct infection of CD4+ cells, but enhances dendritic cell‐mediated viral transfer</article-title>
.
<source xml:lang="en">J Immunol</source>
<volume>181</volume>
:
<fpage>601</fpage>
<lpage>609</lpage>
.
<pub-id pub-id-type="pmid">18566427</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0088">
<mixed-citation publication-type="journal" id="fmr12052-cit-0088">
<string-name>
<surname>Gamblin</surname>
<given-names>SJ</given-names>
</string-name>
&
<string-name>
<surname>Skehel</surname>
<given-names>JJ</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>Influenza hemagglutinin and neuraminidase membrane glycoproteins</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<volume>285</volume>
:
<fpage>28403</fpage>
<lpage>28409</lpage>
.
<pub-id pub-id-type="pmid">20538598</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0089">
<mixed-citation publication-type="journal" id="fmr12052-cit-0089">
<string-name>
<surname>Garcia‐Vallejo</surname>
<given-names>JJ</given-names>
</string-name>
&
<string-name>
<surname>van Kooyk</surname>
<given-names>Y</given-names>
</string-name>
(
<year>2009</year>
)
<article-title>Endogenous ligands for C‐type lectin receptors: the true regulators of immune homeostasis</article-title>
.
<source xml:lang="en">Immunol Rev</source>
<volume>230</volume>
:
<fpage>22</fpage>
<lpage>37</lpage>
.
<pub-id pub-id-type="pmid">19594627</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0090">
<mixed-citation publication-type="journal" id="fmr12052-cit-0090">
<string-name>
<surname>Garman</surname>
<given-names>E</given-names>
</string-name>
&
<string-name>
<surname>Laver</surname>
<given-names>G</given-names>
</string-name>
(
<year>2004</year>
)
<article-title>Controlling influenza by inhibiting the virus's neuraminidase</article-title>
.
<source xml:lang="en">Curr Drug Targets</source>
<volume>5</volume>
:
<fpage>119</fpage>
<lpage>136</lpage>
.
<pub-id pub-id-type="pmid">15011946</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0091">
<mixed-citation publication-type="journal" id="fmr12052-cit-0091">
<string-name>
<surname>Garner</surname>
<given-names>OB</given-names>
</string-name>
,
<string-name>
<surname>Aguilar</surname>
<given-names>HC</given-names>
</string-name>
,
<string-name>
<surname>Fulcher</surname>
<given-names>JA</given-names>
</string-name>
<italic>et al</italic>
(
<year>2010</year>
)
<article-title>Endothelial galectin‐1 binds to specific glycans on nipah virus fusion protein and inhibits maturation, mobility, and function to block syncytia formation</article-title>
.
<source xml:lang="en">PLoS Pathog</source>
<volume>6</volume>
:
<fpage>e1000993</fpage>
.
<pub-id pub-id-type="pmid">20657665</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0092">
<mixed-citation publication-type="journal" id="fmr12052-cit-0092">
<string-name>
<surname>Ge</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>McManus</surname>
<given-names>MT</given-names>
</string-name>
,
<string-name>
<surname>Nguyen</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Shen</surname>
<given-names>CH</given-names>
</string-name>
,
<string-name>
<surname>Sharp</surname>
<given-names>PA</given-names>
</string-name>
,
<string-name>
<surname>Eisen</surname>
<given-names>HN</given-names>
</string-name>
&
<string-name>
<surname>Chen</surname>
<given-names>J</given-names>
</string-name>
(
<year>2003</year>
)
<article-title>RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription</article-title>
.
<source xml:lang="en">P Natl Acad Sci USA</source>
<volume>100</volume>
:
<fpage>2718</fpage>
<lpage>2723</lpage>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0093">
<mixed-citation publication-type="journal" id="fmr12052-cit-0093">
<string-name>
<surname>Ge</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Eisen</surname>
<given-names>HN</given-names>
</string-name>
&
<string-name>
<surname>Chen</surname>
<given-names>J</given-names>
</string-name>
(
<year>2004</year>
)
<article-title>Use of siRNAs to prevent and treat influenza virus infection</article-title>
.
<source xml:lang="en">Virus Res</source>
<volume>102</volume>
:
<fpage>37</fpage>
<lpage>42</lpage>
.
<pub-id pub-id-type="pmid">15068878</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0094">
<mixed-citation publication-type="journal" id="fmr12052-cit-0094">
<string-name>
<surname>Geijtenbeek</surname>
<given-names>TB</given-names>
</string-name>
&
<string-name>
<surname>Gringhuis</surname>
<given-names>SI</given-names>
</string-name>
(
<year>2009</year>
)
<article-title>Signalling through C‐type lectin receptors: shaping immune responses</article-title>
.
<source xml:lang="en">Nat Rev Immunol</source>
<volume>9</volume>
:
<fpage>465</fpage>
<lpage>479</lpage>
.
<pub-id pub-id-type="pmid">19521399</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0095">
<mixed-citation publication-type="journal" id="fmr12052-cit-0095">
<string-name>
<surname>Geijtenbeek</surname>
<given-names>TB</given-names>
</string-name>
,
<string-name>
<surname>Torensma</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>van Vliet</surname>
<given-names>SJ</given-names>
</string-name>
,
<string-name>
<surname>van Duijnhoven</surname>
<given-names>GC</given-names>
</string-name>
,
<string-name>
<surname>Adema</surname>
<given-names>GJ</given-names>
</string-name>
,
<string-name>
<surname>van Kooyk</surname>
<given-names>Y</given-names>
</string-name>
&
<string-name>
<surname>Figdor</surname>
<given-names>CG</given-names>
</string-name>
(
<year>2000a</year>
)
<article-title>Identification of DC‐SIGN, a novel dendritic cell‐specific ICAM‐3 receptor that supports primary immune responses</article-title>
.
<source xml:lang="en">Cell</source>
<volume>100</volume>
:
<fpage>575</fpage>
<lpage>585</lpage>
.
<pub-id pub-id-type="pmid">10721994</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0096">
<mixed-citation publication-type="journal" id="fmr12052-cit-0096">
<string-name>
<surname>Geijtenbeek</surname>
<given-names>TB</given-names>
</string-name>
,
<string-name>
<surname>Kwon</surname>
<given-names>DS</given-names>
</string-name>
,
<string-name>
<surname>Torensma</surname>
<given-names>R</given-names>
</string-name>
<italic>et al</italic>
(
<year>2000b</year>
)
<article-title>DC‐SIGN, a dendritic cell‐specific HIV‐1‐binding protein that enhances trans‐infection of T cells</article-title>
.
<source xml:lang="en">Cell</source>
<volume>100</volume>
:
<fpage>587</fpage>
<lpage>597</lpage>
.
<pub-id pub-id-type="pmid">10721995</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0097">
<mixed-citation publication-type="journal" id="fmr12052-cit-0097">
<string-name>
<surname>Gill</surname>
<given-names>DJ</given-names>
</string-name>
,
<string-name>
<surname>Clausen</surname>
<given-names>H</given-names>
</string-name>
&
<string-name>
<surname>Bard</surname>
<given-names>F</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>Location, location, location: new insights into O‐GalNAc protein glycosylation</article-title>
.
<source xml:lang="en">Trends Cell Biol</source>
<volume>21</volume>
:
<fpage>149</fpage>
<lpage>158</lpage>
.
<pub-id pub-id-type="pmid">21145746</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0098">
<mixed-citation publication-type="journal" id="fmr12052-cit-0098">
<string-name>
<surname>Gimsa</surname>
<given-names>U</given-names>
</string-name>
,
<string-name>
<surname>Grotzinger</surname>
<given-names>I</given-names>
</string-name>
&
<string-name>
<surname>Gimsa</surname>
<given-names>J</given-names>
</string-name>
(
<year>1996</year>
)
<article-title>Two evolutionary strategies of influenza viruses to escape host non‐specific inhibitors: alteration of hemagglutinin or neuraminidase specificity</article-title>
.
<source xml:lang="en">Virus Res</source>
<volume>42</volume>
:
<fpage>127</fpage>
<lpage>135</lpage>
.
<pub-id pub-id-type="pmid">8806180</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0099">
<mixed-citation publication-type="journal" id="fmr12052-cit-0099">
<string-name>
<surname>Gordon</surname>
<given-names>S</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>Pattern recognition receptors: doubling up for the innate immune response</article-title>
.
<source xml:lang="en">Cell</source>
<volume>111</volume>
:
<fpage>927</fpage>
<lpage>930</lpage>
.
<pub-id pub-id-type="pmid">12507420</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0100">
<mixed-citation publication-type="journal" id="fmr12052-cit-0100">
<string-name>
<surname>Gottschalk</surname>
<given-names>A</given-names>
</string-name>
(
<year>1957</year>
)
<article-title>Neuraminidase: the specific enzyme of influenza virus and
<italic>Vibrio cholerae</italic>
</article-title>
.
<source xml:lang="en">Biochim Biophys Acta</source>
<volume>23</volume>
:
<fpage>645</fpage>
<lpage>646</lpage>
.
<pub-id pub-id-type="pmid">13426178</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0101">
<mixed-citation publication-type="journal" id="fmr12052-cit-0101">
<string-name>
<surname>Granelli‐Piperno</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Pritsker</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Pack</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Shimeliovich</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Arrighi</surname>
<given-names>JF</given-names>
</string-name>
,
<string-name>
<surname>Park</surname>
<given-names>CG</given-names>
</string-name>
,
<string-name>
<surname>Trumpfheller</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Piguet</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Moran</surname>
<given-names>TM</given-names>
</string-name>
&
<string-name>
<surname>Steinman</surname>
<given-names>RM</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>Dendritic cell‐specific intercellular adhesion molecule 3‐grabbing nonintegrin/CD209 is abundant on macrophages in the normal human lymph node and is not required for dendritic cell stimulation of the mixed leukocyte reaction</article-title>
.
<source xml:lang="en">J Immunol</source>
<volume>175</volume>
:
<fpage>4265</fpage>
<lpage>4273</lpage>
.
<pub-id pub-id-type="pmid">16177066</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0102">
<mixed-citation publication-type="journal" id="fmr12052-cit-0102">
<string-name>
<surname>Gringhuis</surname>
<given-names>SI</given-names>
</string-name>
,
<string-name>
<surname>den Dunnen</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Litjens</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>van Het Hof</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>van Kooyk</surname>
<given-names>Y</given-names>
</string-name>
&
<string-name>
<surname>Geijtenbeek</surname>
<given-names>TB</given-names>
</string-name>
(
<year>2007</year>
)
<article-title>C‐type lectin DC‐SIGN modulates Toll‐like receptor signaling via Raf‐1 kinase‐dependent acetylation of transcription factor NF‐kappaB</article-title>
.
<source xml:lang="en">Immunity</source>
<volume>26</volume>
:
<fpage>605</fpage>
<lpage>616</lpage>
.
<pub-id pub-id-type="pmid">17462920</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0103">
<mixed-citation publication-type="journal" id="fmr12052-cit-0103">
<string-name>
<surname>Gringhuis</surname>
<given-names>SI</given-names>
</string-name>
,
<string-name>
<surname>van der Vlist</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>van den Berg</surname>
<given-names>LM</given-names>
</string-name>
,
<string-name>
<surname>den Dunnen</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Litjens</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Geijtenbeek</surname>
<given-names>TB</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>HIV‐1 exploits innate signaling by TLR8 and DC‐SIGN for productive infection of dendritic cells</article-title>
.
<source xml:lang="en">Nat Immunol</source>
<volume>11</volume>
:
<fpage>419</fpage>
<lpage>426</lpage>
.
<pub-id pub-id-type="pmid">20364151</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0104">
<mixed-citation publication-type="journal" id="fmr12052-cit-0104">
<string-name>
<surname>Guillon</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Ruvoen‐Clouet</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Le Moullac‐Vaidye</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Marchandeau</surname>
<given-names>S</given-names>
</string-name>
&
<string-name>
<surname>Le Pendu</surname>
<given-names>J</given-names>
</string-name>
(
<year>2009</year>
)
<article-title>Association between expression of the H histo‐blood group antigen, alpha1,2fucosyltransferases polymorphism of wild rabbits, and sensitivity to rabbit hemorrhagic disease virus</article-title>
.
<source xml:lang="en">Glycobiology</source>
<volume>19</volume>
:
<fpage>21</fpage>
<lpage>28</lpage>
.
<pub-id pub-id-type="pmid">18842963</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0105">
<mixed-citation publication-type="journal" id="fmr12052-cit-0105">
<string-name>
<surname>Gurney</surname>
<given-names>KB</given-names>
</string-name>
,
<string-name>
<surname>Elliott</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Nassanian</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Song</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Soilleux</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>McGowan</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Anton</surname>
<given-names>PA</given-names>
</string-name>
&
<string-name>
<surname>Lee</surname>
<given-names>B</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>Binding and transfer of human immunodeficiency virus by DC‐SIGN+ cells in human rectal mucosa</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>79</volume>
:
<fpage>5762</fpage>
<lpage>5773</lpage>
.
<pub-id pub-id-type="pmid">15827191</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0106">
<mixed-citation publication-type="journal" id="fmr12052-cit-0106">
<string-name>
<surname>Harrison</surname>
<given-names>SC</given-names>
</string-name>
(
<year>2008</year>
)
<article-title>Viral membrane fusion</article-title>
.
<source xml:lang="en">Nat Struct Mol Biol</source>
<volume>15</volume>
:
<fpage>690</fpage>
<lpage>698</lpage>
.
<pub-id pub-id-type="pmid">18596815</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0107">
<mixed-citation publication-type="journal" id="fmr12052-cit-0107">
<string-name>
<surname>Harrison</surname>
<given-names>MS</given-names>
</string-name>
,
<string-name>
<surname>Sakaguchi</surname>
<given-names>T</given-names>
</string-name>
&
<string-name>
<surname>Schmitt</surname>
<given-names>AP</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>Paramyxovirus assembly and budding: building particles that transmit infections</article-title>
.
<source xml:lang="en">Int J Biochem Cell Biol</source>
<volume>42</volume>
:
<fpage>1416</fpage>
<lpage>1429</lpage>
.
<pub-id pub-id-type="pmid">20398786</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0108">
<mixed-citation publication-type="journal" id="fmr12052-cit-0108">
<string-name>
<surname>Hart</surname>
<given-names>ML</given-names>
</string-name>
,
<string-name>
<surname>Saifuddin</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Uemura</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Bremer</surname>
<given-names>EG</given-names>
</string-name>
,
<string-name>
<surname>Hooker</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Kawasaki</surname>
<given-names>T</given-names>
</string-name>
&
<string-name>
<surname>Spear</surname>
<given-names>GT</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>High mannose glycans and sialic acid on gp120 regulate binding of mannose‐binding lectin (MBL) to HIV type 1</article-title>
.
<source xml:lang="en">AIDS Res Hum Retroviruses</source>
<volume>18</volume>
:
<fpage>1311</fpage>
<lpage>1317</lpage>
.
<pub-id pub-id-type="pmid">12487819</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0109">
<mixed-citation publication-type="journal" id="fmr12052-cit-0109">
<string-name>
<surname>Hart</surname>
<given-names>ML</given-names>
</string-name>
,
<string-name>
<surname>Saifuddin</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Spear</surname>
<given-names>GT</given-names>
</string-name>
(
<year>2003</year>
)
<article-title>Glycosylation inhibitors and neuraminidase enhance human immunodeficiency virus type 1 binding and neutralization by mannose‐binding lectin</article-title>
.
<source xml:lang="en">J Gen Virol</source>
<volume>84</volume>
:
<fpage>353</fpage>
<lpage>360</lpage>
.
<pub-id pub-id-type="pmid">12560567</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0110">
<mixed-citation publication-type="journal" id="fmr12052-cit-0110">
<string-name>
<surname>Hartshorn</surname>
<given-names>KL</given-names>
</string-name>
,
<string-name>
<surname>Sastry</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>White</surname>
<given-names>MR</given-names>
</string-name>
,
<string-name>
<surname>Anders</surname>
<given-names>EM</given-names>
</string-name>
,
<string-name>
<surname>Super</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Ezekowitz</surname>
<given-names>RA</given-names>
</string-name>
&
<string-name>
<surname>Tauber</surname>
<given-names>AI</given-names>
</string-name>
(
<year>1993</year>
)
<article-title>Human mannose‐binding protein functions as an opsonin for influenza A viruses</article-title>
.
<source xml:lang="en">J Clin Invest</source>
<volume>91</volume>
:
<fpage>1414</fpage>
<lpage>1420</lpage>
.
<pub-id pub-id-type="pmid">7682571</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0111">
<mixed-citation publication-type="journal" id="fmr12052-cit-0111">
<string-name>
<surname>Hartshorn</surname>
<given-names>KL</given-names>
</string-name>
,
<string-name>
<surname>Crouch</surname>
<given-names>EC</given-names>
</string-name>
,
<string-name>
<surname>White</surname>
<given-names>MR</given-names>
</string-name>
,
<string-name>
<surname>Eggleton</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Tauber</surname>
<given-names>AI</given-names>
</string-name>
,
<string-name>
<surname>Chang</surname>
<given-names>D</given-names>
</string-name>
&
<string-name>
<surname>Sastry</surname>
<given-names>K</given-names>
</string-name>
(
<year>1994</year>
)
<article-title>Evidence for a protective role of pulmonary surfactant protein D (SP‐D) against influenza A viruses</article-title>
.
<source xml:lang="en">J Clin Invest</source>
<volume>94</volume>
:
<fpage>311</fpage>
<lpage>319</lpage>
.
<pub-id pub-id-type="pmid">8040272</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0112">
<mixed-citation publication-type="journal" id="fmr12052-cit-0112">
<string-name>
<surname>Hartshorn</surname>
<given-names>KL</given-names>
</string-name>
,
<string-name>
<surname>Reid</surname>
<given-names>KB</given-names>
</string-name>
,
<string-name>
<surname>White</surname>
<given-names>MR</given-names>
</string-name>
,
<string-name>
<surname>Jensenius</surname>
<given-names>JC</given-names>
</string-name>
,
<string-name>
<surname>Morris</surname>
<given-names>SM</given-names>
</string-name>
,
<string-name>
<surname>Tauber</surname>
<given-names>AI</given-names>
</string-name>
&
<string-name>
<surname>Crouch</surname>
<given-names>E</given-names>
</string-name>
(
<year>1996</year>
)
<article-title>Neutrophil deactivation by influenza A viruses: mechanisms of protection after viral opsonization with collectins and hemagglutination‐inhibiting antibodies</article-title>
.
<source xml:lang="en">Blood</source>
<volume>87</volume>
:
<fpage>3450</fpage>
<lpage>3461</lpage>
.
<pub-id pub-id-type="pmid">8605364</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0113">
<mixed-citation publication-type="journal" id="fmr12052-cit-0113">
<string-name>
<surname>Hartshorn</surname>
<given-names>KL</given-names>
</string-name>
,
<string-name>
<surname>White</surname>
<given-names>MR</given-names>
</string-name>
,
<string-name>
<surname>Shepherd</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Reid</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Jensenius</surname>
<given-names>JC</given-names>
</string-name>
&
<string-name>
<surname>Crouch</surname>
<given-names>EC</given-names>
</string-name>
(
<year>1997</year>
)
<article-title>Mechanisms of anti‐influenza activity of surfactant proteins A and D: comparison with serum collectins</article-title>
.
<source xml:lang="en">Am J Physiol</source>
<volume>273</volume>
:
<fpage>L1156</fpage>
<lpage>L1166</lpage>
.
<pub-id pub-id-type="pmid">9435570</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0114">
<mixed-citation publication-type="journal" id="fmr12052-cit-0114">
<string-name>
<surname>Hartshorn</surname>
<given-names>KL</given-names>
</string-name>
,
<string-name>
<surname>White</surname>
<given-names>MR</given-names>
</string-name>
,
<string-name>
<surname>Voelker</surname>
<given-names>DR</given-names>
</string-name>
,
<string-name>
<surname>Coburn</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Zaner</surname>
<given-names>K</given-names>
</string-name>
&
<string-name>
<surname>Crouch</surname>
<given-names>EC</given-names>
</string-name>
(
<year>2000</year>
)
<article-title>Mechanism of binding of surfactant protein D to influenza A viruses: importance of binding to haemagglutinin to antiviral activity</article-title>
.
<source xml:lang="en">Biochem J</source>
<volume>351</volume>
:
<fpage>449</fpage>
<lpage>458</lpage>
.
<pub-id pub-id-type="pmid">11023831</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0115">
<mixed-citation publication-type="journal" id="fmr12052-cit-0115">
<string-name>
<surname>Haslam</surname>
<given-names>SM</given-names>
</string-name>
,
<string-name>
<surname>Julien</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Burchell</surname>
<given-names>JM</given-names>
</string-name>
,
<string-name>
<surname>Monk</surname>
<given-names>CR</given-names>
</string-name>
,
<string-name>
<surname>Ceroni</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Garden</surname>
<given-names>OA</given-names>
</string-name>
&
<string-name>
<surname>Dell</surname>
<given-names>A</given-names>
</string-name>
(
<year>2008</year>
)
<article-title>Characterizing the glycome of the mammalian immune system</article-title>
.
<source xml:lang="en">Immunol Cell Biol</source>
<volume>86</volume>
:
<fpage>564</fpage>
<lpage>573</lpage>
.
<pub-id pub-id-type="pmid">18725885</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0116">
<mixed-citation publication-type="journal" id="fmr12052-cit-0116">
<string-name>
<surname>Hawgood</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Brown</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Edmondson</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Stumbaugh</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Allen</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Goerke</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Clark</surname>
<given-names>H</given-names>
</string-name>
&
<string-name>
<surname>Poulain</surname>
<given-names>F</given-names>
</string-name>
(
<year>2004</year>
)
<article-title>Pulmonary collectins modulate strain‐specific influenza a virus infection and host responses</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>78</volume>
:
<fpage>8565</fpage>
<lpage>8572</lpage>
.
<pub-id pub-id-type="pmid">15280465</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0117">
<mixed-citation publication-type="journal" id="fmr12052-cit-0117">
<string-name>
<surname>Heitzeneder</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Seidel</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Forster‐Waldl</surname>
<given-names>E</given-names>
</string-name>
&
<string-name>
<surname>Heitger</surname>
<given-names>A</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>Mannan‐binding lectin deficiency – Good news, bad news, doesn't matter?</article-title>
<source xml:lang="en">Clin Immunol</source>
<volume>143</volume>
:
<fpage>22</fpage>
<lpage>38</lpage>
.
<pub-id pub-id-type="pmid">22377282</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0118">
<mixed-citation publication-type="journal" id="fmr12052-cit-0118">
<string-name>
<surname>Herrler</surname>
<given-names>G</given-names>
</string-name>
&
<string-name>
<surname>Compans</surname>
<given-names>RW</given-names>
</string-name>
(
<year>1983</year>
)
<article-title>Posttranslational modification and intracellular transport of mumps virus glycoproteins</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>47</volume>
:
<fpage>354</fpage>
<lpage>362</lpage>
.
<pub-id pub-id-type="pmid">6413700</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0119">
<mixed-citation publication-type="journal" id="fmr12052-cit-0119">
<string-name>
<surname>Herrler</surname>
<given-names>G</given-names>
</string-name>
&
<string-name>
<surname>Klenk</surname>
<given-names>HD</given-names>
</string-name>
(
<year>1991</year>
)
<article-title>Structure and function of the HEF glycoprotein of influenza C virus</article-title>
.
<source xml:lang="en">Adv Virus Res</source>
<volume>40</volume>
:
<fpage>213</fpage>
<lpage>234</lpage>
.
<pub-id pub-id-type="pmid">1957719</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0120">
<mixed-citation publication-type="journal" id="fmr12052-cit-0120">
<string-name>
<surname>Herrler</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Rott</surname>
<given-names>R</given-names>
</string-name>
&
<string-name>
<surname>Klenk</surname>
<given-names>HD</given-names>
</string-name>
(
<year>1985a</year>
)
<article-title>Neuraminic acid is involved in the binding of influenza C virus to erythrocytes</article-title>
.
<source xml:lang="en">Virology</source>
<volume>141</volume>
:
<fpage>144</fpage>
<lpage>147</lpage>
.
<pub-id pub-id-type="pmid">3976175</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0121">
<mixed-citation publication-type="journal" id="fmr12052-cit-0121">
<string-name>
<surname>Herrler</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Rott</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Klenk</surname>
<given-names>HD</given-names>
</string-name>
,
<string-name>
<surname>Muller</surname>
<given-names>HP</given-names>
</string-name>
,
<string-name>
<surname>Shukla</surname>
<given-names>AK</given-names>
</string-name>
&
<string-name>
<surname>Schauer</surname>
<given-names>R</given-names>
</string-name>
(
<year>1985b</year>
)
<article-title>The receptor‐destroying enzyme of influenza C virus is neuraminate‐O‐acetylesterase</article-title>
.
<source xml:lang="en">EMBO J</source>
<volume>4</volume>
:
<fpage>1503</fpage>
<lpage>1506</lpage>
.
<pub-id pub-id-type="pmid">2411539</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0122">
<mixed-citation publication-type="journal" id="fmr12052-cit-0122">
<string-name>
<surname>Herrler</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Durkop</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Becht</surname>
<given-names>H</given-names>
</string-name>
&
<string-name>
<surname>Klenk</surname>
<given-names>HD</given-names>
</string-name>
(
<year>1988</year>
)
<article-title>The glycoprotein of influenza C virus is the haemagglutinin, esterase and fusion factor</article-title>
.
<source xml:lang="en">J Gen Virol</source>
<volume>69</volume>
:
<fpage>839</fpage>
<lpage>846</lpage>
.
<pub-id pub-id-type="pmid">3356980</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0123">
<mixed-citation publication-type="journal" id="fmr12052-cit-0123">
<string-name>
<surname>Herrler</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Szepanski</surname>
<given-names>S</given-names>
</string-name>
&
<string-name>
<surname>Schultze</surname>
<given-names>B</given-names>
</string-name>
(
<year>1991</year>
)
<article-title>9‐O‐acetylated sialic acid, a receptor determinant for influenza C virus and coronaviruses</article-title>
.
<source xml:lang="en">Behring Inst Mitt</source>
,
<volume>89</volume>
:
<fpage>177</fpage>
<lpage>184</lpage>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0124">
<mixed-citation publication-type="journal" id="fmr12052-cit-0124">
<string-name>
<surname>Hickling</surname>
<given-names>TP</given-names>
</string-name>
,
<string-name>
<surname>Malhotra</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Bright</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>McDowell</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Blair</surname>
<given-names>ED</given-names>
</string-name>
&
<string-name>
<surname>Sim</surname>
<given-names>RB</given-names>
</string-name>
(
<year>2000</year>
)
<article-title>Lung surfactant protein A provides a route of entry for respiratory syncytial virus into host cells</article-title>
.
<source xml:lang="en">Viral Immunol</source>
<volume>13</volume>
:
<fpage>125</fpage>
<lpage>135</lpage>
.
<pub-id pub-id-type="pmid">10733174</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0125">
<mixed-citation publication-type="journal" id="fmr12052-cit-0125">
<string-name>
<surname>Hijazi</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Scala</surname>
<given-names>C</given-names>
</string-name>
<italic>et al</italic>
(
<year>2011</year>
)
<article-title>DC‐SIGN increases the affinity of HIV‐1 envelope glycoprotein interaction with CD4</article-title>
.
<source xml:lang="en">PLoS One</source>
<volume>6</volume>
:
<fpage>e28307</fpage>
.
<pub-id pub-id-type="pmid">22163292</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0126">
<mixed-citation publication-type="journal" id="fmr12052-cit-0126">
<string-name>
<surname>Hillaire</surname>
<given-names>ML</given-names>
</string-name>
,
<string-name>
<surname>van Eijk</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>van Trierum</surname>
<given-names>SE</given-names>
</string-name>
<italic>et al</italic>
(
<year>2011</year>
)
<article-title>Assessment of the antiviral properties of recombinant porcine SP‐D against various influenza A viruses
<italic>in vitro</italic>
</article-title>
.
<source xml:lang="en">PLoS One</source>
<volume>6</volume>
:
<fpage>e25005</fpage>
.
<pub-id pub-id-type="pmid">21935489</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0127">
<mixed-citation publication-type="journal" id="fmr12052-cit-0127">
<string-name>
<surname>Hiraiwa</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Hiraiwa</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Kannagi</surname>
<given-names>R</given-names>
</string-name>
(
<year>1997</year>
)
<article-title>Human T‐cell leukemia virus‐1 encoded Tax protein transactivates alpha 1–>3 fucosyltransferase Fuc‐T VII, which synthesizes sialyl Lewis X, a selectin ligand expressed on adult T‐cell leukemia cells</article-title>
.
<source xml:lang="en">Biochem Biophys Res Commun</source>
<volume>231</volume>
:
<fpage>183</fpage>
<lpage>186</lpage>
.
<pub-id pub-id-type="pmid">9070245</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0128">
<mixed-citation publication-type="journal" id="fmr12052-cit-0128">
<string-name>
<surname>Hiraiwa</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Yabuta</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Yoritomi</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Hiraiwa</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Tanaka</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Suzuki</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Yoshida</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Kannagi</surname>
<given-names>R</given-names>
</string-name>
(
<year>2003</year>
)
<article-title>Transactivation of the fucosyltransferase VII gene by human T‐cell leukemia virus type 1 Tax through a variant cAMP‐responsive element</article-title>
.
<source xml:lang="en">Blood</source>
<volume>101</volume>
:
<fpage>3615</fpage>
<lpage>3621</lpage>
.
<pub-id pub-id-type="pmid">12506041</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0129">
<mixed-citation publication-type="journal" id="fmr12052-cit-0129">
<string-name>
<surname>Hodges</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Sharrocks</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Edelmann</surname>
<given-names>M</given-names>
</string-name>
<italic>et al</italic>
(
<year>2007</year>
)
<article-title>Activation of the lectin DC‐SIGN induces an immature dendritic cell phenotype triggering Rho‐GTPase activity required for HIV‐1 replication</article-title>
.
<source xml:lang="en">Nat Immunol</source>
<volume>8</volume>
:
<fpage>569</fpage>
<lpage>577</lpage>
.
<pub-id pub-id-type="pmid">17496896</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0130">
<mixed-citation publication-type="book" id="fmr12052-cit-0130">
<string-name>
<surname>Holmes</surname>
<given-names>EC</given-names>
</string-name>
(
<year>2009</year>
)
<source xml:lang="en">The Evolution and Emergence of RNA Viruses</source>
.
<publisher-name>Oxford University Press</publisher-name>
,
<publisher-loc>Oxford</publisher-loc>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0131">
<mixed-citation publication-type="journal" id="fmr12052-cit-0131">
<string-name>
<surname>Hong</surname>
<given-names>PW</given-names>
</string-name>
,
<string-name>
<surname>Flummerfelt</surname>
<given-names>KB</given-names>
</string-name>
,
<string-name>
<surname>de Parseval</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Gurney</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Elder</surname>
<given-names>JH</given-names>
</string-name>
&
<string-name>
<surname>Lee</surname>
<given-names>B</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>Human immunodeficiency virus envelope (gp120) binding to DC‐SIGN and primary dendritic cells is carbohydrate dependent but does not involve 2G12 or cyanovirin binding sites: implications for structural analyses of gp120‐DC‐SIGN binding</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>76</volume>
:
<fpage>12855</fpage>
<lpage>12865</lpage>
.
<pub-id pub-id-type="pmid">12438611</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0132">
<mixed-citation publication-type="journal" id="fmr12052-cit-0132">
<string-name>
<surname>Hong</surname>
<given-names>PW</given-names>
</string-name>
,
<string-name>
<surname>Nguyen</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Young</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Su</surname>
<given-names>SV</given-names>
</string-name>
&
<string-name>
<surname>Lee</surname>
<given-names>B</given-names>
</string-name>
(
<year>2007</year>
)
<article-title>Identification of the optimal DC‐SIGN binding site on human immunodeficiency virus type 1 gp120</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>81</volume>
:
<fpage>8325</fpage>
<lpage>8336</lpage>
.
<pub-id pub-id-type="pmid">17522223</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0133">
<mixed-citation publication-type="journal" id="fmr12052-cit-0133">
<string-name>
<surname>Hoorelbeke</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Van Damme</surname>
<given-names>EJ</given-names>
</string-name>
,
<string-name>
<surname>Rouge</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Schols</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Van Laethem</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Fouquaert</surname>
<given-names>E</given-names>
</string-name>
&
<string-name>
<surname>Balzarini</surname>
<given-names>J</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>Differences in the mannose oligomer specificities of the closely related lectins from
<italic>Galanthus nivalis</italic>
and Zea mays strongly determine their eventual anti‐HIV activity</article-title>
.
<source xml:lang="en">Retrovirology</source>
<volume>8</volume>
:
<fpage>10</fpage>
.
<pub-id pub-id-type="pmid">21314946</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0134">
<mixed-citation publication-type="journal" id="fmr12052-cit-0134">
<string-name>
<surname>Huang</surname>
<given-names>PW</given-names>
</string-name>
,
<string-name>
<surname>Farkas</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Zhong</surname>
<given-names>WM</given-names>
</string-name>
,
<string-name>
<surname>Thornton</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Morrow</surname>
<given-names>AL</given-names>
</string-name>
&
<string-name>
<surname>Xi</surname>
<given-names>J</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>Norovirus and histo‐blood group antigens: Demonstration of a wide spectrum of strain specificities and classification of two major binding groups among multiple binding patterns</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>79</volume>
:
<fpage>6714</fpage>
<lpage>6722</lpage>
.
<pub-id pub-id-type="pmid">15890909</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0135">
<mixed-citation publication-type="journal" id="fmr12052-cit-0135">
<string-name>
<surname>Hulst</surname>
<given-names>MM</given-names>
</string-name>
,
<string-name>
<surname>van Gennip</surname>
<given-names>HG</given-names>
</string-name>
&
<string-name>
<surname>Moormann</surname>
<given-names>RJ</given-names>
</string-name>
(
<year>2000</year>
)
<article-title>Passage of classical swine fever virus in cultured swine kidney cells selects virus variants that bind to heparan sulfate due to a single amino acid change in envelope protein E(rns)</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>74</volume>
:
<fpage>9553</fpage>
<lpage>9561</lpage>
.
<pub-id pub-id-type="pmid">11000226</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0136">
<mixed-citation publication-type="journal" id="fmr12052-cit-0136">
<string-name>
<surname>Huskens</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Van Laethem</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Vermeire</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Balzarini</surname>
<given-names>J</given-names>
</string-name>
&
<string-name>
<surname>Schols</surname>
<given-names>D</given-names>
</string-name>
(
<year>2007</year>
)
<article-title>Resistance of HIV‐1 to the broadly HIV‐1‐neutralizing, anti‐carbohydrate antibody 2G12</article-title>
.
<source xml:lang="en">Virology</source>
<volume>360</volume>
:
<fpage>294</fpage>
<lpage>304</lpage>
.
<pub-id pub-id-type="pmid">17123566</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0137">
<mixed-citation publication-type="journal" id="fmr12052-cit-0137">
<string-name>
<surname>Huskens</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Ferir</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Vermeire</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Kehr</surname>
<given-names>JC</given-names>
</string-name>
,
<string-name>
<surname>Balzarini</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Dittmann</surname>
<given-names>E</given-names>
</string-name>
&
<string-name>
<surname>Schols</surname>
<given-names>D</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>Microvirin, a novel alpha(1,2)‐mannose‐specific lectin isolated from
<italic>Microcystis aeruginosa</italic>
, has anti‐HIV‐1 activity comparable with that of cyanovirin‐N but a much higher safety profile</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<volume>285</volume>
:
<fpage>24845</fpage>
<lpage>24854</lpage>
.
<pub-id pub-id-type="pmid">20507987</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0138">
<mixed-citation publication-type="journal" id="fmr12052-cit-0138">
<string-name>
<surname>Ikematsu</surname>
<given-names>H</given-names>
</string-name>
&
<string-name>
<surname>Kawai</surname>
<given-names>N</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>Laninamivir octanoate: a new long‐acting neuraminidase inhibitor for the treatment of influenza</article-title>
.
<source xml:lang="en">Expert Rev Anti Infect Ther</source>
<volume>9</volume>
:
<fpage>851</fpage>
<lpage>857</lpage>
.
<pub-id pub-id-type="pmid">21973296</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0139">
<mixed-citation publication-type="journal" id="fmr12052-cit-0139">
<string-name>
<surname>Izquierdo‐Useros</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Lorizate</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Puertas</surname>
<given-names>MC</given-names>
</string-name>
<italic>et al</italic>
(
<year>2012</year>
)
<article-title>Siglec‐1 Is a novel dendritic cell receptor that mediates HIV‐1 trans‐infection through recognition of viral membrane gangliosides</article-title>
.
<source xml:lang="en">PLoS Biol</source>
<volume>10</volume>
:
<fpage>e1001448</fpage>
.
<pub-id pub-id-type="pmid">23271952</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0140">
<mixed-citation publication-type="journal" id="fmr12052-cit-0140">
<string-name>
<surname>Jackson</surname>
<given-names>RJ</given-names>
</string-name>
,
<string-name>
<surname>Hall</surname>
<given-names>DF</given-names>
</string-name>
&
<string-name>
<surname>Kerr</surname>
<given-names>PJ</given-names>
</string-name>
(
<year>1999</year>
)
<article-title>Myxoma virus encodes an alpha2,3‐sialyltransferase that enhances virulence</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>73</volume>
:
<fpage>2376</fpage>
<lpage>2384</lpage>
.
<pub-id pub-id-type="pmid">9971821</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0141">
<mixed-citation publication-type="journal" id="fmr12052-cit-0141">
<string-name>
<surname>Janeway</surname>
<given-names>CA</given-names>
<suffix>Jr</suffix>
</string-name>
&
<string-name>
<surname>Medzhitov</surname>
<given-names>R</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>Innate immune recognition</article-title>
.
<source xml:lang="en">Annu Rev Immunol</source>
<volume>20</volume>
:
<fpage>197</fpage>
<lpage>216</lpage>
.
<pub-id pub-id-type="pmid">11861602</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0142">
<mixed-citation publication-type="journal" id="fmr12052-cit-0142">
<string-name>
<surname>Jensen</surname>
<given-names>PH</given-names>
</string-name>
,
<string-name>
<surname>Kolarich</surname>
<given-names>D</given-names>
</string-name>
&
<string-name>
<surname>Packer</surname>
<given-names>NH</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>Mucin‐type O‐glycosylation–putting the pieces together</article-title>
.
<source xml:lang="en">FEBS J</source>
<volume>277</volume>
:
<fpage>81</fpage>
<lpage>94</lpage>
.
<pub-id pub-id-type="pmid">19919547</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0143">
<mixed-citation publication-type="journal" id="fmr12052-cit-0143">
<string-name>
<surname>Job</surname>
<given-names>ER</given-names>
</string-name>
,
<string-name>
<surname>Deng</surname>
<given-names>YM</given-names>
</string-name>
,
<string-name>
<surname>Barfod</surname>
<given-names>KK</given-names>
</string-name>
,
<string-name>
<surname>Tate</surname>
<given-names>MD</given-names>
</string-name>
,
<string-name>
<surname>Caldwell</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Reddiex</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Maurer‐Stroh</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Brooks</surname>
<given-names>AG</given-names>
</string-name>
&
<string-name>
<surname>Reading</surname>
<given-names>PC</given-names>
</string-name>
(
<year>2013</year>
)
<article-title>Addition of glycosylation to influenza A virus hemagglutinin modulates antibody‐mediated recognition of H1N1 2009 pandemic viruses</article-title>
.
<source xml:lang="en">J Immunol</source>
<volume>190</volume>
:
<fpage>2169</fpage>
<lpage>2177</lpage>
.
<pub-id pub-id-type="pmid">23365085</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0144">
<mixed-citation publication-type="journal" id="fmr12052-cit-0144">
<string-name>
<surname>Kang</surname>
<given-names>SM</given-names>
</string-name>
,
<string-name>
<surname>Quan</surname>
<given-names>FS</given-names>
</string-name>
,
<string-name>
<surname>Huang</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Guo</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Ye</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>C</given-names>
</string-name>
&
<string-name>
<surname>Compans</surname>
<given-names>RW</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>Modified HIV envelope proteins with enhanced binding to neutralizing monoclonal antibodies</article-title>
.
<source xml:lang="en">Virology</source>
<volume>331</volume>
:
<fpage>20</fpage>
<lpage>32</lpage>
.
<pub-id pub-id-type="pmid">15582650</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0145">
<mixed-citation publication-type="journal" id="fmr12052-cit-0145">
<string-name>
<surname>Kase</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Suzuki</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Kawai</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Sakamoto</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Ohtani</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Eda</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Maeda</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Okuno</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Kurimura</surname>
<given-names>T</given-names>
</string-name>
&
<string-name>
<surname>Wakamiya</surname>
<given-names>N</given-names>
</string-name>
(
<year>1999</year>
)
<article-title>Human mannan‐binding lectin inhibits the infection of influenza A virus without complement</article-title>
.
<source xml:lang="en">Immunology</source>
<volume>97</volume>
:
<fpage>385</fpage>
<lpage>392</lpage>
.
<pub-id pub-id-type="pmid">10447758</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0146">
<mixed-citation publication-type="journal" id="fmr12052-cit-0146">
<string-name>
<surname>Katz</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Margalith</surname>
<given-names>E</given-names>
</string-name>
&
<string-name>
<surname>Duksin</surname>
<given-names>D</given-names>
</string-name>
(
<year>1980</year>
)
<article-title>Antiviral activity of tunicamycin on herpes simplex virus</article-title>
.
<source xml:lang="en">Antimicrob Agents Chemother</source>
<volume>17</volume>
:
<fpage>1014</fpage>
<lpage>1022</lpage>
.
<pub-id pub-id-type="pmid">6250466</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0147">
<mixed-citation publication-type="journal" id="fmr12052-cit-0147">
<string-name>
<surname>Kim</surname>
<given-names>JI</given-names>
</string-name>
&
<string-name>
<surname>Park</surname>
<given-names>MS</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>N‐linked glycosylation in the hemagglutinin of influenza A viruses</article-title>
.
<source xml:lang="en">Yonsei Med J</source>
<volume>53</volume>
:
<fpage>886</fpage>
<lpage>893</lpage>
.
<pub-id pub-id-type="pmid">22869469</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0148">
<mixed-citation publication-type="journal" id="fmr12052-cit-0148">
<string-name>
<surname>Kim</surname>
<given-names>CU</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>X</given-names>
</string-name>
&
<string-name>
<surname>Mendel</surname>
<given-names>DB</given-names>
</string-name>
(
<year>1999</year>
)
<article-title>Neuraminidase inhibitors as anti‐influenza virus agents</article-title>
.
<source xml:lang="en">Antiviral Chem Chemother</source>
<volume>10</volume>
:
<fpage>141</fpage>
<lpage>154</lpage>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0149">
<mixed-citation publication-type="journal" id="fmr12052-cit-0149">
<string-name>
<surname>Kingma</surname>
<given-names>PS</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Ikegami</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Hartshorn</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>McCormack</surname>
<given-names>FX</given-names>
</string-name>
&
<string-name>
<surname>Whitsett</surname>
<given-names>JA</given-names>
</string-name>
(
<year>2006</year>
)
<article-title>Correction of pulmonary abnormalities in Sftpd−/− mice requires the collagenous domain of surfactant protein D</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<volume>281</volume>
:
<fpage>24496</fpage>
<lpage>24505</lpage>
.
<pub-id pub-id-type="pmid">16787926</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0150">
<mixed-citation publication-type="journal" id="fmr12052-cit-0150">
<string-name>
<surname>Klimstra</surname>
<given-names>WB</given-names>
</string-name>
,
<string-name>
<surname>Ryman</surname>
<given-names>KD</given-names>
</string-name>
&
<string-name>
<surname>Johnston</surname>
<given-names>RE</given-names>
</string-name>
(
<year>1998</year>
)
<article-title>Adaptation of Sindbis virus to BHK cells selects for use of heparan sulfate as an attachment receptor</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>72</volume>
:
<fpage>7357</fpage>
<lpage>7366</lpage>
.
<pub-id pub-id-type="pmid">9696832</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0151">
<mixed-citation publication-type="journal" id="fmr12052-cit-0151">
<string-name>
<surname>Kobayashi</surname>
<given-names>Y</given-names>
</string-name>
&
<string-name>
<surname>Suzuki</surname>
<given-names>Y</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>Evidence for N‐glycan shielding of antigenic sites during evolution of human influenza A virus hemagglutinin</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>86</volume>
:
<fpage>3446</fpage>
<lpage>3451</lpage>
.
<pub-id pub-id-type="pmid">22258255</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0152">
<mixed-citation publication-type="journal" id="fmr12052-cit-0152">
<string-name>
<surname>Koizumi</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Kageyama</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Fujiyama</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Miyashita</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Lwembe</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Ogino</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Shioda</surname>
<given-names>T</given-names>
</string-name>
&
<string-name>
<surname>Ichimura</surname>
<given-names>H</given-names>
</string-name>
(
<year>2007</year>
)
<article-title>RANTES ‐28G delays and DC‐SIGN – 139C enhances AIDS progression in HIV type 1‐infected Japanese hemophiliacs</article-title>
.
<source xml:lang="en">AIDS Res Hum Retroviruses</source>
<volume>23</volume>
:
<fpage>713</fpage>
<lpage>719</lpage>
.
<pub-id pub-id-type="pmid">17530998</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0153">
<mixed-citation publication-type="journal" id="fmr12052-cit-0153">
<string-name>
<surname>Krempl</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Schultze</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Laude</surname>
<given-names>H</given-names>
</string-name>
&
<string-name>
<surname>Herrler</surname>
<given-names>G</given-names>
</string-name>
(
<year>1997</year>
)
<article-title>Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>71</volume>
:
<fpage>3285</fpage>
<lpage>3287</lpage>
.
<pub-id pub-id-type="pmid">9060696</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0154">
<mixed-citation publication-type="journal" id="fmr12052-cit-0154">
<string-name>
<surname>Krempl</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Ballesteros</surname>
<given-names>ML</given-names>
</string-name>
,
<string-name>
<surname>Zimmer</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Enjuanes</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Klenk</surname>
<given-names>HD</given-names>
</string-name>
&
<string-name>
<surname>Herrler</surname>
<given-names>G</given-names>
</string-name>
(
<year>2000</year>
)
<article-title>Characterization of the sialic acid binding activity of transmissible gastroenteritis coronavirus by analysis of haemagglutination‐deficient mutants</article-title>
.
<source xml:lang="en">J Gen Virol</source>
<volume>81</volume>
:
<fpage>489</fpage>
<lpage>496</lpage>
.
<pub-id pub-id-type="pmid">10644848</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0155">
<mixed-citation publication-type="journal" id="fmr12052-cit-0155">
<string-name>
<surname>Krusat</surname>
<given-names>T</given-names>
</string-name>
&
<string-name>
<surname>Streckert</surname>
<given-names>HJ</given-names>
</string-name>
(
<year>1997</year>
)
<article-title>Heparin‐dependent attachment of respiratory syncytial virus (RSV) to host cells</article-title>
.
<source xml:lang="en">Arch Virol</source>
<volume>142</volume>
:
<fpage>1247</fpage>
<lpage>1254</lpage>
.
<pub-id pub-id-type="pmid">9229012</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0156">
<mixed-citation publication-type="journal" id="fmr12052-cit-0156">
<string-name>
<surname>Kumagai</surname>
<given-names>Y</given-names>
</string-name>
&
<string-name>
<surname>Akira</surname>
<given-names>S</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>Identification and functions of pattern‐recognition receptors</article-title>
.
<source xml:lang="en">J Allergy Clin Immunol</source>
<volume>125</volume>
:
<fpage>985</fpage>
<lpage>992</lpage>
.
<pub-id pub-id-type="pmid">20392481</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0157">
<mixed-citation publication-type="journal" id="fmr12052-cit-0157">
<string-name>
<surname>Kunkel</surname>
<given-names>F</given-names>
</string-name>
&
<string-name>
<surname>Herrler</surname>
<given-names>G</given-names>
</string-name>
(
<year>1993</year>
)
<article-title>Structural and functional analysis of the surface protein of human coronavirus OC43</article-title>
.
<source xml:lang="en">Virology</source>
<volume>195</volume>
:
<fpage>195</fpage>
<lpage>202</lpage>
.
<pub-id pub-id-type="pmid">8317096</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0158">
<mixed-citation publication-type="journal" id="fmr12052-cit-0158">
<string-name>
<surname>Kwon</surname>
<given-names>DS</given-names>
</string-name>
,
<string-name>
<surname>Gregorio</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Bitton</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Hendrickson</surname>
<given-names>WA</given-names>
</string-name>
&
<string-name>
<surname>Littman</surname>
<given-names>DR</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>DC‐SIGN‐mediated internalization of HIV is required for trans‐enhancement of T cell infection</article-title>
.
<source xml:lang="en">Immunity</source>
<volume>16</volume>
:
<fpage>135</fpage>
<lpage>144</lpage>
.
<pub-id pub-id-type="pmid">11825572</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0159">
<mixed-citation publication-type="book" id="fmr12052-cit-0159">
<string-name>
<surname>Lamb</surname>
<given-names>RA</given-names>
</string-name>
&
<string-name>
<surname>Krug</surname>
<given-names>RM</given-names>
</string-name>
(
<year>2001</year>
)
<source xml:lang="en">Orthomyxoviridae: The Viruses and their Replication</source>
.
<publisher-name>Lippincott Williams & Wilkins</publisher-name>
,
<publisher-loc>Philadelphia, PA</publisher-loc>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0160">
<mixed-citation publication-type="journal" id="fmr12052-cit-0160">
<string-name>
<surname>Landers</surname>
<given-names>JJ</given-names>
</string-name>
,
<string-name>
<surname>Cao</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Lee</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Piehler</surname>
<given-names>LT</given-names>
</string-name>
,
<string-name>
<surname>Myc</surname>
<given-names>PP</given-names>
</string-name>
,
<string-name>
<surname>Myc</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Hamouda</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Galecki</surname>
<given-names>AT</given-names>
</string-name>
&
<string-name>
<surname>Baker</surname>
<given-names>JR</given-names>
<suffix>Jr</suffix>
</string-name>
(
<year>2002</year>
)
<article-title>Prevention of influenza pneumonitis by sialic Acid‐conjugated dendritic polymers</article-title>
.
<source xml:lang="en">J Infect Dis</source>
<volume>186</volume>
:
<fpage>1222</fpage>
<lpage>1230</lpage>
.
<pub-id pub-id-type="pmid">12402191</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0161">
<mixed-citation publication-type="journal" id="fmr12052-cit-0161">
<string-name>
<surname>Lanteri</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Giordanengo</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Hiraoka</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Fuzibet</surname>
<given-names>JG</given-names>
</string-name>
,
<string-name>
<surname>Auberger</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Fukuda</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Baum</surname>
<given-names>LG</given-names>
</string-name>
&
<string-name>
<surname>Lefebvre</surname>
<given-names>JC</given-names>
</string-name>
(
<year>2003</year>
)
<article-title>Altered T cell surface glycosylation in HIV‐1 infection results in increased susceptibility to galectin‐1‐induced cell death</article-title>
.
<source xml:lang="en">Glycobiology</source>
<volume>13</volume>
:
<fpage>909</fpage>
<lpage>918</lpage>
.
<pub-id pub-id-type="pmid">12925577</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0162">
<mixed-citation publication-type="journal" id="fmr12052-cit-0162">
<string-name>
<surname>Larkin</surname>
<given-names>A</given-names>
</string-name>
&
<string-name>
<surname>Imperiali</surname>
<given-names>B</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>The expanding horizons of asparagine‐linked glycosylation</article-title>
.
<source xml:lang="en">Biochemistry</source>
<volume>50</volume>
:
<fpage>4411</fpage>
<lpage>4426</lpage>
.
<pub-id pub-id-type="pmid">21506607</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0163">
<mixed-citation publication-type="journal" id="fmr12052-cit-0163">
<string-name>
<surname>Lauring</surname>
<given-names>AS</given-names>
</string-name>
&
<string-name>
<surname>Andino</surname>
<given-names>R</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>Quasispecies theory and the behavior of RNA viruses</article-title>
.
<source xml:lang="en">PLoS Pathog</source>
<volume>6</volume>
:
<fpage>e1001005</fpage>
.
<pub-id pub-id-type="pmid">20661479</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0164">
<mixed-citation publication-type="journal" id="fmr12052-cit-0164">
<string-name>
<surname>Lazar</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Durantel</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Macovei</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Zitzmann</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Zoulim</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Dwek</surname>
<given-names>RA</given-names>
</string-name>
&
<string-name>
<surname>Branza‐Nichita</surname>
<given-names>N</given-names>
</string-name>
(
<year>2007</year>
)
<article-title>Treatment of hepatitis B virus‐infected cells with alpha‐glucosidase inhibitors results in production of virions with altered molecular composition and infectivity</article-title>
.
<source xml:lang="en">Antiviral Res</source>
<volume>76</volume>
:
<fpage>30</fpage>
<lpage>37</lpage>
.
<pub-id pub-id-type="pmid">17548120</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0165">
<mixed-citation publication-type="journal" id="fmr12052-cit-0165">
<string-name>
<surname>Le Pendu</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Ruvoen‐Clouet</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Kindberg</surname>
<given-names>E</given-names>
</string-name>
&
<string-name>
<surname>Svensson</surname>
<given-names>L</given-names>
</string-name>
(
<year>2006</year>
)
<article-title>Mendelian resistance to human norovirus infections</article-title>
.
<source xml:lang="en">Semin Immunol</source>
<volume>18</volume>
:
<fpage>375</fpage>
<lpage>386</lpage>
.
<pub-id pub-id-type="pmid">16973373</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0166">
<mixed-citation publication-type="journal" id="fmr12052-cit-0166">
<string-name>
<surname>Leavitt</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Schlesinger</surname>
<given-names>S</given-names>
</string-name>
&
<string-name>
<surname>Kornfeld</surname>
<given-names>S</given-names>
</string-name>
(
<year>1977</year>
)
<article-title>Tunicamycin inhibits glycosylation and multiplication of
<italic>Sindbis</italic>
and vesicular stomatitis viruses</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>21</volume>
:
<fpage>375</fpage>
<lpage>385</lpage>
.
<pub-id pub-id-type="pmid">189071</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0167">
<mixed-citation publication-type="journal" id="fmr12052-cit-0167">
<string-name>
<surname>Lee</surname>
<given-names>B</given-names>
</string-name>
&
<string-name>
<surname>Ataman</surname>
<given-names>ZA</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>Modes of paramyxovirus fusion: a Henipavirus perspective</article-title>
.
<source xml:lang="en">Trends Microbiol</source>
<volume>19</volume>
:
<fpage>389</fpage>
<lpage>399</lpage>
.
<pub-id pub-id-type="pmid">21511478</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0168">
<mixed-citation publication-type="journal" id="fmr12052-cit-0168">
<string-name>
<surname>Lee</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Leslie</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Soilleux</surname>
<given-names>E</given-names>
</string-name>
<italic>et al</italic>
(
<year>2001</year>
)
<article-title>cis Expression of DC‐SIGN allows for more efficient entry of human and simian immunodeficiency viruses via CD4 and a coreceptor</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>75</volume>
:
<fpage>12028</fpage>
<lpage>12038</lpage>
.
<pub-id pub-id-type="pmid">11711593</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0169">
<mixed-citation publication-type="journal" id="fmr12052-cit-0169">
<string-name>
<surname>Lekkerkerker</surname>
<given-names>AN</given-names>
</string-name>
,
<string-name>
<surname>van Kooyk</surname>
<given-names>Y</given-names>
</string-name>
&
<string-name>
<surname>Geijtenbeek</surname>
<given-names>TB</given-names>
</string-name>
(
<year>2006</year>
)
<article-title>Viral piracy: HIV‐1 targets dendritic cells for transmission</article-title>
.
<source xml:lang="en">Curr HIV Res</source>
<volume>4</volume>
:
<fpage>169</fpage>
<lpage>176</lpage>
.
<pub-id pub-id-type="pmid">16611055</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0170">
<mixed-citation publication-type="journal" id="fmr12052-cit-0170">
<string-name>
<surname>LeVine</surname>
<given-names>AM</given-names>
</string-name>
,
<string-name>
<surname>Whitsett</surname>
<given-names>JA</given-names>
</string-name>
,
<string-name>
<surname>Hartshorn</surname>
<given-names>KL</given-names>
</string-name>
,
<string-name>
<surname>Crouch</surname>
<given-names>EC</given-names>
</string-name>
&
<string-name>
<surname>Korfhagen</surname>
<given-names>TR</given-names>
</string-name>
(
<year>2001</year>
)
<article-title>Surfactant protein D enhances clearance of influenza A virus from the lung
<italic>in vivo</italic>
</article-title>
.
<source xml:lang="en">J Immunol</source>
<volume>167</volume>
:
<fpage>5868</fpage>
<lpage>5873</lpage>
.
<pub-id pub-id-type="pmid">11698462</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0171">
<mixed-citation publication-type="journal" id="fmr12052-cit-0171">
<string-name>
<surname>LeVine</surname>
<given-names>AM</given-names>
</string-name>
,
<string-name>
<surname>Hartshorn</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Elliott</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Whitsett</surname>
<given-names>J</given-names>
</string-name>
&
<string-name>
<surname>Korfhagen</surname>
<given-names>T</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>Absence of SP‐A modulates innate and adaptive defense responses to pulmonary influenza infection</article-title>
.
<source xml:lang="en">Am J Physiol</source>
<volume>282</volume>
:
<fpage>L563</fpage>
<lpage>L572</lpage>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0172">
<mixed-citation publication-type="journal" id="fmr12052-cit-0172">
<string-name>
<surname>LeVine</surname>
<given-names>AM</given-names>
</string-name>
,
<string-name>
<surname>Elliott</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Whitsett</surname>
<given-names>JA</given-names>
</string-name>
,
<string-name>
<surname>Srikiatkhachorn</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Crouch</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>DeSilva</surname>
<given-names>N</given-names>
</string-name>
&
<string-name>
<surname>Korfhagen</surname>
<given-names>T</given-names>
</string-name>
(
<year>2004</year>
)
<article-title>Surfactant protein‐d enhances phagocytosis and pulmonary clearance of respiratory syncytial virus</article-title>
.
<source xml:lang="en">Am J Respir Cell Mol Biol</source>
<volume>31</volume>
:
<fpage>193</fpage>
<lpage>199</lpage>
.
<pub-id pub-id-type="pmid">15016617</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0173">
<mixed-citation publication-type="journal" id="fmr12052-cit-0173">
<string-name>
<surname>Levroney</surname>
<given-names>EL</given-names>
</string-name>
,
<string-name>
<surname>Aguilar</surname>
<given-names>HC</given-names>
</string-name>
,
<string-name>
<surname>Fulcher</surname>
<given-names>JA</given-names>
</string-name>
,
<string-name>
<surname>Kohatsu</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Pace</surname>
<given-names>KE</given-names>
</string-name>
,
<string-name>
<surname>Pang</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Gurney</surname>
<given-names>KB</given-names>
</string-name>
,
<string-name>
<surname>Baum</surname>
<given-names>LG</given-names>
</string-name>
&
<string-name>
<surname>Lee</surname>
<given-names>B</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>Novel innate immune functions for galectin‐1: galectin‐1 inhibits cell fusion by Nipah virus envelope glycoproteins and augments dendritic cell secretion of proinflammatory cytokines</article-title>
.
<source xml:lang="en">J Immunol</source>
<volume>175</volume>
:
<fpage>413</fpage>
<lpage>420</lpage>
.
<pub-id pub-id-type="pmid">15972675</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0174">
<mixed-citation publication-type="journal" id="fmr12052-cit-0174">
<string-name>
<surname>Lew</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>X</given-names>
</string-name>
&
<string-name>
<surname>Kim</surname>
<given-names>CU</given-names>
</string-name>
(
<year>2000</year>
)
<article-title>Discovery and development of GS 4104 (oseltamivir): an orally active influenza neuraminidase inhibitor</article-title>
.
<source xml:lang="en">Curr Med Chem</source>
<volume>7</volume>
:
<fpage>663</fpage>
<lpage>672</lpage>
.
<pub-id pub-id-type="pmid">10702632</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0175">
<mixed-citation publication-type="journal" id="fmr12052-cit-0175">
<string-name>
<surname>Li</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Siddiqui</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Hendry</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Akiyama</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Edmondson</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Brown</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Allen</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Levitt</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Poulain</surname>
<given-names>F</given-names>
</string-name>
&
<string-name>
<surname>Hawgood</surname>
<given-names>S</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>Surfactant protein‐A–deficient mice display an exaggerated early inflammatory response to a beta‐resistant strain of influenza A virus</article-title>
.
<source xml:lang="en">Am J Respir Cell Mol Biol</source>
<volume>26</volume>
:
<fpage>277</fpage>
<lpage>282</lpage>
.
<pub-id pub-id-type="pmid">11867335</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0176">
<mixed-citation publication-type="journal" id="fmr12052-cit-0176">
<string-name>
<surname>Liao</surname>
<given-names>CF</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>SF</given-names>
</string-name>
,
<string-name>
<surname>Lin</surname>
<given-names>YT</given-names>
</string-name>
,
<string-name>
<surname>Ho</surname>
<given-names>DD</given-names>
</string-name>
&
<string-name>
<surname>Chen</surname>
<given-names>YM</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>Identification of the DC‐SIGN‐interactive domains on the envelope glycoprotein of HIV‐1 CRF07_BC</article-title>
.
<source xml:lang="en">AIDS Res Hum Retroviruses</source>
<volume>27</volume>
:
<fpage>831</fpage>
<lpage>839</lpage>
.
<pub-id pub-id-type="pmid">21142800</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0177">
<mixed-citation publication-type="journal" id="fmr12052-cit-0177">
<string-name>
<surname>Liedtke</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Adamski</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Geyer</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Pfutzner</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Rubsamen‐Waigmann</surname>
<given-names>H</given-names>
</string-name>
&
<string-name>
<surname>Geyer</surname>
<given-names>H</given-names>
</string-name>
(
<year>1994</year>
)
<article-title>Oligosaccharide profiles of HIV‐2 external envelope glycoprotein: dependence on host cells and virus isolates</article-title>
.
<source xml:lang="en">Glycobiology</source>
<volume>4</volume>
:
<fpage>477</fpage>
<lpage>484</lpage>
.
<pub-id pub-id-type="pmid">7827409</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0178">
<mixed-citation publication-type="journal" id="fmr12052-cit-0178">
<string-name>
<surname>Liedtke</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Geyer</surname>
<given-names>R</given-names>
</string-name>
&
<string-name>
<surname>Geyer</surname>
<given-names>H</given-names>
</string-name>
(
<year>1997</year>
)
<article-title>Host‐cell‐specific glycosylation of HIV‐2 envelope glycoprotein</article-title>
.
<source xml:lang="en">Glycoconj J</source>
<volume>14</volume>
:
<fpage>785</fpage>
<lpage>793</lpage>
.
<pub-id pub-id-type="pmid">9511983</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0179">
<mixed-citation publication-type="journal" id="fmr12052-cit-0179">
<string-name>
<surname>Lin</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Simmons</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Pohlmann</surname>
<given-names>S</given-names>
</string-name>
<italic>et al</italic>
(
<year>2003</year>
)
<article-title>Differential N‐linked glycosylation of human immunodeficiency virus and Ebola virus envelope glycoproteins modulates interactions with DC‐SIGN and DC‐SIGNR</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>77</volume>
:
<fpage>1337</fpage>
<lpage>1346</lpage>
.
<pub-id pub-id-type="pmid">12502850</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0180">
<mixed-citation publication-type="journal" id="fmr12052-cit-0180">
<string-name>
<surname>Liu</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Hwangbo</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Holte</surname>
<given-names>S</given-names>
</string-name>
<italic>et al</italic>
(
<year>2004</year>
)
<article-title>Analysis of genetic polymorphisms in CCR5, CCR2, stromal cell‐derived factor‐1, RANTES, and dendritic cell‐specific intercellular adhesion molecule‐3‐grabbing nonintegrin in seronegative individuals repeatedly exposed to HIV‐1</article-title>
.
<source xml:lang="en">J Infect Dis</source>
<volume>190</volume>
:
<fpage>1055</fpage>
<lpage>1058</lpage>
.
<pub-id pub-id-type="pmid">15319853</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0181">
<mixed-citation publication-type="journal" id="fmr12052-cit-0181">
<string-name>
<surname>Loris</surname>
<given-names>R</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>Principles of structures of animal and plant lectins</article-title>
.
<source xml:lang="en">Biochim Biophys Acta</source>
<volume>1572</volume>
:
<fpage>198</fpage>
<lpage>208</lpage>
.
<pub-id pub-id-type="pmid">12223270</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0182">
<mixed-citation publication-type="journal" id="fmr12052-cit-0182">
<string-name>
<surname>Luallen</surname>
<given-names>RJ</given-names>
</string-name>
,
<string-name>
<surname>Fu</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Agrawal‐Gamse</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Mboudjeka</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Huang</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Lee</surname>
<given-names>FH</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>LX</given-names>
</string-name>
,
<string-name>
<surname>Doms</surname>
<given-names>RW</given-names>
</string-name>
&
<string-name>
<surname>Geng</surname>
<given-names>Y</given-names>
</string-name>
(
<year>2009</year>
)
<article-title>A yeast glycoprotein shows high‐affinity binding to the broadly neutralizing human immunodeficiency virus antibody 2G12 and inhibits gp120 interactions with 2G12 and DC‐SIGN</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>83</volume>
:
<fpage>4861</fpage>
<lpage>4870</lpage>
.
<pub-id pub-id-type="pmid">19264785</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0183">
<mixed-citation publication-type="journal" id="fmr12052-cit-0183">
<string-name>
<surname>Madsen</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Gaiha</surname>
<given-names>GD</given-names>
</string-name>
,
<string-name>
<surname>Palaniyar</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Dong</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Mitchell</surname>
<given-names>DA</given-names>
</string-name>
&
<string-name>
<surname>Clark</surname>
<given-names>HW</given-names>
</string-name>
(
<year>2013</year>
)
<article-title>Surfactant Protein D modulates HIV infection of both T‐cells and dendritic cells</article-title>
.
<source xml:lang="en">PLoS One</source>
<volume>8</volume>
:
<fpage>e59047</fpage>
.
<pub-id pub-id-type="pmid">23527085</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0184">
<mixed-citation publication-type="journal" id="fmr12052-cit-0184">
<string-name>
<surname>Malakhov</surname>
<given-names>MP</given-names>
</string-name>
,
<string-name>
<surname>Aschenbrenner</surname>
<given-names>LM</given-names>
</string-name>
,
<string-name>
<surname>Smee</surname>
<given-names>DF</given-names>
</string-name>
<italic>et al</italic>
(
<year>2006</year>
)
<article-title>Sialidase fusion protein as a novel broad‐spectrum inhibitor of influenza virus infection</article-title>
.
<source xml:lang="en">Antimicrob Agents Chemother</source>
<volume>50</volume>
:
<fpage>1470</fpage>
<lpage>1479</lpage>
.
<pub-id pub-id-type="pmid">16569867</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0185">
<mixed-citation publication-type="journal" id="fmr12052-cit-0185">
<string-name>
<surname>Malhotra</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Haurum</surname>
<given-names>JS</given-names>
</string-name>
,
<string-name>
<surname>Thiel</surname>
<given-names>S</given-names>
</string-name>
&
<string-name>
<surname>Sim</surname>
<given-names>RB</given-names>
</string-name>
(
<year>1994</year>
)
<article-title>Binding of human collectins (SP‐A and MBP) to influenza virus</article-title>
.
<source xml:lang="en">Biochem J</source>
<volume>304</volume>
(
<issue>Pt 2</issue>
):
<fpage>455</fpage>
<lpage>461</lpage>
.
<pub-id pub-id-type="pmid">7998980</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0186">
<mixed-citation publication-type="journal" id="fmr12052-cit-0186">
<string-name>
<surname>Mandl</surname>
<given-names>CW</given-names>
</string-name>
,
<string-name>
<surname>Kroschewski</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Allison</surname>
<given-names>SL</given-names>
</string-name>
,
<string-name>
<surname>Kofler</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Holzmann</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Meixner</surname>
<given-names>T</given-names>
</string-name>
&
<string-name>
<surname>Heinz</surname>
<given-names>FX</given-names>
</string-name>
(
<year>2001</year>
)
<article-title>Adaptation of tick‐borne encephalitis virus to BHK‐21 cells results in the formation of multiple heparan sulfate binding sites in the envelope protein and attenuation
<italic>in vivo</italic>
</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>75</volume>
:
<fpage>5627</fpage>
<lpage>5637</lpage>
.
<pub-id pub-id-type="pmid">11356970</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0187">
<mixed-citation publication-type="journal" id="fmr12052-cit-0187">
<string-name>
<surname>Manzo</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Torreno‐Pina</surname>
<given-names>JA</given-names>
</string-name>
,
<string-name>
<surname>Joosten</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Reinieren‐Beeren</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Gualda</surname>
<given-names>EJ</given-names>
</string-name>
,
<string-name>
<surname>Loza‐Alvarez</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Figdor</surname>
<given-names>CG</given-names>
</string-name>
,
<string-name>
<surname>Garcia‐Parajo</surname>
<given-names>MF</given-names>
</string-name>
&
<string-name>
<surname>Cambi</surname>
<given-names>A</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>The neck region of the C‐type lectin DC‐SIGN regulates its surface spatiotemporal organization and virus‐binding capacity on antigen‐presenting cells</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<volume>287</volume>
:
<fpage>38946</fpage>
<lpage>38955</lpage>
.
<pub-id pub-id-type="pmid">23019323</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0188">
<mixed-citation publication-type="journal" id="fmr12052-cit-0188">
<string-name>
<surname>Markine‐Goriaynoff</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Georgin</surname>
<given-names>JP</given-names>
</string-name>
,
<string-name>
<surname>Goltz</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Zimmermann</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Broll</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Wamwayi</surname>
<given-names>HM</given-names>
</string-name>
,
<string-name>
<surname>Pastoret</surname>
<given-names>PP</given-names>
</string-name>
,
<string-name>
<surname>Sharp</surname>
<given-names>PM</given-names>
</string-name>
&
<string-name>
<surname>Vanderplasschen</surname>
<given-names>A</given-names>
</string-name>
(
<year>2003</year>
)
<article-title>The core 2 beta‐1,6‐N‐acetylglucosaminyltransferase‐mucin encoded by bovine herpesvirus 4 was acquired from an ancestor of the African buffalo</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>77</volume>
:
<fpage>1784</fpage>
<lpage>1792</lpage>
.
<pub-id pub-id-type="pmid">12525612</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0189">
<mixed-citation publication-type="journal" id="fmr12052-cit-0189">
<string-name>
<surname>Markine‐Goriaynoff</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Gillet</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Van Etten</surname>
<given-names>JL</given-names>
</string-name>
,
<string-name>
<surname>Korres</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Verma</surname>
<given-names>N</given-names>
</string-name>
&
<string-name>
<surname>Vanderplasschen</surname>
<given-names>A</given-names>
</string-name>
(
<year>2004a</year>
)
<article-title>Glycosyltransferases encoded by viruses</article-title>
.
<source xml:lang="en">J Gen Virol</source>
<volume>85</volume>
:
<fpage>2741</fpage>
<lpage>2754</lpage>
.
<pub-id pub-id-type="pmid">15448335</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0190">
<mixed-citation publication-type="journal" id="fmr12052-cit-0190">
<string-name>
<surname>Markine‐Goriaynoff</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Gillet</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Karlsen</surname>
<given-names>OA</given-names>
</string-name>
,
<string-name>
<surname>Haarr</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Minner</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Pastoret</surname>
<given-names>PP</given-names>
</string-name>
,
<string-name>
<surname>Fukuda</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Vanderplasschen</surname>
<given-names>A</given-names>
</string-name>
(
<year>2004b</year>
)
<article-title>The core 2 beta‐1,6‐N‐acetylglucosaminyltransferase‐M encoded by bovine herpesvirus 4 is not essential for virus replication despite contributing to post‐translational modifications of structural proteins</article-title>
.
<source xml:lang="en">J Gen Virol</source>
<volume>85</volume>
:
<fpage>355</fpage>
<lpage>367</lpage>
.
<pub-id pub-id-type="pmid">14769893</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0191">
<mixed-citation publication-type="journal" id="fmr12052-cit-0191">
<string-name>
<surname>Martin</surname>
<given-names>MP</given-names>
</string-name>
,
<string-name>
<surname>Lederman</surname>
<given-names>MM</given-names>
</string-name>
,
<string-name>
<surname>Hutcheson</surname>
<given-names>HB</given-names>
</string-name>
<italic>et al</italic>
(
<year>2004</year>
)
<article-title>Association of DC‐SIGN promoter polymorphism with increased risk for parenteral, but not mucosal, acquisition of human immunodeficiency virus type 1 infection</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>78</volume>
:
<fpage>14053</fpage>
<lpage>14056</lpage>
.
<pub-id pub-id-type="pmid">15564514</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0192">
<mixed-citation publication-type="journal" id="fmr12052-cit-0192">
<string-name>
<surname>Martinez‐Avila</surname>
<given-names>O</given-names>
</string-name>
,
<string-name>
<surname>Bedoya</surname>
<given-names>LM</given-names>
</string-name>
,
<string-name>
<surname>Marradi</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Clavel</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Alcami</surname>
<given-names>J</given-names>
</string-name>
&
<string-name>
<surname>Penades</surname>
<given-names>S</given-names>
</string-name>
(
<year>2009a</year>
)
<article-title>Multivalent manno‐glyconanoparticles inhibit DC‐SIGN‐mediated HIV‐1 trans‐infection of human T cells</article-title>
.
<source xml:lang="en">ChemBioChem</source>
<volume>10</volume>
:
<fpage>1806</fpage>
<lpage>1809</lpage>
.
<pub-id pub-id-type="pmid">19565596</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0193">
<mixed-citation publication-type="journal" id="fmr12052-cit-0193">
<string-name>
<surname>Martinez‐Avila</surname>
<given-names>O</given-names>
</string-name>
,
<string-name>
<surname>Hijazi</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Marradi</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Clavel</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Campion</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Kelly</surname>
<given-names>C</given-names>
</string-name>
&
<string-name>
<surname>Penades</surname>
<given-names>S</given-names>
</string-name>
(
<year>2009b</year>
)
<article-title>Gold manno‐glyconanoparticles: multivalent systems to block HIV‐1 gp120 binding to the lectin DC‐SIGN</article-title>
.
<source xml:lang="en">Chemistry</source>
<volume>15</volume>
:
<fpage>9874</fpage>
<lpage>9888</lpage>
.
<pub-id pub-id-type="pmid">19681073</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0194">
<mixed-citation publication-type="journal" id="fmr12052-cit-0194">
<string-name>
<surname>Matrosovich</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Klenk</surname>
<given-names>HD</given-names>
</string-name>
(
<year>2003</year>
)
<article-title>Natural and synthetic sialic acid‐containing inhibitors of influenza virus receptor binding</article-title>
.
<source xml:lang="en">Rev Med Virol</source>
<volume>13</volume>
:
<fpage>85</fpage>
<lpage>97</lpage>
.
<pub-id pub-id-type="pmid">12627392</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0195">
<mixed-citation publication-type="journal" id="fmr12052-cit-0195">
<string-name>
<surname>Matrosovich</surname>
<given-names>MN</given-names>
</string-name>
,
<string-name>
<surname>Gambaryan</surname>
<given-names>AS</given-names>
</string-name>
&
<string-name>
<surname>Chumakov</surname>
<given-names>MP</given-names>
</string-name>
(
<year>1992</year>
)
<article-title>Influenza viruses differ in recognition of 4‐O‐acetyl substitution of sialic acid receptor determinant</article-title>
.
<source xml:lang="en">Virology</source>
<volume>188</volume>
:
<fpage>854</fpage>
<lpage>858</lpage>
.
<pub-id pub-id-type="pmid">1374985</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0196">
<mixed-citation publication-type="journal" id="fmr12052-cit-0196">
<string-name>
<surname>Matrosovich</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Gao</surname>
<given-names>P</given-names>
</string-name>
&
<string-name>
<surname>Kawaoka</surname>
<given-names>Y</given-names>
</string-name>
(
<year>1998</year>
)
<article-title>Molecular mechanisms of serum resistance of human influenza H3N2 virus and their involvement in virus adaptation in a new host</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>72</volume>
:
<fpage>6373</fpage>
<lpage>6380</lpage>
.
<pub-id pub-id-type="pmid">9658077</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0197">
<mixed-citation publication-type="journal" id="fmr12052-cit-0197">
<string-name>
<surname>Matsubara</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Onishi</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Saito</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Shimada</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Inoue</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Taki</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Nagata</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Okahata</surname>
<given-names>Y</given-names>
</string-name>
&
<string-name>
<surname>Sato</surname>
<given-names>T</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>Sialic acid‐mimic peptides as hemagglutinin inhibitors for anti‐influenza therapy</article-title>
.
<source xml:lang="en">J Med Chem</source>
<volume>53</volume>
:
<fpage>4441</fpage>
<lpage>4449</lpage>
.
<pub-id pub-id-type="pmid">20476787</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0198">
<mixed-citation publication-type="journal" id="fmr12052-cit-0198">
<string-name>
<surname>McDonald</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Wu</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Bohks</surname>
<given-names>SM</given-names>
</string-name>
,
<string-name>
<surname>KewalRamani</surname>
<given-names>VN</given-names>
</string-name>
,
<string-name>
<surname>Unutmaz</surname>
<given-names>D</given-names>
</string-name>
&
<string-name>
<surname>Hope</surname>
<given-names>TJ</given-names>
</string-name>
(
<year>2003</year>
)
<article-title>Recruitment of HIV and its receptors to dendritic cell‐T cell junctions</article-title>
.
<source xml:lang="en">Science</source>
<volume>300</volume>
:
<fpage>1295</fpage>
<lpage>1297</lpage>
.
<pub-id pub-id-type="pmid">12730499</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0199">
<mixed-citation publication-type="journal" id="fmr12052-cit-0199">
<string-name>
<surname>McGreal</surname>
<given-names>EP</given-names>
</string-name>
,
<string-name>
<surname>Martinez‐Pomares</surname>
<given-names>L</given-names>
</string-name>
&
<string-name>
<surname>Gordon</surname>
<given-names>S</given-names>
</string-name>
(
<year>2004</year>
)
<article-title>Divergent roles for C‐type lectins expressed by cells of the innate immune system</article-title>
.
<source xml:lang="en">Mol Immunol</source>
<volume>41</volume>
:
<fpage>1109</fpage>
<lpage>1121</lpage>
.
<pub-id pub-id-type="pmid">15476922</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0200">
<mixed-citation publication-type="journal" id="fmr12052-cit-0200">
<string-name>
<surname>McGreal</surname>
<given-names>EP</given-names>
</string-name>
,
<string-name>
<surname>Miller</surname>
<given-names>JL</given-names>
</string-name>
&
<string-name>
<surname>Gordon</surname>
<given-names>S</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>Ligand recognition by antigen‐presenting cell C‐type lectin receptors</article-title>
.
<source xml:lang="en">Curr Opin Immunol</source>
<volume>17</volume>
:
<fpage>18</fpage>
<lpage>24</lpage>
.
<pub-id pub-id-type="pmid">15653305</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0201">
<mixed-citation publication-type="journal" id="fmr12052-cit-0201">
<string-name>
<surname>Mehta</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Zitzmann</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Rudd</surname>
<given-names>PM</given-names>
</string-name>
,
<string-name>
<surname>Block</surname>
<given-names>TM</given-names>
</string-name>
&
<string-name>
<surname>Dwek</surname>
<given-names>RA</given-names>
</string-name>
(
<year>1998</year>
)
<article-title>Alpha‐glucosidase inhibitors as potential broad based anti‐viral agents</article-title>
.
<source xml:lang="en">FEBS Lett</source>
<volume>430</volume>
:
<fpage>17</fpage>
<lpage>22</lpage>
.
<pub-id pub-id-type="pmid">9678587</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0202">
<mixed-citation publication-type="journal" id="fmr12052-cit-0202">
<string-name>
<surname>Mercier</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>St‐Pierre</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Pelletier</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Ouellet</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Tremblay</surname>
<given-names>MJ</given-names>
</string-name>
&
<string-name>
<surname>Sato</surname>
<given-names>S</given-names>
</string-name>
(
<year>2008</year>
)
<article-title>Galectin‐1 promotes HIV‐1 infectivity in macrophages through stabilization of viral adsorption</article-title>
.
<source xml:lang="en">Virology</source>
<volume>371</volume>
:
<fpage>121</fpage>
<lpage>129</lpage>
.
<pub-id pub-id-type="pmid">18028978</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0203">
<mixed-citation publication-type="journal" id="fmr12052-cit-0203">
<string-name>
<surname>Merry</surname>
<given-names>T</given-names>
</string-name>
&
<string-name>
<surname>Astrautsova</surname>
<given-names>S</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>Alternative approaches to antiviral treatments: focusing on glycosylation as a target for antiviral therapy</article-title>
.
<source xml:lang="en">Biotechnol Appl Biochem</source>
<volume>56</volume>
:
<fpage>103</fpage>
<lpage>109</lpage>
.
<pub-id pub-id-type="pmid">20649513</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0204">
<mixed-citation publication-type="journal" id="fmr12052-cit-0204">
<string-name>
<surname>Mikerov</surname>
<given-names>AN</given-names>
</string-name>
,
<string-name>
<surname>White</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Hartshorn</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>G</given-names>
</string-name>
&
<string-name>
<surname>Floros</surname>
<given-names>J</given-names>
</string-name>
(
<year>2008</year>
)
<article-title>Inhibition of hemagglutination activity of influenza A viruses by SP‐A1 and SP‐A2 variants expressed in CHO cells</article-title>
.
<source xml:lang="en">Med Microbiol Immunol</source>
<volume>197</volume>
:
<fpage>9</fpage>
<lpage>12</lpage>
.
<pub-id pub-id-type="pmid">17520282</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0205">
<mixed-citation publication-type="journal" id="fmr12052-cit-0205">
<string-name>
<surname>Mikulak</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Teichberg</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Arora</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Kumar</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Yadav</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Salhan</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Pullagura</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Mathieson</surname>
<given-names>PW</given-names>
</string-name>
,
<string-name>
<surname>Saleem</surname>
<given-names>MA</given-names>
</string-name>
&
<string-name>
<surname>Singhal</surname>
<given-names>PC</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>DC‐specific ICAM‐3‐grabbing nonintegrin mediates internalization of HIV‐1 into human podocytes</article-title>
.
<source xml:lang="en">Am J Physiol</source>
<volume>299</volume>
:
<fpage>F664</fpage>
<lpage>F673</lpage>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0206">
<mixed-citation publication-type="journal" id="fmr12052-cit-0206">
<string-name>
<surname>Montefiori</surname>
<given-names>DC</given-names>
</string-name>
,
<string-name>
<surname>Robinson</surname>
<given-names>WE</given-names>
<suffix>Jr</suffix>
</string-name>
&
<string-name>
<surname>Mitchell</surname>
<given-names>WM</given-names>
</string-name>
(
<year>1988</year>
)
<article-title>Role of protein N‐glycosylation in pathogenesis of human immunodeficiency virus type 1</article-title>
.
<source xml:lang="en">P Natl Acad Sci USA</source>
<volume>85</volume>
:
<fpage>9248</fpage>
<lpage>9252</lpage>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0207">
<mixed-citation publication-type="journal" id="fmr12052-cit-0207">
<string-name>
<surname>Moris</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Nobile</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Buseyne</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Porrot</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Abastado</surname>
<given-names>JP</given-names>
</string-name>
&
<string-name>
<surname>Schwartz</surname>
<given-names>O</given-names>
</string-name>
(
<year>2004</year>
)
<article-title>DC‐SIGN promotes exogenous MHC‐I‐restricted HIV‐1 antigen presentation</article-title>
.
<source xml:lang="en">Blood</source>
<volume>103</volume>
:
<fpage>2648</fpage>
<lpage>2654</lpage>
.
<pub-id pub-id-type="pmid">14576049</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0208">
<mixed-citation publication-type="journal" id="fmr12052-cit-0208">
<string-name>
<surname>Moris</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Pajot</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Blanchet</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Guivel‐Benhassine</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Salcedo</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Schwartz</surname>
<given-names>O</given-names>
</string-name>
(
<year>2006</year>
)
<article-title>Dendritic cells and HIV‐specific CD4+ T cells: HIV antigen presentation, T‐cell activation, and viral transfer</article-title>
.
<source xml:lang="en">Blood</source>
<volume>108</volume>
:
<fpage>1643</fpage>
<lpage>1651</lpage>
.
<pub-id pub-id-type="pmid">16675708</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0209">
<mixed-citation publication-type="journal" id="fmr12052-cit-0209">
<string-name>
<surname>Mummidi</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Catano</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Lam</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Hoefle</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Telles</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Begum</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Jimenez</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Ahuja</surname>
<given-names>SS</given-names>
</string-name>
&
<string-name>
<surname>Ahuja</surname>
<given-names>SK</given-names>
</string-name>
(
<year>2001</year>
)
<article-title>Extensive repertoire of membrane‐bound and soluble dendritic cell‐specific ICAM‐3‐grabbing nonintegrin 1 (DC‐SIGN1) and DC‐SIGN2 isoforms. Inter‐individual variation in expression of DC‐SIGN transcripts</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<volume>276</volume>
:
<fpage>33196</fpage>
<lpage>33212</lpage>
.
<pub-id pub-id-type="pmid">11337487</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0210">
<mixed-citation publication-type="journal" id="fmr12052-cit-0210">
<string-name>
<surname>Nair</surname>
<given-names>MP</given-names>
</string-name>
,
<string-name>
<surname>Reynolds</surname>
<given-names>JL</given-names>
</string-name>
,
<string-name>
<surname>Mahajan</surname>
<given-names>SD</given-names>
</string-name>
,
<string-name>
<surname>Schwartz</surname>
<given-names>SA</given-names>
</string-name>
,
<string-name>
<surname>Aalinkeel</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Bindukumar</surname>
<given-names>B</given-names>
</string-name>
&
<string-name>
<surname>Sykes</surname>
<given-names>D</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>RNAi‐directed inhibition of DC‐SIGN by dendritic cells: prospects for HIV‐1 therapy</article-title>
.
<source xml:lang="en">AAPS J</source>
<volume>7</volume>
:
<fpage>E572</fpage>
<lpage>E578</lpage>
.
<pub-id pub-id-type="pmid">16353935</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0211">
<mixed-citation publication-type="journal" id="fmr12052-cit-0211">
<string-name>
<surname>Nakada</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Creager</surname>
<given-names>RS</given-names>
</string-name>
,
<string-name>
<surname>Krystal</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Aaronson</surname>
<given-names>RP</given-names>
</string-name>
&
<string-name>
<surname>Palese</surname>
<given-names>P</given-names>
</string-name>
(
<year>1984</year>
)
<article-title>Influenza C virus hemagglutinin: comparison with influenza A and B virus hemagglutinins</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>50</volume>
:
<fpage>118</fpage>
<lpage>124</lpage>
.
<pub-id pub-id-type="pmid">6699942</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0212">
<mixed-citation publication-type="journal" id="fmr12052-cit-0212">
<string-name>
<surname>Nash</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Barry</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Seet</surname>
<given-names>BT</given-names>
</string-name>
,
<string-name>
<surname>Veugelers</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Hota</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Heger</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Hodgkinson</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Graham</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Jackson</surname>
<given-names>RJ</given-names>
</string-name>
&
<string-name>
<surname>McFadden</surname>
<given-names>G</given-names>
</string-name>
(
<year>2000</year>
)
<article-title>Post‐translational modification of the myxoma‐virus anti‐inflammatory serpin SERP‐1 by a virally encoded sialyltransferase</article-title>
.
<source xml:lang="en">Biochem J</source>
<volume>347</volume>
:
<fpage>375</fpage>
<lpage>382</lpage>
.
<pub-id pub-id-type="pmid">10749666</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0213">
<mixed-citation publication-type="journal" id="fmr12052-cit-0213">
<string-name>
<surname>Navarro‐Sanchez</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Altmeyer</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Amara</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Schwartz</surname>
<given-names>O</given-names>
</string-name>
,
<string-name>
<surname>Fieschi</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Virelizier</surname>
<given-names>JL</given-names>
</string-name>
,
<string-name>
<surname>Arenzana‐Seisdedos</surname>
<given-names>F</given-names>
</string-name>
&
<string-name>
<surname>Despres</surname>
<given-names>P</given-names>
</string-name>
(
<year>2003</year>
)
<article-title>Dendritic‐cell‐specific ICAM3‐grabbing non‐integrin is essential for the productive infection of human dendritic cells by mosquito‐cell‐derived dengue viruses</article-title>
.
<source xml:lang="en">EMBO Rep</source>
<volume>4</volume>
:
<fpage>723</fpage>
<lpage>728</lpage>
.
<pub-id pub-id-type="pmid">12783086</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0214">
<mixed-citation publication-type="journal" id="fmr12052-cit-0214">
<string-name>
<surname>Nikolic</surname>
<given-names>DS</given-names>
</string-name>
,
<string-name>
<surname>Lehmann</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Felts</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Garcia</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Blanchet</surname>
<given-names>FP</given-names>
</string-name>
,
<string-name>
<surname>Subramaniam</surname>
<given-names>S</given-names>
</string-name>
&
<string-name>
<surname>Piguet</surname>
<given-names>V</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>HIV‐1 activates Cdc42 and induces membrane extensions in immature dendritic cells to facilitate cell‐to‐cell virus propagation</article-title>
.
<source xml:lang="en">Blood</source>
<volume>118</volume>
:
<fpage>4841</fpage>
<lpage>4852</lpage>
.
<pub-id pub-id-type="pmid">21562048</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0215">
<mixed-citation publication-type="journal" id="fmr12052-cit-0215">
<string-name>
<surname>Nobile</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Petit</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Moris</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Skrabal</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Abastado</surname>
<given-names>JP</given-names>
</string-name>
,
<string-name>
<surname>Mammano</surname>
<given-names>F</given-names>
</string-name>
&
<string-name>
<surname>Schwartz</surname>
<given-names>O</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>Covert human immunodeficiency virus replication in dendritic cells and in DC‐SIGN‐expressing cells promotes long‐term transmission to lymphocytes</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>79</volume>
:
<fpage>5386</fpage>
<lpage>5399</lpage>
.
<pub-id pub-id-type="pmid">15827153</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0216">
<mixed-citation publication-type="journal" id="fmr12052-cit-0216">
<string-name>
<surname>Nystrom</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Le Gall‐Recule</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Grassi</surname>
<given-names>P</given-names>
</string-name>
<italic>et al</italic>
(
<year>2011</year>
)
<article-title>Histo‐blood group antigens act as attachment factors of rabbit hemorrhagic disease virus infection in a virus strain‐dependent manner</article-title>
.
<source xml:lang="en">PLoS Pathog</source>
<volume>7</volume>
:
<fpage>e1002188</fpage>
.
<pub-id pub-id-type="pmid">21901093</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0217">
<mixed-citation publication-type="journal" id="fmr12052-cit-0217">
<string-name>
<surname>Ochiel</surname>
<given-names>DO</given-names>
</string-name>
,
<string-name>
<surname>Ochsenbauer</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Kappes</surname>
<given-names>JC</given-names>
</string-name>
,
<string-name>
<surname>Ghosh</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Fahey</surname>
<given-names>JV</given-names>
</string-name>
&
<string-name>
<surname>Wira</surname>
<given-names>CR</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>Uterine epithelial cell regulation of DC‐SIGN expression inhibits transmitted/founder HIV‐1 trans infection by immature dendritic cells</article-title>
.
<source xml:lang="en">PLoS One</source>
<volume>5</volume>
:
<fpage>e14306</fpage>
.
<pub-id pub-id-type="pmid">21179465</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0218">
<mixed-citation publication-type="journal" id="fmr12052-cit-0218">
<string-name>
<surname>Ohuchi</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Ohuchi</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Feldmann</surname>
<given-names>A</given-names>
</string-name>
&
<string-name>
<surname>Klenk</surname>
<given-names>HD</given-names>
</string-name>
(
<year>1997</year>
)
<article-title>Regulation of receptor binding affinity of influenza virus hemagglutinin by its carbohydrate moiety</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>71</volume>
:
<fpage>8377</fpage>
<lpage>8384</lpage>
.
<pub-id pub-id-type="pmid">9343193</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0219">
<mixed-citation publication-type="journal" id="fmr12052-cit-0219">
<string-name>
<surname>Osorio</surname>
<given-names>F</given-names>
</string-name>
&
<string-name>
<surname>Reis e Sousa</surname>
,
<given-names>C</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>Myeloid C‐type lectin receptors in pathogen recognition and host defense</article-title>
.
<source xml:lang="en">Immunity</source>
<volume>34</volume>
:
<fpage>651</fpage>
<lpage>664</lpage>
.
<pub-id pub-id-type="pmid">21616435</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0220">
<mixed-citation publication-type="journal" id="fmr12052-cit-0220">
<string-name>
<surname>Ouellet</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Mercier</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Pelletier</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Bounou</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Roy</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Hirabayashi</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Sato</surname>
<given-names>S</given-names>
</string-name>
&
<string-name>
<surname>Tremblay</surname>
<given-names>MJ</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>Galectin‐1 acts as a soluble host factor that promotes HIV‐1 infectivity through stabilization of virus attachment to host cells</article-title>
.
<source xml:lang="en">J Immunol</source>
<volume>174</volume>
:
<fpage>4120</fpage>
<lpage>4126</lpage>
.
<pub-id pub-id-type="pmid">15778371</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0221">
<mixed-citation publication-type="journal" id="fmr12052-cit-0221">
<string-name>
<surname>Pal</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Hoke</surname>
<given-names>GM</given-names>
</string-name>
&
<string-name>
<surname>Sarngadharan</surname>
<given-names>MG</given-names>
</string-name>
(
<year>1989</year>
)
<article-title>Role of oligosaccharides in the processing and maturation of envelope glycoproteins of human immunodeficiency virus type 1</article-title>
.
<source xml:lang="en">P Natl Acad Sci USA</source>
<volume>86</volume>
:
<fpage>3384</fpage>
<lpage>3388</lpage>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0222">
<mixed-citation publication-type="journal" id="fmr12052-cit-0222">
<string-name>
<surname>Pantophlet</surname>
<given-names>R</given-names>
</string-name>
&
<string-name>
<surname>Burton</surname>
<given-names>DR</given-names>
</string-name>
(
<year>2006</year>
)
<article-title>GP120: Target for neutralizing HIV‐1 antibodies</article-title>
.
<source xml:lang="en">Annu Rev Immunol</source>
<volume>24</volume>
:
<fpage>739</fpage>
<lpage>769</lpage>
.
<pub-id pub-id-type="pmid">16551265</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0223">
<mixed-citation publication-type="journal" id="fmr12052-cit-0223">
<string-name>
<surname>Papp</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Sieben</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Ludwig</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Roskamp</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Bottcher</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Schlecht</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Herrmann</surname>
<given-names>A</given-names>
</string-name>
&
<string-name>
<surname>Haag</surname>
<given-names>R</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>Inhibition of influenza virus infection by multivalent sialic‐acid‐functionalized gold nanoparticles</article-title>
.
<source xml:lang="en">Small</source>
<volume>6</volume>
:
<fpage>2900</fpage>
<lpage>2906</lpage>
.
<pub-id pub-id-type="pmid">21104827</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0224">
<mixed-citation publication-type="journal" id="fmr12052-cit-0224">
<string-name>
<surname>Papp</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Sieben</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Sisson</surname>
<given-names>AL</given-names>
</string-name>
,
<string-name>
<surname>Kostka</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Bottcher</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Ludwig</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Herrmann</surname>
<given-names>A</given-names>
</string-name>
&
<string-name>
<surname>Haag</surname>
<given-names>R</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>Inhibition of influenza virus activity by multivalent glycoarchitectures with matched sizes</article-title>
.
<source xml:lang="en">Chembiochem</source>
<volume>12</volume>
:
<fpage>887</fpage>
<lpage>895</lpage>
.
<pub-id pub-id-type="pmid">21384484</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0225">
<mixed-citation publication-type="journal" id="fmr12052-cit-0225">
<string-name>
<surname>Patel</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Yanagishita</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Roderiquez</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Bou‐Habib</surname>
<given-names>DC</given-names>
</string-name>
,
<string-name>
<surname>Oravecz</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Hascall</surname>
<given-names>VC</given-names>
</string-name>
&
<string-name>
<surname>Norcross</surname>
<given-names>MA</given-names>
</string-name>
(
<year>1993</year>
)
<article-title>Cell‐surface heparan sulfate proteoglycan mediates HIV‐1 infection of T‐cell lines</article-title>
.
<source xml:lang="en">AIDS Res Hum Retroviruses</source>
<volume>9</volume>
:
<fpage>167</fpage>
<lpage>174</lpage>
.
<pub-id pub-id-type="pmid">8096145</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0226">
<mixed-citation publication-type="journal" id="fmr12052-cit-0226">
<string-name>
<surname>Paulick</surname>
<given-names>MG</given-names>
</string-name>
&
<string-name>
<surname>Bertozzi</surname>
<given-names>CR</given-names>
</string-name>
(
<year>2008</year>
)
<article-title>The glycosylphosphatidylinositol anchor: a complex membrane‐anchoring structure for proteins</article-title>
.
<source xml:lang="en">Biochemistry</source>
<volume>47</volume>
:
<fpage>6991</fpage>
<lpage>7000</lpage>
.
<pub-id pub-id-type="pmid">18557633</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0227">
<mixed-citation publication-type="journal" id="fmr12052-cit-0227">
<string-name>
<surname>Pekosz</surname>
<given-names>A</given-names>
</string-name>
&
<string-name>
<surname>Lamb</surname>
<given-names>RA</given-names>
</string-name>
(
<year>1999</year>
)
<article-title>Cell surface expression of biologically active influenza C virus HEF glycoprotein expressed from cDNA</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>73</volume>
:
<fpage>8808</fpage>
<lpage>8812</lpage>
.
<pub-id pub-id-type="pmid">10482635</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0228">
<mixed-citation publication-type="journal" id="fmr12052-cit-0228">
<string-name>
<surname>Peter‐Katalinic</surname>
<given-names>J</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>Methods in enzymology: O‐glycosylation of proteins</article-title>
.
<source xml:lang="en">Methods Enzymol</source>
<volume>405</volume>
:
<fpage>139</fpage>
<lpage>171</lpage>
.
<pub-id pub-id-type="pmid">16413314</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0229">
<mixed-citation publication-type="journal" id="fmr12052-cit-0229">
<string-name>
<surname>Piguet</surname>
<given-names>V</given-names>
</string-name>
&
<string-name>
<surname>Steinman</surname>
<given-names>RM</given-names>
</string-name>
(
<year>2007</year>
)
<article-title>The interaction of HIV with dendritic cells: outcomes and pathways</article-title>
.
<source xml:lang="en">Trends Immunol</source>
<volume>28</volume>
:
<fpage>503</fpage>
<lpage>510</lpage>
.
<pub-id pub-id-type="pmid">17950666</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0230">
<mixed-citation publication-type="journal" id="fmr12052-cit-0230">
<string-name>
<surname>Pizer</surname>
<given-names>LI</given-names>
</string-name>
,
<string-name>
<surname>Cohen</surname>
<given-names>GH</given-names>
</string-name>
&
<string-name>
<surname>Eisenberg</surname>
<given-names>RJ</given-names>
</string-name>
(
<year>1980</year>
)
<article-title>Effect of tunicamycin on herpes simplex virus glycoproteins and infectious virus production</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>34</volume>
:
<fpage>142</fpage>
<lpage>153</lpage>
.
<pub-id pub-id-type="pmid">6246250</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0231">
<mixed-citation publication-type="journal" id="fmr12052-cit-0231">
<string-name>
<surname>Pohlmann</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Baribaud</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Lee</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Leslie</surname>
<given-names>GJ</given-names>
</string-name>
,
<string-name>
<surname>Sanchez</surname>
<given-names>MD</given-names>
</string-name>
,
<string-name>
<surname>Hiebenthal‐Millow</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Munch</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Kirchhoff</surname>
<given-names>F</given-names>
</string-name>
&
<string-name>
<surname>Doms</surname>
<given-names>RW</given-names>
</string-name>
(
<year>2001</year>
)
<article-title>DC‐SIGN interactions with human immunodeficiency virus type 1 and 2 and simian immunodeficiency virus</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>75</volume>
:
<fpage>4664</fpage>
<lpage>4672</lpage>
.
<pub-id pub-id-type="pmid">11312337</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0232">
<mixed-citation publication-type="journal" id="fmr12052-cit-0232">
<string-name>
<surname>Pritchett</surname>
<given-names>TJ</given-names>
</string-name>
&
<string-name>
<surname>Paulson</surname>
<given-names>JC</given-names>
</string-name>
(
<year>1989</year>
)
<article-title>Basis for the potent inhibition of influenza virus infection by equine and guinea pig alpha 2‐macroglobulin</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<volume>264</volume>
:
<fpage>9850</fpage>
<lpage>9858</lpage>
.
<pub-id pub-id-type="pmid">2470765</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0233">
<mixed-citation publication-type="journal" id="fmr12052-cit-0233">
<string-name>
<surname>Prydz</surname>
<given-names>K</given-names>
</string-name>
&
<string-name>
<surname>Dalen</surname>
<given-names>KT</given-names>
</string-name>
(
<year>2000</year>
)
<article-title>Synthesis and sorting of proteoglycans</article-title>
.
<source xml:lang="en">J Cell Sci</source>
<volume>113</volume>
:
<fpage>193</fpage>
<lpage>205</lpage>
.
<pub-id pub-id-type="pmid">10633071</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0234">
<mixed-citation publication-type="journal" id="fmr12052-cit-0234">
<string-name>
<surname>Rademacher</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Krishna</surname>
<given-names>NR</given-names>
</string-name>
,
<string-name>
<surname>Palcic</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Parra</surname>
<given-names>F</given-names>
</string-name>
&
<string-name>
<surname>Peters</surname>
<given-names>T</given-names>
</string-name>
(
<year>2008</year>
)
<article-title>NMR experiments reveal the molecular basis of receptor recognition by a calicivirus</article-title>
.
<source xml:lang="en">J Am Chem Soc</source>
<volume>130</volume>
:
<fpage>3669</fpage>
<lpage>3675</lpage>
.
<pub-id pub-id-type="pmid">18302385</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0235">
<mixed-citation publication-type="journal" id="fmr12052-cit-0235">
<string-name>
<surname>Rappocciolo</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Piazza</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Fuller</surname>
<given-names>CL</given-names>
</string-name>
,
<string-name>
<surname>Reinhart</surname>
<given-names>TA</given-names>
</string-name>
,
<string-name>
<surname>Watkins</surname>
<given-names>SC</given-names>
</string-name>
,
<string-name>
<surname>Rowe</surname>
<given-names>DT</given-names>
</string-name>
,
<string-name>
<surname>Jais</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Gupta</surname>
<given-names>P</given-names>
</string-name>
&
<string-name>
<surname>Rinaldo</surname>
<given-names>CR</given-names>
</string-name>
(
<year>2006</year>
)
<article-title>DC‐SIGN on B lymphocytes is required for transmission of HIV‐1 to T lymphocytes</article-title>
.
<source xml:lang="en">PLoS Pathog</source>
<volume>2</volume>
:
<fpage>e70</fpage>
.
<pub-id pub-id-type="pmid">16839201</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0236">
<mixed-citation publication-type="journal" id="fmr12052-cit-0236">
<string-name>
<surname>Raza</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Shareef</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Salim</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Khushal</surname>
<given-names>R</given-names>
</string-name>
&
<string-name>
<surname>Bokhari</surname>
<given-names>H</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>Selection of predicted siRNA as potential antiviral therapeutic agent against influenza virus</article-title>
.
<source xml:lang="en">Bioinformation</source>
<volume>6</volume>
:
<fpage>340</fpage>
<lpage>343</lpage>
.
<pub-id pub-id-type="pmid">21814391</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0237">
<mixed-citation publication-type="journal" id="fmr12052-cit-0237">
<string-name>
<surname>Reading</surname>
<given-names>PC</given-names>
</string-name>
,
<string-name>
<surname>Hartley</surname>
<given-names>CA</given-names>
</string-name>
,
<string-name>
<surname>Ezekowitz</surname>
<given-names>RA</given-names>
</string-name>
&
<string-name>
<surname>Anders</surname>
<given-names>EM</given-names>
</string-name>
(
<year>1995</year>
)
<article-title>A serum mannose‐binding lectin mediates complement‐dependent lysis of influenza virus‐infected cells</article-title>
.
<source xml:lang="en">Biochem Biophys Res Commun</source>
<volume>217</volume>
:
<fpage>1128</fpage>
<lpage>1136</lpage>
.
<pub-id pub-id-type="pmid">8554567</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0238">
<mixed-citation publication-type="journal" id="fmr12052-cit-0238">
<string-name>
<surname>Reading</surname>
<given-names>PC</given-names>
</string-name>
,
<string-name>
<surname>Morey</surname>
<given-names>LS</given-names>
</string-name>
,
<string-name>
<surname>Crouch</surname>
<given-names>EC</given-names>
</string-name>
&
<string-name>
<surname>Anders</surname>
<given-names>EM</given-names>
</string-name>
(
<year>1997</year>
)
<article-title>Collectin‐mediated antiviral host defense of the lung: evidence from influenza virus infection of mice</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>71</volume>
:
<fpage>8204</fpage>
<lpage>8212</lpage>
.
<pub-id pub-id-type="pmid">9343171</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0239">
<mixed-citation publication-type="journal" id="fmr12052-cit-0239">
<string-name>
<surname>Reading</surname>
<given-names>PC</given-names>
</string-name>
,
<string-name>
<surname>Tate</surname>
<given-names>MD</given-names>
</string-name>
,
<string-name>
<surname>Pickett</surname>
<given-names>DL</given-names>
</string-name>
&
<string-name>
<surname>Brooks</surname>
<given-names>AG</given-names>
</string-name>
(
<year>2007</year>
)
<article-title>Glycosylation as a target for recognition of influenza viruses by the innate immune system</article-title>
.
<source xml:lang="en">Adv Exp Med Biol</source>
<volume>598</volume>
:
<fpage>279</fpage>
<lpage>292</lpage>
.
<pub-id pub-id-type="pmid">17892219</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0240">
<mixed-citation publication-type="journal" id="fmr12052-cit-0240">
<string-name>
<surname>Reading</surname>
<given-names>PC</given-names>
</string-name>
,
<string-name>
<surname>Pickett</surname>
<given-names>DL</given-names>
</string-name>
,
<string-name>
<surname>Tate</surname>
<given-names>MD</given-names>
</string-name>
,
<string-name>
<surname>Whitney</surname>
<given-names>PG</given-names>
</string-name>
,
<string-name>
<surname>Job</surname>
<given-names>ER</given-names>
</string-name>
&
<string-name>
<surname>Brooks</surname>
<given-names>AG</given-names>
</string-name>
(
<year>2009</year>
)
<article-title>Loss of a single N‐linked glycan from the hemagglutinin of influenza virus is associated with resistance to collectins and increased virulence in mice</article-title>
.
<source xml:lang="en">Respir Res</source>
<volume>10</volume>
:
<fpage>117</fpage>
.
<pub-id pub-id-type="pmid">19930664</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0241">
<mixed-citation publication-type="journal" id="fmr12052-cit-0241">
<string-name>
<surname>Reitter</surname>
<given-names>JN</given-names>
</string-name>
,
<string-name>
<surname>Means</surname>
<given-names>RE</given-names>
</string-name>
&
<string-name>
<surname>Desrosiers</surname>
<given-names>RC</given-names>
</string-name>
(
<year>1998</year>
)
<article-title>A role for carbohydrates in immune evasion in AIDS</article-title>
.
<source xml:lang="en">Nat Med</source>
<volume>4</volume>
:
<fpage>679</fpage>
<lpage>684</lpage>
.
<pub-id pub-id-type="pmid">9623976</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0242">
<mixed-citation publication-type="journal" id="fmr12052-cit-0242">
<string-name>
<surname>Relloso</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Puig‐Kroger</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Pello</surname>
<given-names>OM</given-names>
</string-name>
,
<string-name>
<surname>Rodriguez‐Fernandez</surname>
<given-names>JL</given-names>
</string-name>
,
<string-name>
<surname>de la Rosa</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Longo</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Navarro</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Munoz‐Fernandez</surname>
<given-names>MA</given-names>
</string-name>
,
<string-name>
<surname>Sanchez‐Mateos</surname>
<given-names>P</given-names>
</string-name>
&
<string-name>
<surname>Corbi</surname>
<given-names>AL</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>DC‐SIGN (CD209) expression is IL‐4 dependent and is negatively regulated by IFN, TGF‐beta, and anti‐inflammatory agents</article-title>
.
<source xml:lang="en">J Immunol</source>
<volume>168</volume>
:
<fpage>2634</fpage>
<lpage>2643</lpage>
.
<pub-id pub-id-type="pmid">11884427</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0243">
<mixed-citation publication-type="journal" id="fmr12052-cit-0243">
<string-name>
<surname>Roberts</surname>
<given-names>NA</given-names>
</string-name>
(
<year>2001</year>
)
<article-title>Anti‐influenza drugs and neuraminidase inhibitors</article-title>
.
<source xml:lang="en">Prog Drug Res</source>
. Spec No: 35–77.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0244">
<mixed-citation publication-type="journal" id="fmr12052-cit-0244">
<string-name>
<surname>Rogers</surname>
<given-names>GN</given-names>
</string-name>
,
<string-name>
<surname>Pritchett</surname>
<given-names>TJ</given-names>
</string-name>
,
<string-name>
<surname>Lane</surname>
<given-names>JL</given-names>
</string-name>
&
<string-name>
<surname>Paulson</surname>
<given-names>JC</given-names>
</string-name>
(
<year>1983</year>
)
<article-title>Differential sensitivity of human, avian, and equine influenza A viruses to a glycoprotein inhibitor of infection: selection of receptor specific variants</article-title>
.
<source xml:lang="en">Virology</source>
<volume>131</volume>
:
<fpage>394</fpage>
<lpage>408</lpage>
.
<pub-id pub-id-type="pmid">6197808</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0245">
<mixed-citation publication-type="journal" id="fmr12052-cit-0245">
<string-name>
<surname>Rogers</surname>
<given-names>GN</given-names>
</string-name>
,
<string-name>
<surname>Herrler</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Paulson</surname>
<given-names>JC</given-names>
</string-name>
&
<string-name>
<surname>Klenk</surname>
<given-names>HD</given-names>
</string-name>
(
<year>1986</year>
)
<article-title>Influenza C virus uses 9‐O‐acetyl‐N‐acetylneuraminic acid as a high affinity receptor determinant for attachment to cells</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<volume>261</volume>
:
<fpage>5947</fpage>
<lpage>5951</lpage>
.
<pub-id pub-id-type="pmid">3700379</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0246">
<mixed-citation publication-type="journal" id="fmr12052-cit-0246">
<string-name>
<surname>Rosenthal</surname>
<given-names>PB</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Formanowski</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Fitz</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Wong</surname>
<given-names>CH</given-names>
</string-name>
,
<string-name>
<surname>Meier‐Ewert</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Skehel</surname>
<given-names>JJ</given-names>
</string-name>
&
<string-name>
<surname>Wiley</surname>
<given-names>DC</given-names>
</string-name>
(
<year>1998</year>
)
<article-title>Structure of the haemagglutinin‐esterase‐fusion glycoprotein of influenza C virus</article-title>
.
<source xml:lang="en">Nature</source>
<volume>396</volume>
:
<fpage>92</fpage>
<lpage>96</lpage>
.
<pub-id pub-id-type="pmid">9817207</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0247">
<mixed-citation publication-type="journal" id="fmr12052-cit-0247">
<string-name>
<surname>Roth</surname>
<given-names>J</given-names>
</string-name>
(
<year>1996</year>
)
<article-title>Protein glycosylation in the endoplasmic reticulum and the Golgi apparatus and cell type‐specificity of cell surface glycoconjugate expression: analysis by the protein A‐gold and lectin‐gold techniques</article-title>
.
<source xml:lang="en">Histochem Cell Biol</source>
<volume>106</volume>
:
<fpage>79</fpage>
<lpage>92</lpage>
.
<pub-id pub-id-type="pmid">8858368</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0248">
<mixed-citation publication-type="journal" id="fmr12052-cit-0248">
<string-name>
<surname>Ruvoen‐Clouet</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Ganiere</surname>
<given-names>JP</given-names>
</string-name>
,
<string-name>
<surname>Andre‐Fontaine</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Blanchard</surname>
<given-names>D</given-names>
</string-name>
&
<string-name>
<surname>Le Pendu</surname>
<given-names>J</given-names>
</string-name>
(
<year>2000</year>
)
<article-title>Binding of rabbit hemorrhagic disease virus to antigens of the ABH histo‐blood group family</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>74</volume>
:
<fpage>11950</fpage>
<lpage>11954</lpage>
.
<pub-id pub-id-type="pmid">11090195</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0249">
<mixed-citation publication-type="journal" id="fmr12052-cit-0249">
<string-name>
<surname>Ryan‐Poirier</surname>
<given-names>KA</given-names>
</string-name>
&
<string-name>
<surname>Kawaoka</surname>
<given-names>Y</given-names>
</string-name>
(
<year>1991</year>
)
<article-title>Distinct glycoprotein inhibitors of influenza A virus in different animal sera</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>65</volume>
:
<fpage>389</fpage>
<lpage>395</lpage>
.
<pub-id pub-id-type="pmid">1702161</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0250">
<mixed-citation publication-type="journal" id="fmr12052-cit-0250">
<string-name>
<surname>Ryan‐Poirier</surname>
<given-names>KA</given-names>
</string-name>
&
<string-name>
<surname>Kawaoka</surname>
<given-names>Y</given-names>
</string-name>
(
<year>1993</year>
)
<article-title>Alpha 2‐macroglobulin is the major neutralizing inhibitor of influenza A virus in pig serum</article-title>
.
<source xml:lang="en">Virology</source>
<volume>193</volume>
:
<fpage>974</fpage>
<lpage>976</lpage>
.
<pub-id pub-id-type="pmid">7681613</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0251">
<mixed-citation publication-type="journal" id="fmr12052-cit-0251">
<string-name>
<surname>Sa‐Carvalho</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Rieder</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Baxt</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Rodarte</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Tanuri</surname>
<given-names>A</given-names>
</string-name>
&
<string-name>
<surname>Mason</surname>
<given-names>PW</given-names>
</string-name>
(
<year>1997</year>
)
<article-title>Tissue culture adaptation of foot‐and‐mouth disease virus selects viruses that bind to heparin and are attenuated in cattle</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>71</volume>
:
<fpage>5115</fpage>
<lpage>5123</lpage>
.
<pub-id pub-id-type="pmid">9188578</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0252">
<mixed-citation publication-type="journal" id="fmr12052-cit-0252">
<string-name>
<surname>Sakuntabhai</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Turbpaiboon</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Casademont</surname>
<given-names>I</given-names>
</string-name>
<italic>et al</italic>
(
<year>2005</year>
)
<article-title>A variant in the CD209 promoter is associated with severity of dengue disease</article-title>
.
<source xml:lang="en">Nat Genet</source>
<volume>37</volume>
:
<fpage>507</fpage>
<lpage>513</lpage>
.
<pub-id pub-id-type="pmid">15838506</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0253">
<mixed-citation publication-type="journal" id="fmr12052-cit-0253">
<string-name>
<surname>Sancho</surname>
<given-names>D</given-names>
</string-name>
&
<string-name>
<surname>Reis e Sousa</surname>
,
<given-names>C</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>Signaling by myeloid C‐type lectin receptors in immunity and homeostasis</article-title>
.
<source xml:lang="en">Annu Rev Immunol</source>
<volume>30</volume>
:
<fpage>491</fpage>
<lpage>529</lpage>
.
<pub-id pub-id-type="pmid">22224766</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0254">
<mixed-citation publication-type="journal" id="fmr12052-cit-0254">
<string-name>
<surname>Sano</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Nagai</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Tsutsumi</surname>
<given-names>H</given-names>
</string-name>
&
<string-name>
<surname>Kuroki</surname>
<given-names>Y</given-names>
</string-name>
(
<year>2003</year>
)
<article-title>Lactoferrin and surfactant protein A exhibit distinct binding specificity to F protein and differently modulate respiratory syncytial virus infection</article-title>
.
<source xml:lang="en">Eur J Immunol</source>
<volume>33</volume>
:
<fpage>2894</fpage>
<lpage>2902</lpage>
.
<pub-id pub-id-type="pmid">14515273</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0255">
<mixed-citation publication-type="journal" id="fmr12052-cit-0255">
<string-name>
<surname>Sato</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>St‐Pierre</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Bhaumik</surname>
<given-names>P</given-names>
</string-name>
&
<string-name>
<surname>Nieminen</surname>
<given-names>J</given-names>
</string-name>
(
<year>2009</year>
)
<article-title>Galectins in innate immunity: dual functions of host soluble beta‐galactoside‐binding lectins as damage‐associated molecular patterns (DAMPs) and as receptors for pathogen‐associated molecular patterns (PAMPs)</article-title>
.
<source xml:lang="en">Immunol Rev</source>
<volume>230</volume>
:
<fpage>172</fpage>
<lpage>187</lpage>
.
<pub-id pub-id-type="pmid">19594636</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0256">
<mixed-citation publication-type="journal" id="fmr12052-cit-0256">
<string-name>
<surname>Sato</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Ouellet</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>St‐Pierre</surname>
<given-names>C</given-names>
</string-name>
&
<string-name>
<surname>Tremblay</surname>
<given-names>MJ</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>Glycans, galectins, and HIV‐1 infection</article-title>
.
<source xml:lang="en">Ann NY Acad Sci</source>
<volume>1253</volume>
:
<fpage>133</fpage>
<lpage>148</lpage>
.
<pub-id pub-id-type="pmid">22524424</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0257">
<mixed-citation publication-type="journal" id="fmr12052-cit-0257">
<string-name>
<surname>Sattin</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Daghetti</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Thepaut</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Berzi</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Sanchez‐Navarro</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Tabarani</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Rojo</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Fieschi</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Clerici</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Bernardi</surname>
<given-names>A</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>Inhibition of DC‐SIGN‐mediated HIV infection by a linear trimannoside mimic in a tetravalent presentation</article-title>
.
<source xml:lang="en">ACS Chem Biol</source>
<volume>5</volume>
:
<fpage>301</fpage>
<lpage>312</lpage>
.
<pub-id pub-id-type="pmid">20085340</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0258">
<mixed-citation publication-type="journal" id="fmr12052-cit-0258">
<string-name>
<surname>Scanlan</surname>
<given-names>CN</given-names>
</string-name>
,
<string-name>
<surname>Offer</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Zitzmann</surname>
<given-names>N</given-names>
</string-name>
&
<string-name>
<surname>Dwek</surname>
<given-names>RA</given-names>
</string-name>
(
<year>2007</year>
)
<article-title>Exploiting the defensive sugars of HIV‐1 for drug and vaccine design</article-title>
.
<source xml:lang="en">Nature</source>
<volume>446</volume>
:
<fpage>1038</fpage>
<lpage>1045</lpage>
.
<pub-id pub-id-type="pmid">17460665</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0259">
<mixed-citation publication-type="journal" id="fmr12052-cit-0259">
<string-name>
<surname>Schauer</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Reuter</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Stoll</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Posadas del Rio</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Herrler</surname>
<given-names>G</given-names>
</string-name>
&
<string-name>
<surname>Klenk</surname>
<given-names>HD</given-names>
</string-name>
(
<year>1988</year>
)
<article-title>Isolation and characterization of sialate 9(4)‐O‐acetylesterase from influenza C virus</article-title>
.
<source xml:lang="en">Bio Chem Hoppe‐Seyler</source>
<volume>369</volume>
:
<fpage>1121</fpage>
<lpage>1130</lpage>
.
<pub-id pub-id-type="pmid">3242542</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0260">
<mixed-citation publication-type="journal" id="fmr12052-cit-0260">
<string-name>
<surname>Schultze</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Gross</surname>
<given-names>HJ</given-names>
</string-name>
,
<string-name>
<surname>Brossmer</surname>
<given-names>R</given-names>
</string-name>
&
<string-name>
<surname>Herrler</surname>
<given-names>G</given-names>
</string-name>
(
<year>1991</year>
)
<article-title>The S protein of bovine coronavirus is a hemagglutinin recognizing 9‐O‐acetylated sialic acid as a receptor determinant</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>65</volume>
:
<fpage>6232</fpage>
<lpage>6237</lpage>
.
<pub-id pub-id-type="pmid">1920630</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0261">
<mixed-citation publication-type="journal" id="fmr12052-cit-0261">
<string-name>
<surname>Schultze</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Krempl</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Ballesteros</surname>
<given-names>ML</given-names>
</string-name>
,
<string-name>
<surname>Shaw</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Schauer</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Enjuanes</surname>
<given-names>L</given-names>
</string-name>
&
<string-name>
<surname>Herrler</surname>
<given-names>G</given-names>
</string-name>
(
<year>1996</year>
)
<article-title>Transmissible gastroenteritis coronavirus, but not the related porcine respiratory coronavirus, has a sialic acid (N‐glycolylneuraminic acid) binding activity</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>70</volume>
:
<fpage>5634</fpage>
<lpage>5637</lpage>
.
<pub-id pub-id-type="pmid">8764078</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0262">
<mixed-citation publication-type="journal" id="fmr12052-cit-0262">
<string-name>
<surname>Schwarz</surname>
<given-names>F</given-names>
</string-name>
&
<string-name>
<surname>Aebi</surname>
<given-names>M</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>Mechanisms and principles of N‐linked protein glycosylation</article-title>
.
<source xml:lang="en">Curr Opin Struct Biol</source>
<volume>21</volume>
:
<fpage>576</fpage>
<lpage>582</lpage>
.
<pub-id pub-id-type="pmid">21978957</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0263">
<mixed-citation publication-type="journal" id="fmr12052-cit-0263">
<string-name>
<surname>Schwegmann‐Wessels</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Bauer</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Winter</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Enjuanes</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Laude</surname>
<given-names>H</given-names>
</string-name>
&
<string-name>
<surname>Herrler</surname>
<given-names>G</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>The sialic acid binding activity of the S protein facilitates infection by porcine transmissible gastroenteritis coronavirus</article-title>
.
<source xml:lang="en">Virol J</source>
<volume>8</volume>
:
<fpage>435</fpage>
.
<pub-id pub-id-type="pmid">21910859</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0264">
<mixed-citation publication-type="journal" id="fmr12052-cit-0264">
<string-name>
<surname>Selvaraj</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Alagarasu</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Swaminathan</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Harishankar</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Narendran</surname>
<given-names>G</given-names>
</string-name>
(
<year>2009</year>
)
<article-title>CD209 gene polymorphisms in South Indian HIV and HIV‐TB patients</article-title>
.
<source xml:lang="en">Infect Genet Evol</source>
<volume>9</volume>
:
<fpage>256</fpage>
<lpage>262</lpage>
.
<pub-id pub-id-type="pmid">19126442</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0265">
<mixed-citation publication-type="journal" id="fmr12052-cit-0265">
<string-name>
<surname>Serrano‐Gomez</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Sierra‐Filardi</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Martinez‐Nunez</surname>
<given-names>RT</given-names>
</string-name>
,
<string-name>
<surname>Caparros</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Delgado</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Munoz‐Fernandez</surname>
<given-names>MA</given-names>
</string-name>
,
<string-name>
<surname>Abad</surname>
<given-names>MA</given-names>
</string-name>
,
<string-name>
<surname>Jimenez‐Barbero</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Leal</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Corbi</surname>
<given-names>AL</given-names>
</string-name>
(
<year>2008</year>
)
<article-title>Structural requirements for multimerization of the pathogen receptor dendritic cell‐specific ICAM3‐grabbing non‐integrin (CD209) on the cell surface</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<volume>283</volume>
:
<fpage>3889</fpage>
<lpage>3903</lpage>
.
<pub-id pub-id-type="pmid">18073208</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0266">
<mixed-citation publication-type="journal" id="fmr12052-cit-0266">
<string-name>
<surname>Sewell</surname>
<given-names>AK</given-names>
</string-name>
&
<string-name>
<surname>Price</surname>
<given-names>DA</given-names>
</string-name>
(
<year>2001</year>
)
<article-title>Dendritic cells and transmission of HIV‐1</article-title>
.
<source xml:lang="en">Trends Immunol</source>
<volume>22</volume>
:
<fpage>173</fpage>
<lpage>175</lpage>
.
<pub-id pub-id-type="pmid">11274909</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0267">
<mixed-citation publication-type="journal" id="fmr12052-cit-0267">
<string-name>
<surname>Shirato</surname>
<given-names>H</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>Norovirus and histo‐blood group antigens</article-title>
.
<source xml:lang="en">Jpn J Infect Dis</source>
<volume>64</volume>
:
<fpage>95</fpage>
<lpage>103</lpage>
.
<pub-id pub-id-type="pmid">21519121</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0268">
<mixed-citation publication-type="journal" id="fmr12052-cit-0268">
<string-name>
<surname>Skehel</surname>
<given-names>JJ</given-names>
</string-name>
&
<string-name>
<surname>Wiley</surname>
<given-names>DC</given-names>
</string-name>
(
<year>2000</year>
)
<article-title>Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin</article-title>
.
<source xml:lang="en">Annu Rev Biochem</source>
<volume>69</volume>
:
<fpage>531</fpage>
<lpage>569</lpage>
.
<pub-id pub-id-type="pmid">10966468</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0269">
<mixed-citation publication-type="journal" id="fmr12052-cit-0269">
<string-name>
<surname>Soilleux</surname>
<given-names>EJ</given-names>
</string-name>
,
<string-name>
<surname>Morris</surname>
<given-names>LS</given-names>
</string-name>
,
<string-name>
<surname>Leslie</surname>
<given-names>G</given-names>
</string-name>
<italic>et al</italic>
(
<year>2002</year>
)
<article-title>Constitutive and induced expression of DC‐SIGN on dendritic cell and macrophage subpopulations
<italic>in situ</italic>
and
<italic>in vitro</italic>
</article-title>
.
<source xml:lang="en">J Leukoc Biol</source>
<volume>71</volume>
:
<fpage>445</fpage>
<lpage>457</lpage>
.
<pub-id pub-id-type="pmid">11867682</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0270">
<mixed-citation publication-type="journal" id="fmr12052-cit-0270">
<string-name>
<surname>St‐Pierre</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Manya</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Ouellet</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Clark</surname>
<given-names>GF</given-names>
</string-name>
,
<string-name>
<surname>Endo</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Tremblay</surname>
<given-names>MJ</given-names>
</string-name>
&
<string-name>
<surname>Sato</surname>
<given-names>S</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>Host‐soluble galectin‐1 promotes HIV‐1 replication through a direct interaction with glycans of viral gp120 and host CD4</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>85</volume>
:
<fpage>11742</fpage>
<lpage>11751</lpage>
.
<pub-id pub-id-type="pmid">21880749</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0271">
<mixed-citation publication-type="journal" id="fmr12052-cit-0271">
<string-name>
<surname>Stuart</surname>
<given-names>AD</given-names>
</string-name>
&
<string-name>
<surname>Brown</surname>
<given-names>TD</given-names>
</string-name>
(
<year>2007</year>
)
<article-title>Alpha2,6‐linked sialic acid acts as a receptor for
<italic>Feline calicivirus</italic>
</article-title>
.
<source xml:lang="en">J Gen Virol</source>
<volume>88</volume>
:
<fpage>177</fpage>
<lpage>186</lpage>
.
<pub-id pub-id-type="pmid">17170450</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0272">
<mixed-citation publication-type="journal" id="fmr12052-cit-0272">
<string-name>
<surname>Su</surname>
<given-names>SV</given-names>
</string-name>
,
<string-name>
<surname>Hong</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Baik</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Negrete</surname>
<given-names>OA</given-names>
</string-name>
,
<string-name>
<surname>Gurney</surname>
<given-names>KB</given-names>
</string-name>
&
<string-name>
<surname>Lee</surname>
<given-names>B</given-names>
</string-name>
(
<year>2004</year>
)
<article-title>DC‐SIGN binds to HIV‐1 glycoprotein 120 in a distinct but overlapping fashion compared with ICAM‐2 and ICAM‐3</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<volume>279</volume>
:
<fpage>19122</fpage>
<lpage>19132</lpage>
.
<pub-id pub-id-type="pmid">14970226</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0273">
<mixed-citation publication-type="journal" id="fmr12052-cit-0273">
<string-name>
<surname>Sujino</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Jackson</surname>
<given-names>RJ</given-names>
</string-name>
,
<string-name>
<surname>Chan</surname>
<given-names>NW</given-names>
</string-name>
,
<string-name>
<surname>Tsuji</surname>
<given-names>S</given-names>
</string-name>
&
<string-name>
<surname>Palcic</surname>
<given-names>MM</given-names>
</string-name>
(
<year>2000</year>
)
<article-title>A novel viral alpha2,3‐sialyltransferase (v‐ST3Gal I): transfer of sialic acid to fucosylated acceptors</article-title>
.
<source xml:lang="en">Glycobiology</source>
<volume>10</volume>
:
<fpage>313</fpage>
<lpage>320</lpage>
.
<pub-id pub-id-type="pmid">10704530</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0274">
<mixed-citation publication-type="journal" id="fmr12052-cit-0274">
<string-name>
<surname>Summerford</surname>
<given-names>C</given-names>
</string-name>
&
<string-name>
<surname>Samulski</surname>
<given-names>RJ</given-names>
</string-name>
(
<year>1998</year>
)
<article-title>Membrane‐associated heparan sulfate proteoglycan is a receptor for adeno‐associated virus type 2 virions</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>72</volume>
:
<fpage>1438</fpage>
<lpage>1445</lpage>
.
<pub-id pub-id-type="pmid">9445046</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0275">
<mixed-citation publication-type="journal" id="fmr12052-cit-0275">
<string-name>
<surname>Sun</surname>
<given-names>XJ</given-names>
</string-name>
,
<string-name>
<surname>Jayaraman</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Maniprasad</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Raman</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Houser</surname>
<given-names>KV</given-names>
</string-name>
,
<string-name>
<surname>Pappas</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Zeng</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Sasisekharan</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Katz</surname>
<given-names>JM</given-names>
</string-name>
&
<string-name>
<surname>Tumpey</surname>
<given-names>TM</given-names>
</string-name>
(
<year>2013</year>
)
<article-title>N‐linked glycosylation of the hemagglutinin protein influences virulence and antigenicity of the 1918 pandemic and seasonal H1N1 influenza A viruses</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>87</volume>
:
<fpage>8756</fpage>
<lpage>8766</lpage>
.
<pub-id pub-id-type="pmid">23740978</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0276">
<mixed-citation publication-type="journal" id="fmr12052-cit-0276">
<string-name>
<surname>Suzuki</surname>
<given-names>Y</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>Sialobiology of influenza: molecular mechanism of host range variation of influenza viruses</article-title>
.
<source xml:lang="en">Biol Pharm Bull</source>
<volume>28</volume>
:
<fpage>399</fpage>
<lpage>408</lpage>
.
<pub-id pub-id-type="pmid">15744059</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0277">
<mixed-citation publication-type="journal" id="fmr12052-cit-0277">
<string-name>
<surname>Suzuki</surname>
<given-names>Y</given-names>
</string-name>
&
<string-name>
<surname>Nei</surname>
<given-names>M</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>Origin and evolution of influenza virus hemagglutinin genes</article-title>
.
<source xml:lang="en">Mol Biol Evol</source>
<volume>19</volume>
:
<fpage>501</fpage>
<lpage>509</lpage>
.
<pub-id pub-id-type="pmid">11919291</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0278">
<mixed-citation publication-type="journal" id="fmr12052-cit-0278">
<string-name>
<surname>Suzuki</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Tsukimoto</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Kobayashi</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Yamada</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Kawaoka</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Webster</surname>
<given-names>RG</given-names>
</string-name>
&
<string-name>
<surname>Suzuki</surname>
<given-names>Y</given-names>
</string-name>
(
<year>1994</year>
)
<article-title>Sialoglycoproteins that bind influenza A virus and resist viral neuraminidase in different animal sera</article-title>
.
<source xml:lang="en">J Gen Virol</source>
<volume>75</volume>
(
<issue>Pt 7</issue>
):
<fpage>1769</fpage>
<lpage>1774</lpage>
.
<pub-id pub-id-type="pmid">7517433</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0279">
<mixed-citation publication-type="journal" id="fmr12052-cit-0279">
<string-name>
<surname>Svajger</surname>
<given-names>U</given-names>
</string-name>
,
<string-name>
<surname>Anderluh</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Jeras</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Obermajer</surname>
<given-names>N</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>C‐type lectin DC‐SIGN: an adhesion, signalling and antigen‐uptake molecule that guides dendritic cells in immunity</article-title>
.
<source xml:lang="en">Cell Signal</source>
<volume>22</volume>
:
<fpage>1397</fpage>
<lpage>1405</lpage>
.
<pub-id pub-id-type="pmid">20363321</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0280">
<mixed-citation publication-type="journal" id="fmr12052-cit-0280">
<string-name>
<surname>Tan</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Jiang</surname>
<given-names>X</given-names>
</string-name>
(
<year>2007</year>
)
<article-title>Norovirus‐host interaction: implications for disease control and prevention</article-title>
.
<source xml:lang="en">Expert Rev Mol Med</source>
<volume>9</volume>
:
<fpage>1</fpage>
<lpage>22</lpage>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0281">
<mixed-citation publication-type="journal" id="fmr12052-cit-0281">
<string-name>
<surname>Tate</surname>
<given-names>MD</given-names>
</string-name>
,
<string-name>
<surname>Brooks</surname>
<given-names>AG</given-names>
</string-name>
&
<string-name>
<surname>Reading</surname>
<given-names>PC</given-names>
</string-name>
(
<year>2011a</year>
)
<article-title>Specific sites of N‐linked glycosylation on the hemagglutinin of H1N1 subtype influenza A virus determine sensitivity to inhibitors of the innate immune system and virulence in mice</article-title>
.
<source xml:lang="en">J Immunol</source>
<volume>187</volume>
:
<fpage>1884</fpage>
<lpage>1894</lpage>
.
<pub-id pub-id-type="pmid">21768397</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0282">
<mixed-citation publication-type="journal" id="fmr12052-cit-0282">
<string-name>
<surname>Tate</surname>
<given-names>MD</given-names>
</string-name>
,
<string-name>
<surname>Job</surname>
<given-names>ER</given-names>
</string-name>
,
<string-name>
<surname>Brooks</surname>
<given-names>AG</given-names>
</string-name>
&
<string-name>
<surname>Reading</surname>
<given-names>PC</given-names>
</string-name>
(
<year>2011b</year>
)
<article-title>Glycosylation of the hemagglutinin modulates the sensitivity of H3N2 influenza viruses to innate proteins in airway secretions and virulence in mice</article-title>
.
<source xml:lang="en">Virology</source>
<volume>413</volume>
:
<fpage>84</fpage>
<lpage>92</lpage>
.
<pub-id pub-id-type="pmid">21353279</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0283">
<mixed-citation publication-type="journal" id="fmr12052-cit-0283">
<string-name>
<surname>Taube</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Perry</surname>
<given-names>JW</given-names>
</string-name>
,
<string-name>
<surname>Yetming</surname>
<given-names>K</given-names>
</string-name>
<italic>et al</italic>
(
<year>2009</year>
)
<article-title>Ganglioside‐linked terminal sialic acid moieties on murine macrophages function as attachment receptors for murine noroviruses</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>83</volume>
:
<fpage>4092</fpage>
<lpage>4101</lpage>
.
<pub-id pub-id-type="pmid">19244326</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0284">
<mixed-citation publication-type="journal" id="fmr12052-cit-0284">
<string-name>
<surname>Taube</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Jiang</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Wobus</surname>
<given-names>CE</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>Glycosphingolipids as receptors for non‐enveloped viruses</article-title>
.
<source xml:lang="en">Viruses</source>
<volume>2</volume>
:
<fpage>1011</fpage>
<lpage>1049</lpage>
.
<pub-id pub-id-type="pmid">21994669</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0285">
<mixed-citation publication-type="journal" id="fmr12052-cit-0285">
<string-name>
<surname>Taube</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Perry</surname>
<given-names>JW</given-names>
</string-name>
,
<string-name>
<surname>McGreevy</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Yetming</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Perkins</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Henderson</surname>
<given-names>K</given-names>
</string-name>
&
<string-name>
<surname>Wobus</surname>
<given-names>CE</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>Murine noroviruses bind glycolipid and glycoprotein attachment receptors in a strain‐dependent manner</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>86</volume>
:
<fpage>5584</fpage>
<lpage>5593</lpage>
.
<pub-id pub-id-type="pmid">22438544</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0286">
<mixed-citation publication-type="book" id="fmr12052-cit-0286">
<string-name>
<surname>Taylor</surname>
<given-names>ME</given-names>
</string-name>
&
<string-name>
<surname>Drickamer</surname>
<given-names>K</given-names>
</string-name>
(
<year>2011</year>
)
<source xml:lang="en">Introduction to Glycobiology</source>
.
<publisher-name>Oxford University Press</publisher-name>
,
<publisher-loc>Oxford</publisher-loc>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0287">
<mixed-citation publication-type="journal" id="fmr12052-cit-0287">
<string-name>
<surname>Triana‐Baltzer</surname>
<given-names>GB</given-names>
</string-name>
,
<string-name>
<surname>Gubareva</surname>
<given-names>LV</given-names>
</string-name>
,
<string-name>
<surname>Klimov</surname>
<given-names>AI</given-names>
</string-name>
,
<string-name>
<surname>Wurtman</surname>
<given-names>DF</given-names>
</string-name>
,
<string-name>
<surname>Moss</surname>
<given-names>RB</given-names>
</string-name>
,
<string-name>
<surname>Hedlund</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Larson</surname>
<given-names>JL</given-names>
</string-name>
,
<string-name>
<surname>Belshe</surname>
<given-names>RB</given-names>
</string-name>
&
<string-name>
<surname>Fang</surname>
<given-names>F</given-names>
</string-name>
(
<year>2009a</year>
)
<article-title>Inhibition of neuraminidase inhibitor‐resistant influenza virus by DAS181, a novel sialidase fusion protein</article-title>
.
<source xml:lang="en">PLoS One</source>
<volume>4</volume>
:
<fpage>e7838</fpage>
.
<pub-id pub-id-type="pmid">19893749</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0288">
<mixed-citation publication-type="journal" id="fmr12052-cit-0288">
<string-name>
<surname>Triana‐Baltzer</surname>
<given-names>GB</given-names>
</string-name>
,
<string-name>
<surname>Gubareva</surname>
<given-names>LV</given-names>
</string-name>
,
<string-name>
<surname>Nicholls</surname>
<given-names>JM</given-names>
</string-name>
<italic>et al</italic>
(
<year>2009b</year>
)
<article-title>Novel pandemic influenza A(H1N1) viruses are potently inhibited by DAS181, a sialidase fusion protein</article-title>
.
<source xml:lang="en">PLoS One</source>
<volume>4</volume>
:
<fpage>e7788</fpage>
.
<pub-id pub-id-type="pmid">19893747</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0289">
<mixed-citation publication-type="journal" id="fmr12052-cit-0289">
<string-name>
<surname>Triana‐Baltzer</surname>
<given-names>GB</given-names>
</string-name>
,
<string-name>
<surname>Babizki</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Chan</surname>
<given-names>MC</given-names>
</string-name>
<italic>et al</italic>
(
<year>2010</year>
)
<article-title>DAS181, a sialidase fusion protein, protects human airway epithelium against influenza virus infection: an
<italic>in vitro</italic>
pharmacodynamic analysis</article-title>
.
<source xml:lang="en">J Antimicrob Chemother</source>
<volume>65</volume>
:
<fpage>275</fpage>
<lpage>284</lpage>
.
<pub-id pub-id-type="pmid">19942616</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0290">
<mixed-citation publication-type="journal" id="fmr12052-cit-0290">
<string-name>
<surname>Triana‐Baltzer</surname>
<given-names>GB</given-names>
</string-name>
,
<string-name>
<surname>Sanders</surname>
<given-names>RL</given-names>
</string-name>
,
<string-name>
<surname>Hedlund</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Jensen</surname>
<given-names>KA</given-names>
</string-name>
,
<string-name>
<surname>Aschenbrenner</surname>
<given-names>LM</given-names>
</string-name>
,
<string-name>
<surname>Larson</surname>
<given-names>JL</given-names>
</string-name>
&
<string-name>
<surname>Fang</surname>
<given-names>F</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>Phenotypic and genotypic characterization of influenza virus mutants selected with the sialidase fusion protein DAS181</article-title>
.
<source xml:lang="en">J Antimicrob Chemother</source>
<volume>66</volume>
:
<fpage>15</fpage>
<lpage>28</lpage>
.
<pub-id pub-id-type="pmid">21097900</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0291">
<mixed-citation publication-type="journal" id="fmr12052-cit-0291">
<string-name>
<surname>Trybala</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Roth</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Johansson</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Liljeqvist</surname>
<given-names>JA</given-names>
</string-name>
,
<string-name>
<surname>Rekabdar</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Larm</surname>
<given-names>O</given-names>
</string-name>
&
<string-name>
<surname>Bergstrom</surname>
<given-names>T</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>Glycosaminoglycan‐binding ability is a feature of wild‐type strains of herpes simplex virus type 1</article-title>
.
<source xml:lang="en">Virology</source>
<volume>302</volume>
:
<fpage>413</fpage>
<lpage>419</lpage>
.
<pub-id pub-id-type="pmid">12441085</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0292">
<mixed-citation publication-type="journal" id="fmr12052-cit-0292">
<string-name>
<surname>Tsegaye</surname>
<given-names>TS</given-names>
</string-name>
&
<string-name>
<surname>Pohlmann</surname>
<given-names>S</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>The multiple facets of HIV attachment to dendritic cell lectins</article-title>
.
<source xml:lang="en">Cell Microbiol</source>
<volume>12</volume>
:
<fpage>1553</fpage>
<lpage>1561</lpage>
.
<pub-id pub-id-type="pmid">20854332</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0293">
<mixed-citation publication-type="journal" id="fmr12052-cit-0293">
<string-name>
<surname>Tsegaye</surname>
<given-names>TS</given-names>
</string-name>
,
<string-name>
<surname>Gnirss</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Rahe‐Meyer</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Kiene</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Kramer‐Kuhl</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Behrens</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Munch</surname>
<given-names>J</given-names>
</string-name>
&
<string-name>
<surname>Pohlmann</surname>
<given-names>S</given-names>
</string-name>
(
<year>2013</year>
)
<article-title>Platelet activation suppresses HIV‐1 infection of T cells</article-title>
.
<source xml:lang="en">Retrovirology</source>
<volume>10</volume>
:
<fpage>48</fpage>
.
<pub-id pub-id-type="pmid">23634812</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0294">
<mixed-citation publication-type="journal" id="fmr12052-cit-0294">
<string-name>
<surname>Tsuchiya</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Sugawara</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Hongo</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Matsuzaki</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Muraki</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>ZN</given-names>
</string-name>
&
<string-name>
<surname>Nakamura</surname>
<given-names>K</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>Effect of addition of new oligosaccharide chains to the globular head of influenza A/H2N2 virus haemagglutinin on the intracellular transport and biological activities of the molecule</article-title>
.
<source xml:lang="en">J Gen Virol</source>
<volume>83</volume>
:
<fpage>1137</fpage>
<lpage>1146</lpage>
.
<pub-id pub-id-type="pmid">11961269</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0295">
<mixed-citation publication-type="journal" id="fmr12052-cit-0295">
<string-name>
<surname>Turville</surname>
<given-names>SG</given-names>
</string-name>
,
<string-name>
<surname>Cameron</surname>
<given-names>PU</given-names>
</string-name>
,
<string-name>
<surname>Handley</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Lin</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Pohlmann</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Doms</surname>
<given-names>RW</given-names>
</string-name>
&
<string-name>
<surname>Cunningham</surname>
<given-names>AL</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>Diversity of receptors binding HIV on dendritic cell subsets</article-title>
.
<source xml:lang="en">Nat Immunol</source>
<volume>3</volume>
:
<fpage>975</fpage>
<lpage>983</lpage>
.
<pub-id pub-id-type="pmid">12352970</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0296">
<mixed-citation publication-type="journal" id="fmr12052-cit-0296">
<string-name>
<surname>Turville</surname>
<given-names>SG</given-names>
</string-name>
,
<string-name>
<surname>Santos</surname>
<given-names>JJ</given-names>
</string-name>
,
<string-name>
<surname>Frank</surname>
<given-names>I</given-names>
</string-name>
<italic>et al</italic>
(
<year>2004</year>
)
<article-title>Immunodeficiency virus uptake, turnover, and 2‐phase transfer in human dendritic cells</article-title>
.
<source xml:lang="en">Blood</source>
<volume>103</volume>
:
<fpage>2170</fpage>
<lpage>2179</lpage>
.
<pub-id pub-id-type="pmid">14630806</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0297">
<mixed-citation publication-type="journal" id="fmr12052-cit-0297">
<string-name>
<surname>Van Breedam</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Van Gorp</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>JQ</given-names>
</string-name>
,
<string-name>
<surname>Crocker</surname>
<given-names>PR</given-names>
</string-name>
,
<string-name>
<surname>Delputte</surname>
<given-names>PL</given-names>
</string-name>
&
<string-name>
<surname>Nauwynck</surname>
<given-names>HJ</given-names>
</string-name>
(
<year>2010a</year>
)
<article-title>The M/GP(5) glycoprotein complex of porcine reproductive and respiratory syndrome virus binds the sialoadhesin receptor in a sialic acid‐dependent manner</article-title>
.
<source xml:lang="en">PLoS Pathog</source>
<volume>6</volume>
:
<fpage>e1000730</fpage>
.
<pub-id pub-id-type="pmid">20084110</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0298">
<mixed-citation publication-type="journal" id="fmr12052-cit-0298">
<string-name>
<surname>Van Breedam</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Delputte</surname>
<given-names>PL</given-names>
</string-name>
,
<string-name>
<surname>Van Gorp</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Misinzo</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Vanderheijden</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Duan</surname>
<given-names>X</given-names>
</string-name>
&
<string-name>
<surname>Nauwynck</surname>
<given-names>HJ</given-names>
</string-name>
(
<year>2010b</year>
)
<article-title>Porcine reproductive and respiratory syndrome virus entry into the porcine macrophage</article-title>
.
<source xml:lang="en">J Gen Virol</source>
<volume>91</volume>
:
<fpage>1659</fpage>
<lpage>1667</lpage>
.
<pub-id pub-id-type="pmid">20410315</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0299">
<mixed-citation publication-type="journal" id="fmr12052-cit-0299">
<string-name>
<surname>van de Wetering</surname>
<given-names>JK</given-names>
</string-name>
,
<string-name>
<surname>van Golde</surname>
<given-names>LM</given-names>
</string-name>
&
<string-name>
<surname>Batenburg</surname>
<given-names>JJ</given-names>
</string-name>
(
<year>2004</year>
)
<article-title>Collectins: players of the innate immune system</article-title>
.
<source xml:lang="en">Eur J Biochem</source>
<volume>271</volume>
:
<fpage>1229</fpage>
<lpage>1249</lpage>
.
<pub-id pub-id-type="pmid">15030473</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0300">
<mixed-citation publication-type="journal" id="fmr12052-cit-0300">
<string-name>
<surname>Van den Steen</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Rudd</surname>
<given-names>PM</given-names>
</string-name>
,
<string-name>
<surname>Dwek</surname>
<given-names>RA</given-names>
</string-name>
&
<string-name>
<surname>Opdenakker</surname>
<given-names>G</given-names>
</string-name>
(
<year>1998</year>
)
<article-title>Concepts and principles of O‐linked glycosylation</article-title>
.
<source xml:lang="en">Crit Rev Biochem Mol Biol</source>
<volume>33</volume>
:
<fpage>151</fpage>
<lpage>208</lpage>
.
<pub-id pub-id-type="pmid">9673446</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0301">
<mixed-citation publication-type="journal" id="fmr12052-cit-0301">
<string-name>
<surname>van der Vlist</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Geijtenbeek</surname>
<given-names>TB</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>Langerin functions as an antiviral receptor on Langerhans cells</article-title>
.
<source xml:lang="en">Immunol Cell Biol</source>
<volume>88</volume>
:
<fpage>410</fpage>
<lpage>415</lpage>
.
<pub-id pub-id-type="pmid">20309013</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0302">
<mixed-citation publication-type="journal" id="fmr12052-cit-0302">
<string-name>
<surname>van der Vlist</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>van der Aar</surname>
<given-names>AM</given-names>
</string-name>
,
<string-name>
<surname>Gringhuis</surname>
<given-names>SI</given-names>
</string-name>
&
<string-name>
<surname>Geijtenbeek</surname>
<given-names>TB</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>Innate signaling in HIV‐1 infection of dendritic cells</article-title>
.
<source xml:lang="en">Curr Opin HIV AIDS</source>
<volume>6</volume>
:
<fpage>348</fpage>
<lpage>352</lpage>
.
<pub-id pub-id-type="pmid">21743322</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0303">
<mixed-citation publication-type="journal" id="fmr12052-cit-0303">
<string-name>
<surname>van Eijk</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>van de Lest</surname>
<given-names>CH</given-names>
</string-name>
,
<string-name>
<surname>Batenburg</surname>
<given-names>JJ</given-names>
</string-name>
,
<string-name>
<surname>Vaandrager</surname>
<given-names>AB</given-names>
</string-name>
,
<string-name>
<surname>Meschi</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Hartshorn</surname>
<given-names>KL</given-names>
</string-name>
,
<string-name>
<surname>van Golde</surname>
<given-names>LM</given-names>
</string-name>
&
<string-name>
<surname>Haagsman</surname>
<given-names>HP</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>Porcine surfactant protein D is N‐glycosylated in its carbohydrate recognition domain and is assembled into differently charged oligomers</article-title>
.
<source xml:lang="en">Am J Respir Cell Mol Biol</source>
<volume>26</volume>
:
<fpage>739</fpage>
<lpage>747</lpage>
.
<pub-id pub-id-type="pmid">12034574</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0304">
<mixed-citation publication-type="journal" id="fmr12052-cit-0304">
<string-name>
<surname>van Eijk</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>White</surname>
<given-names>MR</given-names>
</string-name>
,
<string-name>
<surname>Crouch</surname>
<given-names>EC</given-names>
</string-name>
,
<string-name>
<surname>Batenburg</surname>
<given-names>JJ</given-names>
</string-name>
,
<string-name>
<surname>Vaandrager</surname>
<given-names>AB</given-names>
</string-name>
,
<string-name>
<surname>Van Golde</surname>
<given-names>LM</given-names>
</string-name>
,
<string-name>
<surname>Haagsman</surname>
<given-names>HP</given-names>
</string-name>
&
<string-name>
<surname>Hartshorn</surname>
<given-names>KL</given-names>
</string-name>
(
<year>2003</year>
)
<article-title>Porcine pulmonary collectins show distinct interactions with influenza A viruses: role of the N‐linked oligosaccharides in the carbohydrate recognition domain</article-title>
.
<source xml:lang="en">J Immunol</source>
<volume>171</volume>
:
<fpage>1431</fpage>
<lpage>1440</lpage>
.
<pub-id pub-id-type="pmid">12874235</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0305">
<mixed-citation publication-type="journal" id="fmr12052-cit-0305">
<string-name>
<surname>van Eijk</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>White</surname>
<given-names>MR</given-names>
</string-name>
,
<string-name>
<surname>Batenburg</surname>
<given-names>JJ</given-names>
</string-name>
,
<string-name>
<surname>Vaandrager</surname>
<given-names>AB</given-names>
</string-name>
,
<string-name>
<surname>van Golde</surname>
<given-names>LM</given-names>
</string-name>
,
<string-name>
<surname>Haagsman</surname>
<given-names>HP</given-names>
</string-name>
&
<string-name>
<surname>Hartshorn</surname>
<given-names>KL</given-names>
</string-name>
(
<year>2004</year>
)
<article-title>Interactions of influenza A virus with sialic acids present on porcine surfactant protein D</article-title>
.
<source xml:lang="en">Am J Respir Cell Mol Biol</source>
<volume>30</volume>
:
<fpage>871</fpage>
<lpage>879</lpage>
.
<pub-id pub-id-type="pmid">14672916</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0306">
<mixed-citation publication-type="journal" id="fmr12052-cit-0306">
<string-name>
<surname>van Kooyk</surname>
<given-names>Y</given-names>
</string-name>
&
<string-name>
<surname>Rabinovich</surname>
<given-names>GA</given-names>
</string-name>
(
<year>2008</year>
)
<article-title>Protein‐glycan interactions in the control of innate and adaptive immune responses</article-title>
.
<source xml:lang="en">Nat Immunol</source>
<volume>9</volume>
:
<fpage>593</fpage>
<lpage>601</lpage>
.
<pub-id pub-id-type="pmid">18490910</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0307">
<mixed-citation publication-type="journal" id="fmr12052-cit-0307">
<string-name>
<surname>van Liempt</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Bank</surname>
<given-names>CM</given-names>
</string-name>
,
<string-name>
<surname>Mehta</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Garcia‐Vallejo</surname>
<given-names>JJ</given-names>
</string-name>
,
<string-name>
<surname>Kawar</surname>
<given-names>ZS</given-names>
</string-name>
,
<string-name>
<surname>Geyer</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Alvarez</surname>
<given-names>RA</given-names>
</string-name>
,
<string-name>
<surname>Cummings</surname>
<given-names>RD</given-names>
</string-name>
,
<string-name>
<surname>Kooyk</surname>
<given-names>Y</given-names>
</string-name>
&
<string-name>
<surname>van Die</surname>
<given-names>I</given-names>
</string-name>
(
<year>2006</year>
)
<article-title>Specificity of DC‐SIGN for mannose‐ and fucose‐containing glycans</article-title>
.
<source xml:lang="en">FEBS Lett</source>
<volume>580</volume>
:
<fpage>6123</fpage>
<lpage>6131</lpage>
.
<pub-id pub-id-type="pmid">17055489</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0308">
<mixed-citation publication-type="journal" id="fmr12052-cit-0308">
<string-name>
<surname>Vanderheijden</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Delputte</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Nauwynck</surname>
<given-names>H</given-names>
</string-name>
&
<string-name>
<surname>Pensaert</surname>
<given-names>M</given-names>
</string-name>
(
<year>2001</year>
)
<article-title>Effects of heparin on the entry of porcine reproductive and respiratory syndrome virus into alveolar macrophages</article-title>
.
<source xml:lang="en">Adv Exp Med Biol</source>
<volume>494</volume>
:
<fpage>683</fpage>
<lpage>689</lpage>
.
<pub-id pub-id-type="pmid">11774545</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0309">
<mixed-citation publication-type="journal" id="fmr12052-cit-0309">
<string-name>
<surname>Vanderplasschen</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Markine‐Goriaynoff</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Lomonte</surname>
<given-names>P</given-names>
</string-name>
<italic>et al</italic>
(
<year>2000</year>
)
<article-title>A multipotential beta‐1,6‐N‐acetylglucosaminyl‐transferase is encoded by bovine herpesvirus type 4</article-title>
.
<source xml:lang="en">P Natl Acad Sci USA</source>
<volume>97</volume>
:
<fpage>5756</fpage>
<lpage>5761</lpage>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0310">
<mixed-citation publication-type="book" id="fmr12052-cit-0310">
<string-name>
<surname>Varki</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Cummings</surname>
<given-names>RD</given-names>
</string-name>
,
<string-name>
<surname>Esko</surname>
<given-names>JD</given-names>
</string-name>
,
<string-name>
<surname>Freeze</surname>
<given-names>HH</given-names>
</string-name>
,
<string-name>
<surname>Stanley</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Bertozzi</surname>
<given-names>CR</given-names>
</string-name>
,
<string-name>
<surname>Hart</surname>
<given-names>GW</given-names>
</string-name>
&
<string-name>
<surname>Etzler</surname>
<given-names>ME</given-names>
</string-name>
(
<year>2009</year>
)
<source xml:lang="en">Essentials of Glycobiology</source>
.
<publisher-name>Cold Spring Harbor Laboratory Press</publisher-name>
,
<publisher-loc>Cold Spring Harbor</publisher-loc>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0311">
<mixed-citation publication-type="journal" id="fmr12052-cit-0311">
<string-name>
<surname>Veldhuizen</surname>
<given-names>EJ</given-names>
</string-name>
,
<string-name>
<surname>van Eijk</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Haagsman</surname>
<given-names>HP</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>The carbohydrate recognition domain of collectins</article-title>
.
<source xml:lang="en">FEBS J</source>
<volume>278</volume>
:
<fpage>3930</fpage>
<lpage>3941</lpage>
.
<pub-id pub-id-type="pmid">21651725</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0312">
<mixed-citation publication-type="journal" id="fmr12052-cit-0312">
<string-name>
<surname>Vigerust</surname>
<given-names>DJ</given-names>
</string-name>
,
<string-name>
<surname>Ulett</surname>
<given-names>KB</given-names>
</string-name>
,
<string-name>
<surname>Boyd</surname>
<given-names>KL</given-names>
</string-name>
,
<string-name>
<surname>Madsen</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Hawgood</surname>
<given-names>S</given-names>
</string-name>
&
<string-name>
<surname>McCullers</surname>
<given-names>JA</given-names>
</string-name>
(
<year>2007</year>
)
<article-title>N‐linked glycosylation attenuates H3N2 influenza viruses</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>81</volume>
:
<fpage>8593</fpage>
<lpage>8600</lpage>
.
<pub-id pub-id-type="pmid">17553891</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0313">
<mixed-citation publication-type="journal" id="fmr12052-cit-0313">
<string-name>
<surname>Vlasak</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Krystal</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Nacht</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Palese</surname>
<given-names>P</given-names>
</string-name>
(
<year>1987</year>
)
<article-title>The influenza C virus glycoprotein (HE) exhibits receptor‐binding (hemagglutinin) and receptor‐destroying (esterase) activities</article-title>
.
<source xml:lang="en">Virology</source>
<volume>160</volume>
:
<fpage>419</fpage>
<lpage>425</lpage>
.
<pub-id pub-id-type="pmid">3660588</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0314">
<mixed-citation publication-type="journal" id="fmr12052-cit-0314">
<string-name>
<surname>von Itzstein</surname>
<given-names>M</given-names>
</string-name>
(
<year>2007</year>
)
<article-title>The war against influenza: discovery and development of sialidase inhibitors</article-title>
.
<source xml:lang="en">Nat Rev Drug Discov</source>
<volume>6</volume>
:
<fpage>967</fpage>
<lpage>974</lpage>
.
<pub-id pub-id-type="pmid">18049471</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0315">
<mixed-citation publication-type="journal" id="fmr12052-cit-0315">
<string-name>
<surname>von Itzstein</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Thomson</surname>
<given-names>R</given-names>
</string-name>
(
<year>2009</year>
)
<article-title>Anti‐influenza drugs: the development of sialidase inhibitors</article-title>
.
<source xml:lang="en">Handb Exp Pharmacol</source>
<volume>189</volume>
:
<fpage>111</fpage>
<lpage>154</lpage>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0316">
<mixed-citation publication-type="journal" id="fmr12052-cit-0316">
<string-name>
<surname>Wagner</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Wolff</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Herwig</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Pleschka</surname>
<given-names>S</given-names>
</string-name>
&
<string-name>
<surname>Klenk</surname>
<given-names>HD</given-names>
</string-name>
(
<year>2000</year>
)
<article-title>Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a study by reverse genetics</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>74</volume>
:
<fpage>6316</fpage>
<lpage>6323</lpage>
.
<pub-id pub-id-type="pmid">10864641</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0317">
<mixed-citation publication-type="journal" id="fmr12052-cit-0317">
<string-name>
<surname>Wagner</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Matrosovich</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Klenk</surname>
<given-names>HD</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>Functional balance between haemagglutinin and neuraminidase in influenza virus infections</article-title>
.
<source xml:lang="en">Rev Med Virol</source>
<volume>12</volume>
:
<fpage>159</fpage>
<lpage>166</lpage>
.
<pub-id pub-id-type="pmid">11987141</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0318">
<mixed-citation publication-type="journal" id="fmr12052-cit-0318">
<string-name>
<surname>Wang</surname>
<given-names>JH</given-names>
</string-name>
,
<string-name>
<surname>Janas</surname>
<given-names>AM</given-names>
</string-name>
,
<string-name>
<surname>Olson</surname>
<given-names>WJ</given-names>
</string-name>
&
<string-name>
<surname>Wu</surname>
<given-names>L</given-names>
</string-name>
(
<year>2007a</year>
)
<article-title>Functionally distinct transmission of human immunodeficiency virus type 1 mediated by immature and mature dendritic cells</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>81</volume>
:
<fpage>8933</fpage>
<lpage>8943</lpage>
.
<pub-id pub-id-type="pmid">17567699</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0319">
<mixed-citation publication-type="journal" id="fmr12052-cit-0319">
<string-name>
<surname>Wang</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Tian</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>X</given-names>
</string-name>
&
<string-name>
<surname>Ma</surname>
<given-names>J</given-names>
</string-name>
(
<year>2007b</year>
)
<article-title>Structural basis for receptor specificity of influenza B virus hemagglutinin</article-title>
.
<source xml:lang="en">P Natl Acad Sci USA</source>
<volume>104</volume>
:
<fpage>16874</fpage>
<lpage>16879</lpage>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0320">
<mixed-citation publication-type="journal" id="fmr12052-cit-0320">
<string-name>
<surname>Wang</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Cheng</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Lu</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Tian</surname>
<given-names>X</given-names>
</string-name>
&
<string-name>
<surname>Ma</surname>
<given-names>J</given-names>
</string-name>
(
<year>2008a</year>
)
<article-title>Crystal structure of unliganded influenza B virus hemagglutinin</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>82</volume>
:
<fpage>3011</fpage>
<lpage>3020</lpage>
.
<pub-id pub-id-type="pmid">18184701</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0321">
<mixed-citation publication-type="journal" id="fmr12052-cit-0321">
<string-name>
<surname>Wang</surname>
<given-names>SK</given-names>
</string-name>
,
<string-name>
<surname>Liang</surname>
<given-names>PH</given-names>
</string-name>
,
<string-name>
<surname>Astronomo</surname>
<given-names>RD</given-names>
</string-name>
,
<string-name>
<surname>Hsu</surname>
<given-names>TL</given-names>
</string-name>
,
<string-name>
<surname>Hsieh</surname>
<given-names>SL</given-names>
</string-name>
,
<string-name>
<surname>Burton</surname>
<given-names>DR</given-names>
</string-name>
&
<string-name>
<surname>Wong</surname>
<given-names>CH</given-names>
</string-name>
(
<year>2008b</year>
)
<article-title>Targeting the carbohydrates on HIV‐1: Interaction of oligomannose dendrons with human monoclonal antibody 2G12 and DC‐SIGN</article-title>
.
<source xml:lang="en">P Natl Acad Sci USA</source>
<volume>105</volume>
:
<fpage>3690</fpage>
<lpage>3695</lpage>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0322">
<mixed-citation publication-type="journal" id="fmr12052-cit-0322">
<string-name>
<surname>Wang</surname>
<given-names>CC</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>JR</given-names>
</string-name>
,
<string-name>
<surname>Tseng</surname>
<given-names>YC</given-names>
</string-name>
<italic>et al</italic>
(
<year>2009</year>
)
<article-title>Glycans on influenza hemagglutinin affect receptor binding and immune response</article-title>
.
<source xml:lang="en">P Natl Acad Sci USA</source>
<volume>106</volume>
:
<fpage>18137</fpage>
<lpage>18142</lpage>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0323">
<mixed-citation publication-type="journal" id="fmr12052-cit-0323">
<string-name>
<surname>Wang</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>RF</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>JW</given-names>
</string-name>
,
<string-name>
<surname>Lee</surname>
<given-names>IK</given-names>
</string-name>
,
<string-name>
<surname>Lee</surname>
<given-names>CP</given-names>
</string-name>
,
<string-name>
<surname>Kuo</surname>
<given-names>HC</given-names>
</string-name>
,
<string-name>
<surname>Huang</surname>
<given-names>SK</given-names>
</string-name>
&
<string-name>
<surname>Yang</surname>
<given-names>KD</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>DC‐SIGN (CD209) Promoter ‐336 A/G polymorphism is associated with dengue hemorrhagic fever and correlated to DC‐SIGN expression and immune augmentation</article-title>
.
<source xml:lang="en">PLoS Negl Trop Dis</source>
<volume>5</volume>
:
<fpage>e934</fpage>
.
<pub-id pub-id-type="pmid">21245921</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0324">
<mixed-citation publication-type="journal" id="fmr12052-cit-0324">
<string-name>
<surname>Wanzeck</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Boyd</surname>
<given-names>KL</given-names>
</string-name>
&
<string-name>
<surname>McCullers</surname>
<given-names>JA</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>Glycan shielding of the influenza virus hemagglutinin contributes to immunopathology in mice</article-title>
.
<source xml:lang="en">Am J Respir Crit Care Med</source>
<volume>183</volume>
:
<fpage>767</fpage>
<lpage>773</lpage>
.
<pub-id pub-id-type="pmid">20935106</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0325">
<mixed-citation publication-type="journal" id="fmr12052-cit-0325">
<string-name>
<surname>Weerapana</surname>
<given-names>E</given-names>
</string-name>
&
<string-name>
<surname>Imperiali</surname>
<given-names>B</given-names>
</string-name>
(
<year>2006</year>
)
<article-title>Asparagine‐linked protein glycosylation: from eukaryotic to prokaryotic systems</article-title>
.
<source xml:lang="en">Glycobiology</source>
<volume>16</volume>
:
<fpage>91R</fpage>
<lpage>101R</lpage>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0326">
<mixed-citation publication-type="journal" id="fmr12052-cit-0326">
<string-name>
<surname>Wei</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Decker</surname>
<given-names>JM</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>S</given-names>
</string-name>
<italic>et al</italic>
(
<year>2003</year>
)
<article-title>Antibody neutralization and escape by HIV‐1</article-title>
.
<source xml:lang="en">Nature</source>
<volume>422</volume>
:
<fpage>307</fpage>
<lpage>312</lpage>
.
<pub-id pub-id-type="pmid">12646921</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0327">
<mixed-citation publication-type="journal" id="fmr12052-cit-0327">
<string-name>
<surname>Wei</surname>
<given-names>CJ</given-names>
</string-name>
,
<string-name>
<surname>Boyington</surname>
<given-names>JC</given-names>
</string-name>
,
<string-name>
<surname>Dai</surname>
<given-names>KF</given-names>
</string-name>
,
<string-name>
<surname>Houser</surname>
<given-names>KV</given-names>
</string-name>
,
<string-name>
<surname>Pearce</surname>
<given-names>MB</given-names>
</string-name>
,
<string-name>
<surname>Kong</surname>
<given-names>WP</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>ZY</given-names>
</string-name>
,
<string-name>
<surname>Tumpey</surname>
<given-names>TM</given-names>
</string-name>
&
<string-name>
<surname>Nabel</surname>
<given-names>GJ</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>Cross‐neutralization of 1918 and 2009 influenza viruses: role of glycans in viral evolution and vaccine design</article-title>
.
<source xml:lang="en">Sci Transl Med</source>
<volume>2</volume>
:
<fpage>24ra21</fpage>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0328">
<mixed-citation publication-type="journal" id="fmr12052-cit-0328">
<string-name>
<surname>Weis</surname>
<given-names>WI</given-names>
</string-name>
(
<year>1997</year>
)
<article-title>Cell‐surface carbohydrate recognition by animal and viral lectins</article-title>
.
<source xml:lang="en">Curr Opin Struct Biol</source>
<volume>7</volume>
:
<fpage>624</fpage>
<lpage>630</lpage>
.
<pub-id pub-id-type="pmid">9345619</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0329">
<mixed-citation publication-type="journal" id="fmr12052-cit-0329">
<string-name>
<surname>White</surname>
<given-names>TA</given-names>
</string-name>
,
<string-name>
<surname>Bartesaghi</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Borgnia</surname>
<given-names>MJ</given-names>
</string-name>
<italic>et al</italic>
(
<year>2010</year>
)
<article-title>Molecular architectures of trimeric SIV and HIV‐1 envelope glycoproteins on intact viruses: strain‐dependent variation in quaternary structure</article-title>
.
<source xml:lang="en">PLoS Pathog</source>
<volume>6</volume>
:
<fpage>e1001249</fpage>
.
<pub-id pub-id-type="pmid">21203482</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0330">
<mixed-citation publication-type="journal" id="fmr12052-cit-0330">
<string-name>
<surname>Willer</surname>
<given-names>DO</given-names>
</string-name>
,
<string-name>
<surname>McFadden</surname>
<given-names>G</given-names>
</string-name>
&
<string-name>
<surname>Evans</surname>
<given-names>DH</given-names>
</string-name>
(
<year>1999</year>
)
<article-title>The complete genome sequence of shope (rabbit) fibroma virus</article-title>
.
<source xml:lang="en">Virology</source>
<volume>264</volume>
:
<fpage>319</fpage>
<lpage>343</lpage>
.
<pub-id pub-id-type="pmid">10562495</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0331">
<mixed-citation publication-type="journal" id="fmr12052-cit-0331">
<string-name>
<surname>Willey</surname>
<given-names>RL</given-names>
</string-name>
,
<string-name>
<surname>Shibata</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Freed</surname>
<given-names>EO</given-names>
</string-name>
,
<string-name>
<surname>Cho</surname>
<given-names>MW</given-names>
</string-name>
&
<string-name>
<surname>Martin</surname>
<given-names>MA</given-names>
</string-name>
(
<year>1996</year>
)
<article-title>Differential glycosylation, virion incorporation, and sensitivity to neutralizing antibodies of human immunodeficiency virus type 1 envelope produced from infected primary T‐lymphocyte and macrophage cultures</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>70</volume>
:
<fpage>6431</fpage>
<lpage>6436</lpage>
.
<pub-id pub-id-type="pmid">8709276</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0332">
<mixed-citation publication-type="journal" id="fmr12052-cit-0332">
<string-name>
<surname>Witvrouw</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Fikkert</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Hantson</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Pannecouque</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>O'Keefe</surname>
<given-names>BR</given-names>
</string-name>
,
<string-name>
<surname>McMahon</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Stamatatos</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>de Clercq</surname>
<given-names>E</given-names>
</string-name>
&
<string-name>
<surname>Bolmstedt</surname>
<given-names>A</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>Resistance of human immunodeficiency virus type 1 to the high‐mannose binding agents cyanovirin N and concanavalin A</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>79</volume>
:
<fpage>7777</fpage>
<lpage>7784</lpage>
.
<pub-id pub-id-type="pmid">15919930</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0333">
<mixed-citation publication-type="journal" id="fmr12052-cit-0333">
<string-name>
<surname>Wu</surname>
<given-names>L</given-names>
</string-name>
&
<string-name>
<surname>KewalRamani</surname>
<given-names>VN</given-names>
</string-name>
(
<year>2006</year>
)
<article-title>Dendritic‐cell interactions with HIV: infection and viral dissemination</article-title>
.
<source xml:lang="en">Nat Rev</source>
<volume>6</volume>
:
<fpage>859</fpage>
<lpage>868</lpage>
.</mixed-citation>
</ref>
<ref id="fmr12052-bib-0334">
<mixed-citation publication-type="journal" id="fmr12052-cit-0334">
<string-name>
<surname>Wu</surname>
<given-names>SF</given-names>
</string-name>
,
<string-name>
<surname>Lee</surname>
<given-names>CJ</given-names>
</string-name>
,
<string-name>
<surname>Liao</surname>
<given-names>CL</given-names>
</string-name>
,
<string-name>
<surname>Dwek</surname>
<given-names>RA</given-names>
</string-name>
,
<string-name>
<surname>Zitzmann</surname>
<given-names>N</given-names>
</string-name>
&
<string-name>
<surname>Lin</surname>
<given-names>YL</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>Antiviral effects of an iminosugar derivative on flavivirus infections</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>76</volume>
:
<fpage>3596</fpage>
<lpage>3604</lpage>
.
<pub-id pub-id-type="pmid">11907199</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0335">
<mixed-citation publication-type="journal" id="fmr12052-cit-0335">
<string-name>
<surname>Yagi</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Watanabe</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Watari</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Shinya</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Satomi</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Takeshita</surname>
<given-names>T</given-names>
</string-name>
&
<string-name>
<surname>Takahashi</surname>
<given-names>H</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>Inhibition of DC‐SIGN‐mediated transmission of human immunodeficiency virus type 1 by Toll‐like receptor 3 signalling in breast milk macrophages</article-title>
.
<source xml:lang="en">Immunology</source>
<volume>130</volume>
:
<fpage>597</fpage>
<lpage>607</lpage>
.
<pub-id pub-id-type="pmid">20406303</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0336">
<mixed-citation publication-type="journal" id="fmr12052-cit-0336">
<string-name>
<surname>Yu</surname>
<given-names>HJ</given-names>
</string-name>
,
<string-name>
<surname>Reuter</surname>
<given-names>MA</given-names>
</string-name>
&
<string-name>
<surname>McDonald</surname>
<given-names>D</given-names>
</string-name>
(
<year>2008</year>
)
<article-title>HIV traffics through a specialized, surface‐accessible intracellular compartment during trans‐infection of T cells by mature dendritic cells</article-title>
.
<source xml:lang="en">PLoS Pathog</source>
<volume>4</volume>
:
<fpage>e1000134</fpage>
.
<pub-id pub-id-type="pmid">18725936</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0337">
<mixed-citation publication-type="journal" id="fmr12052-cit-0337">
<string-name>
<surname>Yu</surname>
<given-names>RK</given-names>
</string-name>
,
<string-name>
<surname>Tsai</surname>
<given-names>YT</given-names>
</string-name>
,
<string-name>
<surname>Ariga</surname>
<given-names>T</given-names>
</string-name>
&
<string-name>
<surname>Yanagisawa</surname>
<given-names>M</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>Structures, biosynthesis, and functions of gangliosides‐an overview</article-title>
.
<source xml:lang="en">J Oleo Sci</source>
<volume>60</volume>
:
<fpage>537</fpage>
<lpage>544</lpage>
.
<pub-id pub-id-type="pmid">21937853</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0338">
<mixed-citation publication-type="journal" id="fmr12052-cit-0338">
<string-name>
<surname>Zhang</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Hartshorn</surname>
<given-names>KL</given-names>
</string-name>
,
<string-name>
<surname>Crouch</surname>
<given-names>EC</given-names>
</string-name>
,
<string-name>
<surname>Ikegami</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Whitsett</surname>
<given-names>JA</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>Complementation of pulmonary abnormalities in SP‐D(−/−) mice with an SP‐D/conglutinin fusion protein</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<volume>277</volume>
:
<fpage>22453</fpage>
<lpage>22459</lpage>
.
<pub-id pub-id-type="pmid">11956209</pub-id>
</mixed-citation>
</ref>
<ref id="fmr12052-bib-0339">
<mixed-citation publication-type="journal" id="fmr12052-cit-0339">
<string-name>
<surname>Zhu</surname>
<given-names>XG</given-names>
</string-name>
,
<string-name>
<surname>Borchers</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Bienstock</surname>
<given-names>RJ</given-names>
</string-name>
&
<string-name>
<surname>Tomer</surname>
<given-names>KB</given-names>
</string-name>
(
<year>2000</year>
)
<article-title>Mass spectrometric characterization of the glycosylation pattern of HIV‐gp120 expressed in CHO cells</article-title>
.
<source xml:lang="en">Biochemistry</source>
<volume>39</volume>
:
<fpage>11194</fpage>
<lpage>11204</lpage>
.
<pub-id pub-id-type="pmid">10985765</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/StressCovidV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000917  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000917  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    StressCovidV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed May 6 16:44:09 2020. Site generation: Sun Mar 28 08:26:57 2021