Serveur d'exploration Stress et Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

ADP‐ribosylation: new facets of an ancient modification

Identifieur interne : 000915 ( Pmc/Corpus ); précédent : 000914; suivant : 000916

ADP‐ribosylation: new facets of an ancient modification

Auteurs : Luca Palazzo ; Andreja Miko ; Ivan Ahel

Source :

RBID : PMC:7163968

Abstract

Rapid response to environmental changes is achieved by uni‐ and multicellular organisms through a series of molecular events, often involving modification of macromolecules, including proteins, nucleic acids and lipids. Amongst these, ADP‐ribosylation is of emerging interest because of its ability to modify different macromolecules in the cells, and its association with many key biological processes, such as DNA‐damage repair, DNA replication, transcription, cell division, signal transduction, stress and infection responses, microbial pathogenicity and aging. In this review, we provide an update on novel pathways and mechanisms regulated by ADP‐ribosylation in organisms coming from all kingdoms of life.


Url:
DOI: 10.1111/febs.14078
PubMed: 28383827
PubMed Central: 7163968

Links to Exploration step

PMC:7163968

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">
<styled-content style="fixed-case" toggle="no">ADP</styled-content>
‐ribosylation: new facets of an ancient modification</title>
<author>
<name sortKey="Palazzo, Luca" sort="Palazzo, Luca" uniqKey="Palazzo L" first="Luca" last="Palazzo">Luca Palazzo</name>
<affiliation>
<nlm:aff id="febs14078-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Miko, Andreja" sort="Miko, Andreja" uniqKey="Miko A" first="Andreja" last="Miko">Andreja Miko</name>
<affiliation>
<nlm:aff id="febs14078-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ahel, Ivan" sort="Ahel, Ivan" uniqKey="Ahel I" first="Ivan" last="Ahel">Ivan Ahel</name>
<affiliation>
<nlm:aff id="febs14078-aff-0001"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">28383827</idno>
<idno type="pmc">7163968</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7163968</idno>
<idno type="RBID">PMC:7163968</idno>
<idno type="doi">10.1111/febs.14078</idno>
<date when="2017">2017</date>
<idno type="wicri:Area/Pmc/Corpus">000915</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000915</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">
<styled-content style="fixed-case" toggle="no">ADP</styled-content>
‐ribosylation: new facets of an ancient modification</title>
<author>
<name sortKey="Palazzo, Luca" sort="Palazzo, Luca" uniqKey="Palazzo L" first="Luca" last="Palazzo">Luca Palazzo</name>
<affiliation>
<nlm:aff id="febs14078-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Miko, Andreja" sort="Miko, Andreja" uniqKey="Miko A" first="Andreja" last="Miko">Andreja Miko</name>
<affiliation>
<nlm:aff id="febs14078-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ahel, Ivan" sort="Ahel, Ivan" uniqKey="Ahel I" first="Ivan" last="Ahel">Ivan Ahel</name>
<affiliation>
<nlm:aff id="febs14078-aff-0001"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Febs Journal</title>
<idno type="ISSN">1742-464X</idno>
<idno type="eISSN">1742-4658</idno>
<imprint>
<date when="2017">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Rapid response to environmental changes is achieved by uni‐ and multicellular organisms through a series of molecular events, often involving modification of macromolecules, including proteins, nucleic acids and lipids. Amongst these,
<styled-content style="fixed-case" toggle="no">ADP</styled-content>
‐ribosylation is of emerging interest because of its ability to modify different macromolecules in the cells, and its association with many key biological processes, such as
<styled-content style="fixed-case" toggle="no">DNA</styled-content>
‐damage repair,
<styled-content style="fixed-case" toggle="no">DNA</styled-content>
replication, transcription, cell division, signal transduction, stress and infection responses, microbial pathogenicity and aging. In this review, we provide an update on novel pathways and mechanisms regulated by
<styled-content style="fixed-case" toggle="no">ADP</styled-content>
‐ribosylation in organisms coming from all kingdoms of life.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">FEBS J</journal-id>
<journal-id journal-id-type="iso-abbrev">FEBS J</journal-id>
<journal-id journal-id-type="doi">10.1111/(ISSN)1742-4658</journal-id>
<journal-id journal-id-type="publisher-id">FEBS</journal-id>
<journal-title-group>
<journal-title>The Febs Journal</journal-title>
</journal-title-group>
<issn pub-type="ppub">1742-464X</issn>
<issn pub-type="epub">1742-4658</issn>
<publisher>
<publisher-name>John Wiley and Sons Inc.</publisher-name>
<publisher-loc>Hoboken</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">28383827</article-id>
<article-id pub-id-type="pmc">7163968</article-id>
<article-id pub-id-type="doi">10.1111/febs.14078</article-id>
<article-id pub-id-type="publisher-id">FEBS14078</article-id>
<article-categories>
<subj-group subj-group-type="overline">
<subject>State‐of‐the‐Art Review</subject>
</subj-group>
<subj-group subj-group-type="heading">
<subject>State‐of‐the‐Art Reviews</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>
<styled-content style="fixed-case" toggle="no">ADP</styled-content>
‐ribosylation: new facets of an ancient modification</article-title>
<alt-title alt-title-type="left-running-head">L. Palazzo
<italic>et al</italic>
.</alt-title>
</title-group>
<contrib-group>
<contrib id="febs14078-cr-0001" contrib-type="author">
<name>
<surname>Palazzo</surname>
<given-names>Luca</given-names>
</name>
<contrib-id contrib-id-type="orcid" authenticated="false">http://orcid.org/0000-0002-5556-5549</contrib-id>
<xref ref-type="aff" rid="febs14078-aff-0001">
<sup>1</sup>
</xref>
<xref ref-type="author-notes" rid="febs14078-note-1001">
<sup></sup>
</xref>
</contrib>
<contrib id="febs14078-cr-0002" contrib-type="author">
<name>
<surname>Mikoč</surname>
<given-names>Andreja</given-names>
</name>
<xref ref-type="aff" rid="febs14078-aff-0002">
<sup>2</sup>
</xref>
<xref ref-type="author-notes" rid="febs14078-note-1001">
<sup></sup>
</xref>
</contrib>
<contrib id="febs14078-cr-0003" contrib-type="author" corresp="yes">
<name>
<surname>Ahel</surname>
<given-names>Ivan</given-names>
</name>
<xref ref-type="aff" rid="febs14078-aff-0001">
<sup>1</sup>
</xref>
<address>
<email>ivan.ahel@path.ox.ac.uk</email>
</address>
</contrib>
</contrib-group>
<aff id="febs14078-aff-0001">
<label>
<sup>1</sup>
</label>
<named-content content-type="organisation-division">Sir William Dunn School of Pathology</named-content>
<institution>University of Oxford</institution>
<country country="GB">UK</country>
</aff>
<aff id="febs14078-aff-0002">
<label>
<sup>2</sup>
</label>
<named-content content-type="organisation-division">Division of Molecular Biology</named-content>
<institution>Ruđer Bošković Institute</institution>
<city>Zagreb</city>
<country country="HR">Croatia</country>
</aff>
<author-notes>
<corresp id="correspondenceTo">
<label>*</label>
<bold>Correspondence</bold>
<break></break>
I. Ahel, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
<break></break>
Fax: +44 1865 275515
<break></break>
Tel: +44 1865 285656
<break></break>
E‐mail:
<email>ivan.ahel@path.ox.ac.uk</email>
<break></break>
</corresp>
<fn fn-type="equal" id="febs14078-note-1001">
<label></label>
<p>These authors contributed equally</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>26</day>
<month>4</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="ppub">
<month>9</month>
<year>2017</year>
</pub-date>
<volume>284</volume>
<issue>18</issue>
<issue-id pub-id-type="doi">10.1111/febs.2017.284.issue-18</issue-id>
<fpage>2932</fpage>
<lpage>2946</lpage>
<history>
<date date-type="received">
<day>20</day>
<month>2</month>
<year>2017</year>
</date>
<date date-type="rev-recd">
<day>20</day>
<month>3</month>
<year>2017</year>
</date>
<date date-type="accepted">
<day>04</day>
<month>4</month>
<year>2017</year>
</date>
</history>
<permissions>
<pmc-comment> Copyright © 2017 Federation of European Biochemical Societies </pmc-comment>
<copyright-statement content-type="article-copyright">© 2017 Federation of European Biochemical Societies</copyright-statement>
<license>
<license-p>This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:href="file:FEBS-284-2932.pdf"></self-uri>
<abstract id="febs14078-abs-0001">
<p>Rapid response to environmental changes is achieved by uni‐ and multicellular organisms through a series of molecular events, often involving modification of macromolecules, including proteins, nucleic acids and lipids. Amongst these,
<styled-content style="fixed-case" toggle="no">ADP</styled-content>
‐ribosylation is of emerging interest because of its ability to modify different macromolecules in the cells, and its association with many key biological processes, such as
<styled-content style="fixed-case" toggle="no">DNA</styled-content>
‐damage repair,
<styled-content style="fixed-case" toggle="no">DNA</styled-content>
replication, transcription, cell division, signal transduction, stress and infection responses, microbial pathogenicity and aging. In this review, we provide an update on novel pathways and mechanisms regulated by
<styled-content style="fixed-case" toggle="no">ADP</styled-content>
‐ribosylation in organisms coming from all kingdoms of life.</p>
</abstract>
<abstract abstract-type="graphical" id="febs14078-abs-0002">
<p>ADP‐ribosyltransferases (ARTs) utilise NAD
<sup>+</sup>
as a substrate to modify different molecular targets and control wide variety of processes in organisms of all domains of life.
<boxed-text position="anchor" content-type="graphic" id="febs14078-blkfxd-0001" orientation="portrait">
<graphic xlink:href="FEBS-284-2932-g002.jpg" position="anchor" id="nlm-graphic-1" orientation="portrait"></graphic>
</boxed-text>
</p>
</abstract>
<kwd-group kwd-group-type="author-generated">
<kwd id="febs14078-kwd-0001">
<styled-content style="fixed-case" toggle="no">ADP</styled-content>
‐ribosylation</kwd>
<kwd id="febs14078-kwd-0002">cellular pathways</kwd>
<kwd id="febs14078-kwd-0003">metabolism of
<styled-content style="fixed-case" toggle="no">ADP</styled-content>
‐ribosylation</kwd>
<kwd id="febs14078-kwd-0004">poly(ADP‐ribose) polymerase</kwd>
<kwd id="febs14078-kwd-0005">post‐translational modification</kwd>
</kwd-group>
<funding-group>
<award-group id="funding-0001">
<funding-source>
<institution-wrap>
<institution>Wellcome Trust </institution>
<institution-id institution-id-type="open-funder-registry">10.13039/100004440</institution-id>
</institution-wrap>
</funding-source>
<award-id>101794</award-id>
</award-group>
<award-group id="funding-0002">
<funding-source>
<institution-wrap>
<institution>Cancer Research UK </institution>
<institution-id institution-id-type="open-funder-registry">10.13039/501100000289</institution-id>
</institution-wrap>
</funding-source>
<award-id>C35050/A22284</award-id>
</award-group>
<award-group id="funding-0003">
<funding-source>European Research Council</funding-source>
<award-id>281739</award-id>
</award-group>
<award-group id="funding-0004">
<funding-source>
<institution-wrap>
<institution>Croatian Science Foundation </institution>
<institution-id institution-id-type="open-funder-registry">10.13039/501100004488</institution-id>
</institution-wrap>
</funding-source>
<award-id>IP–2016–06–4242</award-id>
</award-group>
</funding-group>
<counts>
<fig-count count="1"></fig-count>
<table-count count="1"></table-count>
<page-count count="15"></page-count>
<word-count count="10600"></word-count>
</counts>
<custom-meta-group>
<custom-meta>
<meta-name>source-schema-version-number</meta-name>
<meta-value>2.0</meta-value>
</custom-meta>
<custom-meta>
<meta-name>cover-date</meta-name>
<meta-value>September 2017</meta-value>
</custom-meta>
<custom-meta>
<meta-name>details-of-publishers-convertor</meta-name>
<meta-value>Converter:WILEY_ML3GV2_TO_JATSPMC version:5.8.0 mode:remove_FC converted:15.04.2020</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body id="febs14078-body-0001">
<def-list list-content="abbreviations" id="febs14078-dl-0001">
<title>Abbreviations</title>
<def-item>
<term>ADPr</term>
<def>
<p>ADP‐ribose</p>
</def>
</def-item>
<def-item>
<term>ART</term>
<def>
<p>ADP‐ribosyltransferase</p>
</def>
</def-item>
<def-item>
<term>ARTC</term>
<def>
<p>Cholera toxin‐like ART</p>
</def>
</def-item>
<def-item>
<term>ARTD</term>
<def>
<p>Diphtheria toxin‐like ART</p>
</def>
</def-item>
<def-item>
<term>MARylation</term>
<def>
<p>mono(ADP‐ribosyl)ation</p>
</def>
</def-item>
<def-item>
<term>monoARTs</term>
<def>
<p>mono(ADP‐ribosyl)transferases</p>
</def>
</def-item>
<def-item>
<term>NAD
<sup>+</sup>
</term>
<def>
<p>nicotinamide adenine dinucleotide</p>
</def>
</def-item>
<def-item>
<term>NUDIX</term>
<def>
<p>Nucleoside Diphosphate linked to X‐moiety hydrolases</p>
</def>
</def-item>
<def-item>
<term>
<italic>O</italic>
AADPr</term>
<def>
<p>
<italic>O</italic>
‐acetyl‐ADP‐ribose</p>
</def>
</def-item>
<def-item>
<term>PARG</term>
<def>
<p>poly(ADP‐ribose) glycohydrolase</p>
</def>
</def-item>
<def-item>
<term>PAR</term>
<def>
<p>poly‐ADP‐ribose</p>
</def>
</def-item>
<def-item>
<term>PARP</term>
<def>
<p>poly(ADP‐ribose) polymerase</p>
</def>
</def-item>
<def-item>
<term>PARylation</term>
<def>
<p>poly(ADP‐ribosyl)ation</p>
</def>
</def-item>
<def-item>
<term>PR</term>
<def>
<p>phosphoribosylation</p>
</def>
</def-item>
<def-item>
<term>PTM</term>
<def>
<p>post‐translational modification</p>
</def>
</def-item>
</def-list>
<sec id="febs14078-sec-0001">
<title>Introduction</title>
<p>Evolution shows remarkable examples of how living species adapt and survive in response to natural and environmental changes
<xref rid="febs14078-bib-0001" ref-type="ref">1</xref>
. All living organisms have evolved molecular mechanisms that enable them to quickly adapt to nutritional, chemical or physical alterations. These adaptations are induced by cascades of molecular events involving qualitative and quantitative changes in the basic, cellular macromolecules, such as proteins, nucleic acids and lipids. Ultimately, these signalling events will trigger the appropriate response. One of the most common tools to induce a rapid change in the cellular environment is the post‐translational modification (PTM) of proteins by addition of chemical moieties, such as phosphate, acyl (most commonly methyl and acetate), small proteins or sugars
<xref rid="febs14078-bib-0002" ref-type="ref">2</xref>
. One highly conserved PTM system is the ADP‐ribosylation, the addition of ADP‐ribose (ADPr) groups from nicotinamide adenine dinucleotide (NAD
<sup>+</sup>
) to proteins
<xref rid="febs14078-bib-0003" ref-type="ref">3</xref>
(Fig. 
<xref rid="febs14078-fig-0001" ref-type="fig">1</xref>
). Interestingly, ADP‐ribosylation can happen not only on proteins but also on other macromolecules such as DNA, or small chemical groups
<xref rid="febs14078-bib-0004" ref-type="ref">4</xref>
,
<xref rid="febs14078-bib-0005" ref-type="ref">5</xref>
,
<xref rid="febs14078-bib-0006" ref-type="ref">6</xref>
,
<xref rid="febs14078-bib-0007" ref-type="ref">7</xref>
(Fig. 
<xref rid="febs14078-fig-0001" ref-type="fig">1</xref>
). The first discovered ADP‐ribosyltransferase (ART) enzymes were identified as bacterial toxins, such as the Cholera and Diphtheria toxins
<xref rid="febs14078-bib-0007" ref-type="ref">7</xref>
,
<xref rid="febs14078-bib-0008" ref-type="ref">8</xref>
. These toxins are released from bacterial pathogens to irreversibly modify host proteins to gain an advantage over the infected host
<xref rid="febs14078-bib-0007" ref-type="ref">7</xref>
,
<xref rid="febs14078-bib-0008" ref-type="ref">8</xref>
,
<xref rid="febs14078-bib-0009" ref-type="ref">9</xref>
. Later on, homologous transferases and modification‐reversing hydrolytic enzymes have been discovered in organisms from all kingdoms of life
<xref rid="febs14078-bib-0003" ref-type="ref">3</xref>
. Moreover, many recent observations show how viral genomes evolved the genetic tools that enable them to modulate ADP‐ribosylation signalling of infected cells
<xref rid="febs14078-bib-0010" ref-type="ref">10</xref>
,
<xref rid="febs14078-bib-0011" ref-type="ref">11</xref>
,
<xref rid="febs14078-bib-0012" ref-type="ref">12</xref>
,
<xref rid="febs14078-bib-0013" ref-type="ref">13</xref>
. ADP‐ribosylation seems to be particularly prominent in the highest organisms and it is best studied for the poly(ADP‐ribose) polymerase (PARP) superfamily of ART enzymes
<xref rid="febs14078-bib-0003" ref-type="ref">3</xref>
,
<xref rid="febs14078-bib-0007" ref-type="ref">7</xref>
,
<xref rid="febs14078-bib-0014" ref-type="ref">14</xref>
,
<xref rid="febs14078-bib-0015" ref-type="ref">15</xref>
,
<xref rid="febs14078-bib-0016" ref-type="ref">16</xref>
. Altogether, ADP‐ribosylation is a widespread modification that controls a vast number of cellular processes, including DNA damage repair, transcription, cell‐cycle progression, cell division, unfolded protein response, aging, nitrogen fixation, microbial pathogenicity, cell death and many others
<xref rid="febs14078-bib-0007" ref-type="ref">7</xref>
,
<xref rid="febs14078-bib-0014" ref-type="ref">14</xref>
,
<xref rid="febs14078-bib-0017" ref-type="ref">17</xref>
,
<xref rid="febs14078-bib-0018" ref-type="ref">18</xref>
,
<xref rid="febs14078-bib-0019" ref-type="ref">19</xref>
,
<xref rid="febs14078-bib-0020" ref-type="ref">20</xref>
,
<xref rid="febs14078-bib-0021" ref-type="ref">21</xref>
,
<xref rid="febs14078-bib-0022" ref-type="ref">22</xref>
,
<xref rid="febs14078-bib-0023" ref-type="ref">23</xref>
,
<xref rid="febs14078-bib-0024" ref-type="ref">24</xref>
,
<xref rid="febs14078-bib-0025" ref-type="ref">25</xref>
,
<xref rid="febs14078-bib-0026" ref-type="ref">26</xref>
,
<xref rid="febs14078-bib-0027" ref-type="ref">27</xref>
,
<xref rid="febs14078-bib-0028" ref-type="ref">28</xref>
,
<xref rid="febs14078-bib-0029" ref-type="ref">29</xref>
,
<xref rid="febs14078-bib-0030" ref-type="ref">30</xref>
. However, our understanding of ADP‐ribosylation is still in its infancy, as can be seen from the current rapid rate of discoveries of previously unknown pathways regulated by ADP‐ribosylation.</p>
<fig fig-type="Figure" xml:lang="en" id="febs14078-fig-0001" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Targets and pathways involved in the metabolism of
<styled-content style="fixed-case" toggle="no">ADP</styled-content>
‐ribose. Scheme is simplified to show only the main products and
<styled-content style="fixed-case" toggle="no">ADP</styled-content>
‐ribose metabolites. Stars indicate reactions that use
<styled-content style="fixed-case" toggle="no">NAD</styled-content>
<sup>+</sup>
.
<styled-content style="fixed-case" toggle="no">PR</styled-content>
, ribose‐5′‐phosphate.</p>
</caption>
<graphic id="nlm-graphic-3" xlink:href="FEBS-284-2932-g001"></graphic>
</fig>
</sec>
<sec id="febs14078-sec-0002">
<title>ADP‐ribosyltransferases</title>
<p>All so far characterized ARTs use NAD
<sup>+</sup>
cofactor and transfer a single or multiple ADPr moieties onto an acceptor molecule (termed mono‐ and poly(ADP‐ribosyl)ation, also called MARylation and PARylation respectively) combined with the release of nicotinamide (NA; Fig. 
<xref rid="febs14078-fig-0001" ref-type="fig">1</xref>
)
<xref rid="febs14078-bib-0003" ref-type="ref">3</xref>
,
<xref rid="febs14078-bib-0007" ref-type="ref">7</xref>
,
<xref rid="febs14078-bib-0016" ref-type="ref">16</xref>
. The most widespread super families of ARTs contain transferase folds evolutionary related to bacterial toxins. These proteins can be grouped into: (a) PARP‐like proteins, alternatively called Diphtheria toxin‐like ART (ARTD) superfamily; and (b) Cholera toxin‐like ART (ARTCs) superfamily. Most of the transferases from these groups are known to modify proteins, however, some of them modify DNA or small chemical groups such as phosphate
<xref rid="febs14078-bib-0003" ref-type="ref">3</xref>
,
<xref rid="febs14078-bib-0004" ref-type="ref">4</xref>
,
<xref rid="febs14078-bib-0005" ref-type="ref">5</xref>
,
<xref rid="febs14078-bib-0006" ref-type="ref">6</xref>
,
<xref rid="febs14078-bib-0007" ref-type="ref">7</xref>
,
<xref rid="febs14078-bib-0008" ref-type="ref">8</xref>
,
<xref rid="febs14078-bib-0009" ref-type="ref">9</xref>
,
<xref rid="febs14078-bib-0016" ref-type="ref">16</xref>
,
<xref rid="febs14078-bib-0017" ref-type="ref">17</xref>
,
<xref rid="febs14078-bib-0031" ref-type="ref">31</xref>
(Fig. 
<xref rid="febs14078-fig-0001" ref-type="fig">1</xref>
).</p>
<p>Eighteen mammalian genes with a sequence homology to PARPs/ARTDs have been described
<xref rid="febs14078-bib-0003" ref-type="ref">3</xref>
,
<xref rid="febs14078-bib-0007" ref-type="ref">7</xref>
,
<xref rid="febs14078-bib-0014" ref-type="ref">14</xref>
,
<xref rid="febs14078-bib-0016" ref-type="ref">16</xref>
,
<xref rid="febs14078-bib-0027" ref-type="ref">27</xref>
,
<xref rid="febs14078-bib-0028" ref-type="ref">28</xref>
. The first and best characterized of these proteins was originally noted for its ability to synthesize ADPr polymers upon DNA damage and called poly(ADP‐ribose) polymerase 1 (PARP1)
<xref rid="febs14078-bib-0015" ref-type="ref">15</xref>
,
<xref rid="febs14078-bib-0023" ref-type="ref">23</xref>
,
<xref rid="febs14078-bib-0026" ref-type="ref">26</xref>
,
<xref rid="febs14078-bib-0032" ref-type="ref">32</xref>
,
<xref rid="febs14078-bib-0033" ref-type="ref">33</xref>
,
<xref rid="febs14078-bib-0034" ref-type="ref">34</xref>
. Human PARP1, PARP2 and Tankyrases (PARP5a and PARP5b), and close homologues from lower organisms and bacteria are able to produce long repeating chains of ADPr on target proteins
<xref rid="febs14078-bib-0003" ref-type="ref">3</xref>
,
<xref rid="febs14078-bib-0007" ref-type="ref">7</xref>
,
<xref rid="febs14078-bib-0016" ref-type="ref">16</xref>
,
<xref rid="febs14078-bib-0023" ref-type="ref">23</xref>
,
<xref rid="febs14078-bib-0035" ref-type="ref">35</xref>
,
<xref rid="febs14078-bib-0036" ref-type="ref">36</xref>
,
<xref rid="febs14078-bib-0037" ref-type="ref">37</xref>
. PARP1 and PARP2 can also catalyse the formation of branched chains of poly(ADP‐ribose) (PAR) on proteins and possibly DNA
<xref rid="febs14078-bib-0006" ref-type="ref">6</xref>
,
<xref rid="febs14078-bib-0035" ref-type="ref">35</xref>
. Most of the other characterized PARPs are mono(ADP‐ribosyl) transferases (monoARTs)
<xref rid="febs14078-bib-0016" ref-type="ref">16</xref>
,
<xref rid="febs14078-bib-0024" ref-type="ref">24</xref>
,
<xref rid="febs14078-bib-0035" ref-type="ref">35</xref>
. Another, highly diverged ART may also belong to PARP‐like proteins, but it transfers a phosphate group from RNA onto ADPr (Fig. 
<xref rid="febs14078-fig-0001" ref-type="fig">1</xref>
). This is KptA/Tpt1 protein, RNA phosphotransferase found in all three domains of life
<xref rid="febs14078-bib-0007" ref-type="ref">7</xref>
,
<xref rid="febs14078-bib-0038" ref-type="ref">38</xref>
. In yeast, Tpt1 catalyses a NAD
<sup>+</sup>
‐dependent dephosphorylation of tRNA‐splicing intermediates, generating ADPr‐1‐phopshate through a cyclic intermediate
<xref rid="febs14078-bib-0038" ref-type="ref">38</xref>
(Fig. 
<xref rid="febs14078-fig-0001" ref-type="fig">1</xref>
).</p>
<p>Among the ARTC subfamily of transferases, pierisins are the only transferases able to act on DNA
<xref rid="febs14078-bib-0004" ref-type="ref">4</xref>
, all the other enzymes in this group characterised so far act as transferases for proteins
<xref rid="febs14078-bib-0007" ref-type="ref">7</xref>
,
<xref rid="febs14078-bib-0017" ref-type="ref">17</xref>
. Several bacterial toxins can be included in this family, such as the C3 ectotoxin from
<italic>Staphylococcus aureus</italic>
, VIP2 from
<italic>Bacillus cereus</italic>
, and SpvB from
<italic>Salmonella typhimurium</italic>
<xref rid="febs14078-bib-0007" ref-type="ref">7</xref>
,
<xref rid="febs14078-bib-0039" ref-type="ref">39</xref>
,
<xref rid="febs14078-bib-0040" ref-type="ref">40</xref>
,
<xref rid="febs14078-bib-0041" ref-type="ref">41</xref>
. Mammalian ARTC family includes four human proteins (hARTC1, 3, 4, 5) that are glycosylphosphatidylinositol (GPI)‐anchored or secreted proteins
<xref rid="febs14078-bib-0017" ref-type="ref">17</xref>
,
<xref rid="febs14078-bib-0042" ref-type="ref">42</xref>
. hARTCs have been reported to modify soluble and plasma membrane‐associated protein targets and thus they are proposed to be involved in intercellular signalling, immune responses and inflammation
<xref rid="febs14078-bib-0017" ref-type="ref">17</xref>
,
<xref rid="febs14078-bib-0042" ref-type="ref">42</xref>
,
<xref rid="febs14078-bib-0043" ref-type="ref">43</xref>
.</p>
<p>Evolutionary unrelated ART enzymes to the previous group are sirtuins. Sirtuins are best known as NAD
<sup>+</sup>
‐dependent protein deacetylaeses and they are found in proteins of all kingdoms of life
<xref rid="febs14078-bib-0044" ref-type="ref">44</xref>
,
<xref rid="febs14078-bib-0045" ref-type="ref">45</xref>
(Fig. 
<xref rid="febs14078-fig-0001" ref-type="fig">1</xref>
). There are seven sirtuin proteins operating in human cells
<xref rid="febs14078-bib-0046" ref-type="ref">46</xref>
, their primary enzymatic activity is protein deacetylation producing
<italic>O</italic>
‐acetyl‐ADP‐ribose (
<italic>O</italic>
AADPr) metabolite as a by‐product of its ART reaction
<xref rid="febs14078-bib-0047" ref-type="ref">47</xref>
. Sirtuins can sometimes directly modify proteins
<xref rid="febs14078-bib-0048" ref-type="ref">48</xref>
,
<xref rid="febs14078-bib-0049" ref-type="ref">49</xref>
(Fig. 
<xref rid="febs14078-fig-0001" ref-type="fig">1</xref>
).</p>
<p>It has been suggested that the nonenzymatic ADP‐ribosylation of proteins may reach significant levels
<italic>in vivo</italic>
. This is due to the chemical reactivity of the free ADPr with side chains of variety of amino acids, most notably lysine and cysteine
<xref rid="febs14078-bib-0050" ref-type="ref">50</xref>
.</p>
</sec>
<sec id="febs14078-sec-0003">
<title>ADPr‐binding domains</title>
<p>As with other PTMs, ADP‐ribosylation tags are recognized by cellular proteins in a timely manner in order to activate downstream events in the relevant signalling pathways
<xref rid="febs14078-bib-0016" ref-type="ref">16</xref>
,
<xref rid="febs14078-bib-0026" ref-type="ref">26</xref>
,
<xref rid="febs14078-bib-0030" ref-type="ref">30</xref>
,
<xref rid="febs14078-bib-0051" ref-type="ref">51</xref>
. Therefore, many proteins involved in these pathways possess ADPr‐binding domains within their protein structure
<xref rid="febs14078-bib-0016" ref-type="ref">16</xref>
,
<xref rid="febs14078-bib-0030" ref-type="ref">30</xref>
,
<xref rid="febs14078-bib-0051" ref-type="ref">51</xref>
. Among the evolutionary widespread ADPr binding domains, the macrodomain has been studied the most extensively. Macrodomains are found in proteins from all kingdoms of life supporting different cellular processes
<xref rid="febs14078-bib-0003" ref-type="ref">3</xref>
,
<xref rid="febs14078-bib-0016" ref-type="ref">16</xref>
,
<xref rid="febs14078-bib-0051" ref-type="ref">51</xref>
,
<xref rid="febs14078-bib-0052" ref-type="ref">52</xref>
,
<xref rid="febs14078-bib-0053" ref-type="ref">53</xref>
,
<xref rid="febs14078-bib-0054" ref-type="ref">54</xref>
. Macrodomain‐containing proteins can recognize variety of substrates, including MARylated and PARylated proteins, different ADPr metabolites (such as
<italic>O</italic>
AADPr)
<xref rid="febs14078-bib-0016" ref-type="ref">16</xref>
,
<xref rid="febs14078-bib-0053" ref-type="ref">53</xref>
,
<xref rid="febs14078-bib-0054" ref-type="ref">54</xref>
,
<xref rid="febs14078-bib-0055" ref-type="ref">55</xref>
and RNA
<xref rid="febs14078-bib-0054" ref-type="ref">54</xref>
,
<xref rid="febs14078-bib-0056" ref-type="ref">56</xref>
,
<xref rid="febs14078-bib-0057" ref-type="ref">57</xref>
(Fig. 
<xref rid="febs14078-fig-0001" ref-type="fig">1</xref>
). Some macrodomains have also evolved enzymatic activity and are capable of hydrolysing ADP‐ribosylation (see below)
<xref rid="febs14078-bib-0036" ref-type="ref">36</xref>
,
<xref rid="febs14078-bib-0049" ref-type="ref">49</xref>
,
<xref rid="febs14078-bib-0054" ref-type="ref">54</xref>
,
<xref rid="febs14078-bib-0058" ref-type="ref">58</xref>
,
<xref rid="febs14078-bib-0059" ref-type="ref">59</xref>
. As a consequence, macrodomain‐containing proteins are involved in a diverse set of cellular functions, such as chromatin remodelling and DNA‐damage repair, oxidative stress response, metabolic processes and pathogenic mechanisms
<xref rid="febs14078-bib-0003" ref-type="ref">3</xref>
,
<xref rid="febs14078-bib-0005" ref-type="ref">5</xref>
,
<xref rid="febs14078-bib-0010" ref-type="ref">10</xref>
,
<xref rid="febs14078-bib-0011" ref-type="ref">11</xref>
,
<xref rid="febs14078-bib-0012" ref-type="ref">12</xref>
,
<xref rid="febs14078-bib-0013" ref-type="ref">13</xref>
,
<xref rid="febs14078-bib-0030" ref-type="ref">30</xref>
,
<xref rid="febs14078-bib-0037" ref-type="ref">37</xref>
,
<xref rid="febs14078-bib-0053" ref-type="ref">53</xref>
,
<xref rid="febs14078-bib-0054" ref-type="ref">54</xref>
,
<xref rid="febs14078-bib-0059" ref-type="ref">59</xref>
,
<xref rid="febs14078-bib-0060" ref-type="ref">60</xref>
,
<xref rid="febs14078-bib-0061" ref-type="ref">61</xref>
. In addition to macrodomain, several other widely distributed domains have been described as readers for ADP‐ribosylation, such as the PAR‐binding zinc finger (PBZ)
<xref rid="febs14078-bib-0062" ref-type="ref">62</xref>
, the WWE (named after three of its conserved residues)
<xref rid="febs14078-bib-0063" ref-type="ref">63</xref>
, the oligonucleotide/oligosaccharide‐binding (OB) domain
<xref rid="febs14078-bib-0064" ref-type="ref">64</xref>
and the PAR‐binding motifs (PBM) which is abundant in DNA‐damage repair proteins
<xref rid="febs14078-bib-0065" ref-type="ref">65</xref>
.</p>
</sec>
<sec id="febs14078-sec-0004">
<title>Hydrolases</title>
<p>As mentioned before, the ADP‐ribosylation is a reversible modification
<xref rid="febs14078-bib-0066" ref-type="ref">66</xref>
. Two evolutionary unrelated protein domains are known to support this catalytic activity: already mentioned macrodomains and the DraG‐like fold containing proteins
<xref rid="febs14078-bib-0003" ref-type="ref">3</xref>
,
<xref rid="febs14078-bib-0067" ref-type="ref">67</xref>
,
<xref rid="febs14078-bib-0068" ref-type="ref">68</xref>
. The catalytic macrodomain fold is found in a number of proteins coming from all the kingdoms of life
<xref rid="febs14078-bib-0054" ref-type="ref">54</xref>
. In humans four catalytic macrodomains have been identified: poly(ADP‐ribose) glycohydrolase (PARG), MacroD1, MacroD2 and terminal ADP‐ribosyl glycohydrolase 1 (TARG1/C6orf130)
<xref rid="febs14078-bib-0016" ref-type="ref">16</xref>
,
<xref rid="febs14078-bib-0036" ref-type="ref">36</xref>
,
<xref rid="febs14078-bib-0054" ref-type="ref">54</xref>
,
<xref rid="febs14078-bib-0059" ref-type="ref">59</xref>
,
<xref rid="febs14078-bib-0069" ref-type="ref">69</xref>
,
<xref rid="febs14078-bib-0070" ref-type="ref">70</xref>
. PARG efficiently cleaves the PAR‐specific
<italic>O</italic>
‐glycosidic ribose–ribose bonds, however, it is unable to remove the terminal ADPr unit directly linked to a protein (Fig. 
<xref rid="febs14078-fig-0001" ref-type="fig">1</xref>
)
<xref rid="febs14078-bib-0036" ref-type="ref">36</xref>
,
<xref rid="febs14078-bib-0058" ref-type="ref">58</xref>
. The existence of PARG‐splicing variants ensure the presence of the enzyme both in the nucleus and in the cytoplasm or in membranous organelles
<xref rid="febs14078-bib-0071" ref-type="ref">71</xref>
,
<xref rid="febs14078-bib-0072" ref-type="ref">72</xref>
,
<xref rid="febs14078-bib-0073" ref-type="ref">73</xref>
and allows for rapid turnover of PAR, ensuring tight control of this modification
<xref rid="febs14078-bib-0066" ref-type="ref">66</xref>
. The terminal ADPr moiety is removed by MARylation preferring hydrolases, such as MacroD1, MacroD2 or TARG1
<xref rid="febs14078-bib-0058" ref-type="ref">58</xref>
,
<xref rid="febs14078-bib-0059" ref-type="ref">59</xref>
,
<xref rid="febs14078-bib-0069" ref-type="ref">69</xref>
,
<xref rid="febs14078-bib-0070" ref-type="ref">70</xref>
(Fig. 
<xref rid="febs14078-fig-0001" ref-type="fig">1</xref>
). The latter enzymes can also hydrolyse some other ADPr metabolites, such as
<italic>O</italic>
AADPr
<xref rid="febs14078-bib-0054" ref-type="ref">54</xref>
,
<xref rid="febs14078-bib-0055" ref-type="ref">55</xref>
,
<xref rid="febs14078-bib-0074" ref-type="ref">74</xref>
(Fig. 
<xref rid="febs14078-fig-0001" ref-type="fig">1</xref>
). An additional macrodomain containing protein is Poa1p (YBR022) from
<italic>Saccharomyces cerevisiae</italic>
, functionally characterized as a specific phosphatase that removes the phosphate group of ADPr‐1‐phosphate in the tRNA‐splicing pathway in yeast
<xref rid="febs14078-bib-0075" ref-type="ref">75</xref>
.</p>
<p>Another class of de‐ADP‐ribosylation enzymes includes the dinitrogenase reductase‐activating glycohydrolase (DraG) and related proteins
<xref rid="febs14078-bib-0067" ref-type="ref">67</xref>
,
<xref rid="febs14078-bib-0068" ref-type="ref">68</xref>
,
<xref rid="febs14078-bib-0073" ref-type="ref">73</xref>
,
<xref rid="febs14078-bib-0076" ref-type="ref">76</xref>
,
<xref rid="febs14078-bib-0077" ref-type="ref">77</xref>
,
<xref rid="febs14078-bib-0078" ref-type="ref">78</xref>
,
<xref rid="febs14078-bib-0079" ref-type="ref">79</xref>
. DraG is known to regulate, in conjunction with ART called DraT, the central enzyme of nitrogen fixation in several bacterial species
<xref rid="febs14078-bib-0068" ref-type="ref">68</xref>
,
<xref rid="febs14078-bib-0076" ref-type="ref">76</xref>
. Mammals carry distant homologues of DraG (called ARH1‐3 in humans), whose functions are so far not fully understood. The ARH1 protein shows efficient hydrolytic activity against MARylated proteins on arginine residues
<xref rid="febs14078-bib-0077" ref-type="ref">77</xref>
. ADP‐ribosylated proteins on arginine are found on cellular plasma membrane, in the lumen of endoplasmic reticulum (ER)
<xref rid="febs14078-bib-0042" ref-type="ref">42</xref>
,
<xref rid="febs14078-bib-0043" ref-type="ref">43</xref>
,
<xref rid="febs14078-bib-0078" ref-type="ref">78</xref>
,
<xref rid="febs14078-bib-0079" ref-type="ref">79</xref>
,
<xref rid="febs14078-bib-0080" ref-type="ref">80</xref>
,
<xref rid="febs14078-bib-0081" ref-type="ref">81</xref>
and in cytoplasm
<xref rid="febs14078-bib-0082" ref-type="ref">82</xref>
,
<xref rid="febs14078-bib-0083" ref-type="ref">83</xref>
. ARH3 was shown to hydrolyse the
<italic>O</italic>
‐glycosidic bond of PAR chains and
<italic>O</italic>
AADPr
<xref rid="febs14078-bib-0079" ref-type="ref">79</xref>
,
<xref rid="febs14078-bib-0084" ref-type="ref">84</xref>
,
<xref rid="febs14078-bib-0085" ref-type="ref">85</xref>
,
<xref rid="febs14078-bib-0086" ref-type="ref">86</xref>
. ARH2 is believed to be catalytically inactive
<xref rid="febs14078-bib-0079" ref-type="ref">79</xref>
,
<xref rid="febs14078-bib-0084" ref-type="ref">84</xref>
,
<xref rid="febs14078-bib-0085" ref-type="ref">85</xref>
.</p>
<p>The released ADPr by all the active hydrolases can be further recycled and eventually converted to ATP by enzymes such as members of the Nucleoside Diphosphate linked to X‐moiety hydrolases (NUDIX) family
<xref rid="febs14078-bib-0087" ref-type="ref">87</xref>
,
<xref rid="febs14078-bib-0088" ref-type="ref">88</xref>
,
<xref rid="febs14078-bib-0089" ref-type="ref">89</xref>
.</p>
</sec>
<sec id="febs14078-sec-0005">
<title>Other enzymes that cleave protein ADP‐ribosylation</title>
<p>Noncanonical enzymes able to perform the hydrolysis of ADPr linked to proteins have been recently identified. These include two unrelated protein families, the NUDIX
<xref rid="febs14078-bib-0087" ref-type="ref">87</xref>
,
<xref rid="febs14078-bib-0088" ref-type="ref">88</xref>
and Ectonucleotide Pyrophosphatase/Phosphodiesterase (ENPP)
<xref rid="febs14078-bib-0090" ref-type="ref">90</xref>
, both of which hydrolyse the ADPr phosphodiester bond in mono‐ADP‐ribose and PAR linked to proteins, thus liberating adenosine monophosphate (AMP) and phosphoribose‐AMP and leaving ribose‐5′‐phosphate (phosphoribosylation; PR) tags bound to the protein
<xref rid="febs14078-bib-0091" ref-type="ref">91</xref>
,
<xref rid="febs14078-bib-0092" ref-type="ref">92</xref>
,
<xref rid="febs14078-bib-0093" ref-type="ref">93</xref>
,
<xref rid="febs14078-bib-0094" ref-type="ref">94</xref>
(Fig. 
<xref rid="febs14078-fig-0001" ref-type="fig">1</xref>
). The NUDIX enzymes able to perform this reaction are human NUDT16 and
<italic>Escherichia coli</italic>
RppH
<xref rid="febs14078-bib-0091" ref-type="ref">91</xref>
,
<xref rid="febs14078-bib-0092" ref-type="ref">92</xref>
. Within the ENPP family of enzymes, vertebrate ENPP1 proteins and Phoshodiesterase I found in the poison glands of rattlesnakes (Snake Venom Phosphodiesterase) exhibit the same activity
<xref rid="febs14078-bib-0093" ref-type="ref">93</xref>
,
<xref rid="febs14078-bib-0094" ref-type="ref">94</xref>
. The physiological relevance of the activities of ENPP1 and NUDT16 enzymes against the protein ADP‐ribosylation remains unclear.</p>
<p>Phosphoribosylation of proteins is also a consequence of the activity of Sde, an enzyme that couples the ART with a phosphodiesterase domain, associated with the control of the host ubiquitination signalling by human pathogen
<italic>Legionella pneumophila</italic>
(see detailed description below)
<xref rid="febs14078-bib-0095" ref-type="ref">95</xref>
,
<xref rid="febs14078-bib-0096" ref-type="ref">96</xref>
.</p>
</sec>
<sec id="febs14078-sec-0006">
<title>Mammalian ADP‐ribosylation signalling</title>
<p>ADP‐ribosylation in mammals is known to regulate a number of different processes
<xref rid="febs14078-bib-0014" ref-type="ref">14</xref>
,
<xref rid="febs14078-bib-0017" ref-type="ref">17</xref>
,
<xref rid="febs14078-bib-0024" ref-type="ref">24</xref>
,
<xref rid="febs14078-bib-0026" ref-type="ref">26</xref>
,
<xref rid="febs14078-bib-0027" ref-type="ref">27</xref>
,
<xref rid="febs14078-bib-0028" ref-type="ref">28</xref>
,
<xref rid="febs14078-bib-0030" ref-type="ref">30</xref>
. Best understood is regulation of DNA‐damage repair pathways by PARP1‐3 that are activated upon binding to DNA breaks
<xref rid="febs14078-bib-0014" ref-type="ref">14</xref>
,
<xref rid="febs14078-bib-0026" ref-type="ref">26</xref>
,
<xref rid="febs14078-bib-0027" ref-type="ref">27</xref>
,
<xref rid="febs14078-bib-0028" ref-type="ref">28</xref>
,
<xref rid="febs14078-bib-0097" ref-type="ref">97</xref>
,
<xref rid="febs14078-bib-0098" ref-type="ref">98</xref>
,
<xref rid="febs14078-bib-0099" ref-type="ref">99</xref>
,
<xref rid="febs14078-bib-0100" ref-type="ref">100</xref>
,
<xref rid="febs14078-bib-0101" ref-type="ref">101</xref>
,
<xref rid="febs14078-bib-0102" ref-type="ref">102</xref>
PARP1 also plays roles in transcription and metabolism
<xref rid="febs14078-bib-0029" ref-type="ref">29</xref>
,
<xref rid="febs14078-bib-0030" ref-type="ref">30</xref>
,
<xref rid="febs14078-bib-0103" ref-type="ref">103</xref>
. The functions of other PARPs are comparatively much less understood
<xref rid="febs14078-bib-0027" ref-type="ref">27</xref>
,
<xref rid="febs14078-bib-0028" ref-type="ref">28</xref>
. PARP4 (also called VPARP) is a component of the cytosolic ribonucleoprotein vault complex, however, its biological functions are unknown
<xref rid="febs14078-bib-0104" ref-type="ref">104</xref>
. PARPs 5a and 5b (tankyrases) are best understood for their roles in mitosis
<xref rid="febs14078-bib-0019" ref-type="ref">19</xref>
,
<xref rid="febs14078-bib-0025" ref-type="ref">25</xref>
and Wnt signalling
<xref rid="febs14078-bib-0105" ref-type="ref">105</xref>
,
<xref rid="febs14078-bib-0106" ref-type="ref">106</xref>
,
<xref rid="febs14078-bib-0107" ref-type="ref">107</xref>
,
<xref rid="febs14078-bib-0108" ref-type="ref">108</xref>
, but they also have roles at telomere and DNA‐damage repair
<xref rid="febs14078-bib-0108" ref-type="ref">108</xref>
,
<xref rid="febs14078-bib-0109" ref-type="ref">109</xref>
,
<xref rid="febs14078-bib-0110" ref-type="ref">110</xref>
. PARP6 and PARP8 are poorly understood, however, PARP6 has been shown to be involved in hippocampus neuronal development
<xref rid="febs14078-bib-0111" ref-type="ref">111</xref>
. Several PARPs (PARP7 PARP10, PARP12 and PARP13) are involved in mechanisms of post‐transcriptional regulation of mRNA, mediated either by RNA‐binding domains
<xref rid="febs14078-bib-0112" ref-type="ref">112</xref>
or by ADP‐ribosylation of RNA‐binding proteins
<xref rid="febs14078-bib-0020" ref-type="ref">20</xref>
. In addition, PARP10 has been implied in the regulation of NF‐kB
<xref rid="febs14078-bib-0113" ref-type="ref">113</xref>
,
<xref rid="febs14078-bib-0114" ref-type="ref">114</xref>
, GSK3β
<xref rid="febs14078-bib-0113" ref-type="ref">113</xref>
,
<xref rid="febs14078-bib-0115" ref-type="ref">115</xref>
and transcription
<xref rid="febs14078-bib-0103" ref-type="ref">103</xref>
,
<xref rid="febs14078-bib-0113" ref-type="ref">113</xref>
,
<xref rid="febs14078-bib-0116" ref-type="ref">116</xref>
. Also, PARP9 and PARP14 are suggested to act on transcription, in particular of genes required for macrophage activation
<xref rid="febs14078-bib-0117" ref-type="ref">117</xref>
. PARP16 regulates the unfolded protein response
<xref rid="febs14078-bib-0018" ref-type="ref">18</xref>
. Concurrent with its nuclear pore localization, PARP11 modifies targets involved in the coordination of the nuclear envelope and the organization of nuclear pores
<xref rid="febs14078-bib-0118" ref-type="ref">118</xref>
,
<xref rid="febs14078-bib-0119" ref-type="ref">119</xref>
.</p>
<p>Future work is needed to properly understand the physiological functions of most of the PARPs and the new potential functions for PARPs and other ARTs are continuously arising
<xref rid="febs14078-bib-0120" ref-type="ref">120</xref>
.</p>
<p>Compared to PARPs, much less research has been conducted on members of the ARTC family in mammals. This family includes four proteins in humans (hARTC1, 3, 4, 5) and six in mice (mARTC1, 2.1, 2.2, 3, 4, 5) that are glycosylphosphatidylinositol (GPI)‐anchored (hARTC1 and mARTC1) or ecto‐proteins (hARTC3, 4, 5 and mARCT2.1, 2.2, 3, 4, 5)
<xref rid="febs14078-bib-0042" ref-type="ref">42</xref>
. mARTC1, 2, and 5 have been reported to modify soluble and plasma membrane‐associated protein targets on arginine residues, including the P2X7 purinergic receptor, and thus they can affect cellular processes such as intercellular signalling, immune responses and inflammation
<xref rid="febs14078-bib-0043" ref-type="ref">43</xref>
. hARTC1 has been detected in the lumen of ER and its function in stress response has been suggested
<xref rid="febs14078-bib-0081" ref-type="ref">81</xref>
.</p>
</sec>
<sec id="febs14078-sec-0007">
<title>Amino acid specificity of mammalian ARTs</title>
<p>Although all the ARTC proteins in mammals characterized so far modify substrate proteins on arginine residues
<xref rid="febs14078-bib-0042" ref-type="ref">42</xref>
, the situation for PARP family is more complex and there is still no strong consensus in the field on the preferred amino acid targets for many PARPs. In this respect, the progress has been additionally hampered in the case of poly(ADP‐ribosyl)ating PARPs, as the current methods to identify sites do not make the difference between mono and poly(ADP‐ribosyl)ation for specific amino acid position. Overall, acidic residues might be the main targets for most of the PARPs
<xref rid="febs14078-bib-0035" ref-type="ref">35</xref>
,
<xref rid="febs14078-bib-0121" ref-type="ref">121</xref>
,
<xref rid="febs14078-bib-0122" ref-type="ref">122</xref>
,
<xref rid="febs14078-bib-0123" ref-type="ref">123</xref>
,
<xref rid="febs14078-bib-0124" ref-type="ref">124</xref>
but cysteine
<xref rid="febs14078-bib-0035" ref-type="ref">35</xref>
,
<xref rid="febs14078-bib-0120" ref-type="ref">120</xref>
,
<xref rid="febs14078-bib-0123" ref-type="ref">123</xref>
, arginine
<xref rid="febs14078-bib-0121" ref-type="ref">121</xref>
,
<xref rid="febs14078-bib-0123" ref-type="ref">123</xref>
,
<xref rid="febs14078-bib-0124" ref-type="ref">124</xref>
, lysine
<xref rid="febs14078-bib-0083" ref-type="ref">83</xref>
,
<xref rid="febs14078-bib-0121" ref-type="ref">121</xref>
,
<xref rid="febs14078-bib-0123" ref-type="ref">123</xref>
,
<xref rid="febs14078-bib-0124" ref-type="ref">124</xref>
and serine residues
<xref rid="febs14078-bib-0125" ref-type="ref">125</xref>
have been suggested as well. ADP‐ribosylation of acidic residues and lysines has been shown to be induced by oxidative stress
<xref rid="febs14078-bib-0083" ref-type="ref">83</xref>
. However, additional evidence has revealed that many of these lysine residues may have been mis‐annotated as modification sites, and that actual modification sites are proximal serine residues, that usually follow immediately after these lysine residues
<xref rid="febs14078-bib-0126" ref-type="ref">126</xref>
. Indeed, the KS motif has been identified as a preferred target for serine ADP‐ribosylation by several studies
<xref rid="febs14078-bib-0125" ref-type="ref">125</xref>
,
<xref rid="febs14078-bib-0126" ref-type="ref">126</xref>
,
<xref rid="febs14078-bib-0127" ref-type="ref">127</xref>
. Notably, serine ADP‐ribosylation seems to be specific for regulation of DNA damage response and other pathways important for genome stability such as regulation of chromatin structure, transcription and mitosis
<xref rid="febs14078-bib-0127" ref-type="ref">127</xref>
. HPF1/C4orf27 is the first protein identified acting as a specificity factor for the serine ADP‐ribosylation
<xref rid="febs14078-bib-0127" ref-type="ref">127</xref>
,
<xref rid="febs14078-bib-0128" ref-type="ref">128</xref>
. It acts in conjunction with PARP1 and PARP2 proteins and directs modification of histones, PARP1 itself, high‐mobility group proteins and likely many other proteins
<xref rid="febs14078-bib-0127" ref-type="ref">127</xref>
.</p>
</sec>
<sec id="febs14078-sec-0008">
<title>ADP‐ribosylation in bacteria</title>
<p>The first discovered ARTs were secreted toxins that are found sporadically in bacteria and that irreversibly modify crucial host cell proteins
<xref rid="febs14078-bib-0129" ref-type="ref">129</xref>
. However, the genomic evidence suggests that intracellular, reversible ADP‐ribosylation is much more common amongst bacteria, yet, there is little evidence on its physiological relevance. A notable exception is the DraT/DraG system of nitrogen‐fixating bacteria from the
<italic>Azospirillum</italic>
and
<italic>Rhodospirillum</italic>
genera. DraT homologues are restricted to several nitrogen‐fixing bacteria, while DraG homologues are distributed across all three domains of life
<xref rid="febs14078-bib-0067" ref-type="ref">67</xref>
. Endogenous ADP‐ribosylation has also been reported for some other bacterial species where this process probably regulates important cellular functions such as sporulation in
<italic>Bacillus subtilis</italic>
<xref rid="febs14078-bib-0130" ref-type="ref">130</xref>
, development and cell–cell interaction in
<italic>Myxococcus xanthus</italic>
<xref rid="febs14078-bib-0131" ref-type="ref">131</xref>
,
<xref rid="febs14078-bib-0132" ref-type="ref">132</xref>
, as well as differentiation and secondary metabolism in
<italic>Streptomyces</italic>
<xref rid="febs14078-bib-0133" ref-type="ref">133</xref>
,
<xref rid="febs14078-bib-0134" ref-type="ref">134</xref>
,
<xref rid="febs14078-bib-0135" ref-type="ref">135</xref>
,
<xref rid="febs14078-bib-0136" ref-type="ref">136</xref>
.</p>
<sec id="febs14078-sec-0009">
<title>
<italic>Streptomyces</italic>
– bacterial model organism for the study of ADP‐ribosylation</title>
<p>So far, the most evidence for intracellular endogenous protein ADP‐ribosylation has been found in
<italic>Streptomyces</italic>
species.
<italic>Streptomyces</italic>
are soil‐inhabiting Gram‐positive bacteria best known for their complex life cycle that includes morphological differentiation and the production of various secondary metabolites including antibiotics, anti‐cancer drugs and immunosuppressors. ADP‐ribosylation has been discovered in
<italic>Streptomyces</italic>
over 20 years ago
<xref rid="febs14078-bib-0137" ref-type="ref">137</xref>
. First reports demonstrated considerable ADP‐ribosylating activities in cell extracts and suggested a role for ADP‐ribosylation in growth and differentiation processes in
<italic>Streptomyces griseus</italic>
<xref rid="febs14078-bib-0133" ref-type="ref">133</xref>
,
<xref rid="febs14078-bib-0134" ref-type="ref">134</xref>
. In both
<italic>Str. griseus</italic>
and
<italic>Streptomyces coelicolor</italic>
, ADP‐ribosylation patterns change with morphological differentiation
<xref rid="febs14078-bib-0138" ref-type="ref">138</xref>
,
<xref rid="febs14078-bib-0139" ref-type="ref">139</xref>
and several identified ADP‐ribosylated proteins in
<italic>Str. coelicolor</italic>
suggested a connection between protein ADP‐ribosylation and the regulation of metabolic requirements of the cells
<xref rid="febs14078-bib-0135" ref-type="ref">135</xref>
.</p>
<p>
<italic>Streptomyces coelicolor</italic>
genomic data (Table 
<xref rid="febs14078-tbl-0001" ref-type="table">1</xref>
) suggest that ADP‐ribosylation should be prominent in
<italic>Streptomyces</italic>
. Two ARTs have been characterized in
<italic>Streptomyces</italic>
, SCO5461 from
<italic>Str. coelicolor</italic>
<xref rid="febs14078-bib-0136" ref-type="ref">136</xref>
,
<xref rid="febs14078-bib-0140" ref-type="ref">140</xref>
and Scabin from plant pathogen
<italic>Streptomyces scabies</italic>
<xref rid="febs14078-bib-0141" ref-type="ref">141</xref>
. These proteins are homologues of pierisins
<xref rid="febs14078-bib-0004" ref-type="ref">4</xref>
and possess guanine‐specific DNA ART activity, but they are not conserved across the
<italic>Streptomyces</italic>
species and cannot be found in
<italic>Str. griseus</italic>
, suggesting that the major protein ARTs in
<italic>Streptomyces</italic>
have yet to be discovered. Disruption of SCO5461 leads to conditional pleiotropic phenotype characterized by defects of morphological differentiation, antibiotic production and secretion
<xref rid="febs14078-bib-0136" ref-type="ref">136</xref>
.</p>
<table-wrap id="febs14078-tbl-0001" xml:lang="en" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<p>Enzymes potentially involved in ADP‐ribosylation process in
<italic>Streptomyces coelicolor</italic>
</p>
</caption>
<table frame="hsides" rules="groups">
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<tbody>
<tr>
<td align="left" rowspan="3" colspan="1">ADP‐ribosyltransferases</td>
<td align="left" rowspan="1" colspan="1">SCO2860 (Arr homologue)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">SCO3953 (Tpt1/KptA homologue)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">SCO5461 (Pierisin homologue)</td>
</tr>
<tr>
<td align="left" rowspan="3" colspan="1">Macrodomain hydrolases</td>
<td align="left" rowspan="1" colspan="1">SCO0909 (bacterial‐type PARG)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">SCO6450 (MacroD homologue)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">SCO6735 (TARG1‐like)</td>
</tr>
<tr>
<td align="left" rowspan="8" colspan="1">DraG/ARH ‐like hydrolases</td>
<td align="left" rowspan="1" colspan="1">SCO0086</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">SCO1766</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">SCO2028</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">SCO2029</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">SCO2030</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">SCO2031</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">SCO4435</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">SCO5809</td>
</tr>
<tr>
<td align="left" rowspan="2" colspan="1">Sirtuins</td>
<td align="left" rowspan="1" colspan="1">SCO0452</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">SCO6464</td>
</tr>
</tbody>
</table>
<permissions>
<copyright-holder>John Wiley & Sons, Ltd</copyright-holder>
<license>
<license-p>This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.</license-p>
</license>
</permissions>
</table-wrap>
<p>The SCO3953 protein is a homologue of yeast tRNA 2′‐phosphotransferase Tpt1, an essential enzyme in yeast that catalyses the final step in tRNA splicing. This reaction includes dephosphorylation of tRNA 2′‐phosphate in two steps; transfer of ADPr from NAD
<sup>+</sup>
to tRNA 2′‐phosphate that generates a 2′‐phospho‐ADPr‐RNA intermediate and release of mature tRNA together with ADPr 1″‐2″‐cyclic phosphate
<xref rid="febs14078-bib-0142" ref-type="ref">142</xref>
(Fig. 
<xref rid="febs14078-fig-0001" ref-type="fig">1</xref>
). Tpt1 homologues are found distributed across all domains of life including bacterial species that have no known intron‐containing tRNAs (
<italic>Str. coelicolor</italic>
and
<italic>E. coli</italic>
whose orthologue is called KptA are among them). Therefore, bacterial Tpt1/KptA homologues should have some yet uncovered substrate(s) and function(s).</p>
<p>The SCO2860 is a homologue of
<italic>Mycobacterium smegmatis</italic>
ART Arr that modifies antibiotic rifampicin (Fig. 
<xref rid="febs14078-fig-0001" ref-type="fig">1</xref>
) and causes antibiotic resistance.
<italic>Mycobacterium smegmatis Arr</italic>
gene has been acquired from horizontal gene transfer
<xref rid="febs14078-bib-0143" ref-type="ref">143</xref>
. It is upregulated after exposure to different kinds of stress and its endogenous cellular function has been proposed in a general stress response
<xref rid="febs14078-bib-0144" ref-type="ref">144</xref>
.</p>
<p>There is evidence of a much larger number of potential ADPr hydrolases in
<italic>Str. coelicolor</italic>
. Eight of them are uncharacterized DraG homologues and three are macrodomain proteins representing three different classes within the macrodomain superfamily (Table 
<xref rid="febs14078-tbl-0001" ref-type="table">1</xref>
).</p>
<p>The SCO0909 is a bacterial‐type PARG that cleaves the PARylation in the same manner as mammalian PARGs
<xref rid="febs14078-bib-0036" ref-type="ref">36</xref>
. Nothing is known about the function of SCO0909, but in the radiation‐resistant bacterium
<italic>Deinococcus radiodurans</italic>
the
<italic>Sco0909</italic>
gene is one of the most highly induced genes after DNA damage caused by ionizing radiation
<xref rid="febs14078-bib-0145" ref-type="ref">145</xref>
.</p>
<p>The SCO6450 is a MacroD homologue and it is predicted to remove protein MARylation. SCO6450 orthologues are found in most of the bacteria
<xref rid="febs14078-bib-0054" ref-type="ref">54</xref>
.
<italic>Escherichia coli</italic>
homologue YmdB appears to be a multifunctional protein that regulates variety of cellular processes; deacetylates
<italic>O</italic>
AADPr, hydrolyses MARylated protein substrates, regulates RNAse III activity and modulates bacterial biofilm formation
<xref rid="febs14078-bib-0055" ref-type="ref">55</xref>
,
<xref rid="febs14078-bib-0069" ref-type="ref">69</xref>
,
<xref rid="febs14078-bib-0146" ref-type="ref">146</xref>
,
<xref rid="febs14078-bib-0147" ref-type="ref">147</xref>
.</p>
<p>SCO6735 is a macrodomain protein closest to human proteins ALC1 and TARG1
<xref rid="febs14078-bib-0054" ref-type="ref">54</xref>
,
<xref rid="febs14078-bib-0148" ref-type="ref">148</xref>
.
<italic>In vitro</italic>
SCO06735 can remove MARylation from glutamate residues, yet structural and biochemical characterization indicate a mechanism distinct from any other known macrodomain hydrolases
<xref rid="febs14078-bib-0148" ref-type="ref">148</xref>
. Although SCO6735 physiological substrate is still unknown, its expression is under the control of a RecA‐independent DNA damage inducible promoter
<xref rid="febs14078-bib-0149" ref-type="ref">149</xref>
,
<xref rid="febs14078-bib-0150" ref-type="ref">150</xref>
and upregulated upon UV‐induced DNA damage
<xref rid="febs14078-bib-0148" ref-type="ref">148</xref>
, thus indicating a role in DNA damage response. Moreover, SCO6735 is possibly involved in the regulation of antibiotic production and disruption of the
<italic>Sco6735</italic>
gene was shown to increase actinorhodin production
<xref rid="febs14078-bib-0148" ref-type="ref">148</xref>
.</p>
<p>Two sirtuins, CobB1 (SCO0452) and CobB2 (SCO6464), have been identified in
<italic>Str. coelicolor</italic>
. CobB1 is a SIRT4 homologue that exhibits deacetylase activity on acetyl‐CoA synthetase and consequently regulates its activity
<xref rid="febs14078-bib-0151" ref-type="ref">151</xref>
. Auto‐ADP‐ribosylation was demonstrated for the SIRT4 homologue of
<italic>M. smegmatis</italic>
<xref rid="febs14078-bib-0152" ref-type="ref">152</xref>
. CobB2 appears to be related to SIRT5 and its overexpression suppresses production of two pigmented antibiotics, thus creating a loss‐of‐colouration phenotype
<xref rid="febs14078-bib-0153" ref-type="ref">153</xref>
.</p>
<p>Altogether,
<italic>Streptomyces</italic>
represent a good model for the study of ADP‐ribosylation in bacteria and future studies on this model should help deciphering players and mechanisms of reversible ADP‐ribosylation process. Since ADP‐ribosylation is involved in the control of antibiotic production in
<italic>Streptomyces</italic>
, a better understanding of this process will also enable better exploitation of
<italic>Streptomyces</italic>
biotechnological potential.</p>
</sec>
</sec>
<sec id="febs14078-sec-0010">
<title>Other notable ADP‐ribosylation systems in bacteria</title>
<p>Studies looking either at the genomic context of ADP‐ribosylating systems or their evolution in bacteria suggest that ADP‐ribosylation might be involved in the regulation of many crucial cellular processes including bacterial persistence, oxidative stress response and adaptation to the host environment in general
<xref rid="febs14078-bib-0005" ref-type="ref">5</xref>
,
<xref rid="febs14078-bib-0009" ref-type="ref">9</xref>
,
<xref rid="febs14078-bib-0049" ref-type="ref">49</xref>
,
<xref rid="febs14078-bib-0154" ref-type="ref">154</xref>
.</p>
<sec id="febs14078-sec-0011">
<title>Reversible DNA ADP‐ribosylation</title>
<p>A novel DNA‐ribosylating toxin‐antitoxin (TA) system has been identified in a variety of different bacterial species including the human pathogens
<italic>Mycobacterium tuberculosis</italic>
and enterohemorrhagic
<italic>E. coli</italic>
<xref rid="febs14078-bib-0005" ref-type="ref">5</xref>
. The toxin component of the TA system is a DNA ART (DarT), which catalyses the modification of the second thymidine base in the TNTC motif of ssDNA. This modification is reversed by the DNA ADPr glycohydrolase (DarG) activity of the antitoxin. The substrate specificity of DarT led to the discovery that the ADP‐ribosylation interferes with DNA replication and induces DNA damage signalling via the SOS response
<xref rid="febs14078-bib-0005" ref-type="ref">5</xref>
. DarG belongs to the ALC1‐like class of macrodomains and is structurally most similar to human TARG1. In addition to the reversal of the DNA ADP‐ribosylation by DarG macrodomain hydrolytic activity, protein–protein interaction between DarT and DarG (resembling a type II TA system) revealed a second layer of DarT regulation
<xref rid="febs14078-bib-0005" ref-type="ref">5</xref>
. All available data including the fact that DarG is essential in
<italic>M. tuberculosis</italic>
suggest that targeting this ADP‐ribosylating TA system may have a therapeutic potential
<xref rid="febs14078-bib-0005" ref-type="ref">5</xref>
,
<xref rid="febs14078-bib-0155" ref-type="ref">155</xref>
.</p>
</sec>
<sec id="febs14078-sec-0012">
<title>Sirtuin dependent ADP‐ribosylation in regulation of oxidative stress</title>
<p>Protein ADP‐ribosylation carried out by a distinct class of sirtuins (SirTM) was described in
<italic>Sta. aureus</italic>
and
<italic>Streptococcus pyogenes</italic>
and was suggested to regulate oxidative stress response in these pathogens. SirTM is encoded within an operon containing a modification carrier protein (GcvH‐L). GcvH‐L becomes doubly modified by two different PTMs through the actions of SirTM (ADP‐ribosylation) and another component of the operon that acts as a lipoate ligase (synthesising the protein lipoylation)
<xref rid="febs14078-bib-0002" ref-type="ref">2</xref>
,
<xref rid="febs14078-bib-0049" ref-type="ref">49</xref>
,
<xref rid="febs14078-bib-0156" ref-type="ref">156</xref>
. Yet another protein product of the same operon is a macrodomain protein (belonging to the MacroD‐type class), which specifically reverses the ADP‐ribosylation of GcvH‐L
<xref rid="febs14078-bib-0049" ref-type="ref">49</xref>
. It was suggested that the lipoylation acts as a scavenger of reactive oxygen species (either host derived or environmentally induced), while the reversible ADP‐ribosylation may regulate interactions with other proteins involved in the oxidative stress response that are part of this protein complex
<xref rid="febs14078-bib-0049" ref-type="ref">49</xref>
. SirTM homologues are found in a number of fungal pathogens
<xref rid="febs14078-bib-0049" ref-type="ref">49</xref>
.</p>
</sec>
<sec id="febs14078-sec-0013">
<title>ADP‐ribosylation as precursor for ligase‐independent ubiquitination</title>
<p>Bacterial‐induced ADP‐ribosylation has been implicated in regulation of host ubiquitination signalling, a eukaryotic‐specific PTM via attachment of a small protein ubiquitin and associated with modulation of the target protein function or degradation
<xref rid="febs14078-bib-0002" ref-type="ref">2</xref>
,
<xref rid="febs14078-bib-0157" ref-type="ref">157</xref>
. The pathogenic bacterium
<italic>L. pneumophila</italic>
uses ubiquitin effector proteins of the Sde family, a new class of ubiquitin‐specific monoART, to modulate the host ubiquitin signalling and create a favourable growth environment within the host cell
<xref rid="febs14078-bib-0158" ref-type="ref">158</xref>
. One of the Sde proteins, SdeA, contains a monoART domain as well as phosphodiesterase domain (PDE)
<xref rid="febs14078-bib-0095" ref-type="ref">95</xref>
,
<xref rid="febs14078-bib-0096" ref-type="ref">96</xref>
. The monoART catalyses the ADP‐ribosylation of ubiquitin on Arg42, while the PDE hydrolizes the ADPr‐phosphodiester bond, thus establishing a 5′‐phosphoribosyl modification (Fig. 
<xref rid="febs14078-fig-0001" ref-type="fig">1</xref>
). Subsequently, the phosphoribosylated ubiquitin is linked to a serine residue within target proteins, thus completing an E2/3 ligase‐independent ubiquitination system. Sde‐mediated ubiquitination of several ER‐associated Rab proteins and reticulon 4 impairs several cellular processes, such as mitophagy, TNF signalling, tubular endoplasmic reticulum functions and proteasomal degradation, allowing better bacterial growth
<xref rid="febs14078-bib-0095" ref-type="ref">95</xref>
,
<xref rid="febs14078-bib-0096" ref-type="ref">96</xref>
.</p>
</sec>
</sec>
<sec id="febs14078-sec-0014">
<title>ADP‐ribosylation in archaea</title>
<p>Among archaea only the Tpt1/KptA ART type can be found widely spread. Considering its wide distribution in all three domains of life and structural simplicity, this protein could represent the ancestral version of the entire ART superfamily
<xref rid="febs14078-bib-0009" ref-type="ref">9</xref>
. Other representatives of the ART superfamily can be found, but these are limited to only a few species per homologue
<xref rid="febs14078-bib-0009" ref-type="ref">9</xref>
. In the two methane‐producing archaea
<italic>Methanobrevibacter smithii</italic>
and
<italic>Methanospirillum hungatei</italic>
homologues of the exotoxin Alt/VIP2 were identified. A gene encoding a fusion‐protein homologue of the DarT‐DarG TA system was found in
<italic>Nitrosopumilus maritimus</italic>
. Protein ADP‐ribosylating sirtuins (SirTM) have been found in the genomes of
<italic>Sulfolobus solfataricus</italic>
and
<italic>Methanobrevibacter</italic>
species
<xref rid="febs14078-bib-0054" ref-type="ref">54</xref>
,
<xref rid="febs14078-bib-0159" ref-type="ref">159</xref>
. Although PARPs‐encoding genes could not been found in archaeal genomes, a PARP‐like protein ADP‐ribosylation activity has been detected in
<italic>Su. solfataricus</italic>
<xref rid="febs14078-bib-0160" ref-type="ref">160</xref>
.</p>
<p>Enzymes capable of removing ADP‐ribosylation are represented in archaea by two classes, MacroD‐type and TARG1‐like. The best‐studied archaeal macrodomain protein is Af1521 from thermophile archaea
<italic>Arhaeoglobus fulgidus</italic>
. This protein is capable of binding both ADPr and PAR, and possesses enzymatic activity capable of hydrolysing Appr‐1‐P and MARylated protein substrates
<xref rid="febs14078-bib-0052" ref-type="ref">52</xref>
,
<xref rid="febs14078-bib-0069" ref-type="ref">69</xref>
,
<xref rid="febs14078-bib-0070" ref-type="ref">70</xref>
. Af1521 is also used as a tool to enrich ADP‐ribosylated protein for mass‐spectrometry analyses of modification sites
<xref rid="febs14078-bib-0083" ref-type="ref">83</xref>
,
<xref rid="febs14078-bib-0161" ref-type="ref">161</xref>
. TARG1‐like enzymes, as well as DraG homologues are sporadically found in some archaeal species such as
<italic>Methanococcus janaschii</italic>
(PDB code
<ext-link ext-link-type="uri" xlink:href="http://www.rcsb.org/pdb/search/structidSearch.do?structureId=1T5J">http://www.rcsb.org/pdb/search/structidSearch.do?structureId=1T5J</ext-link>
).</p>
</sec>
<sec id="febs14078-sec-0015">
<title>ADP‐ribosylation in viruses</title>
<p>Viruses can manipulate host ADP‐ribosylation machinery and MARylation has been recognized as an efficient weapon in the bacteriophage arsenal that is successfully used against bacterial antiphage defence
<xref rid="febs14078-bib-0155" ref-type="ref">155</xref>
,
<xref rid="febs14078-bib-0162" ref-type="ref">162</xref>
. Alt, ModA and ModB are T4 phage ARTC‐like monoARTs that modify the
<italic>E. coli</italic>
host proteins shortly after infection to overtake the control of the host transcriptional and translational machinery. These enzymes together modify over 30
<italic>E. coli</italic>
proteins, including RNA polymerase, ribosomal protein S1, EF‐Tu and MazF
<xref rid="febs14078-bib-0162" ref-type="ref">162</xref>
,
<xref rid="febs14078-bib-0163" ref-type="ref">163</xref>
. Of these MazF belongs to one of the best‐studied type II TA systems (MazE/MazF), which is involved in bacteriophage defence. MazE is a rapidly degraded antitoxin and MazF is a stable toxin with RNA cleavage activity (specific to ACA RNA sequence) that blocks protein synthesis. Using Alt, the T4 phage defends itself against this system by ADP‐riboysilating MazF, impairing the RNA cleavage activity, and thus enables phage growth
<xref rid="febs14078-bib-0163" ref-type="ref">163</xref>
.</p>
<p>Another type of ARTs that can be identified in a limited number of dsDNA viruses are PARP‐like proteins. These are most likely acquired by horizontal gene transfer and their physiological role remains yet to be studied
<xref rid="febs14078-bib-0003" ref-type="ref">3</xref>
.</p>
<p>Proteins encoding macrodomains are more frequently distributed in viral genomes and several different types of macrodomains can be found in both dsDNA and positive‐strand ssRNA
<xref rid="febs14078-bib-0010" ref-type="ref">10</xref>
,
<xref rid="febs14078-bib-0054" ref-type="ref">54</xref>
. Viral macrodomains are usually part of larger proteins that contain additional domains. Biochemical, structural and phylogenetic evidences showed that viral and cellular macrodomains are closely related. Viral macrodomains bind ADPr and PAR and can perform activities characteristic for cellular macrodomains. Most viral macrodomains belong to MacroD‐type class, but besides their basic de‐MARylation activity, they are also capable to remove the whole PAR chain from PARylated substrates resembling TARG1 activity
<xref rid="febs14078-bib-0010" ref-type="ref">10</xref>
. In coronaviruses, the MacroD‐type macrodomain is a part of the multidomain nonstructural protein 3 (nsP3). It has been shown that this macrodomain promotes virulence and suppresses the innate immune response during severe acute respiratory syndrome (SARS) coronavirus infection
<xref rid="febs14078-bib-0011" ref-type="ref">11</xref>
. In addition to the MacroD‐type of macrodomains, a highly diverged macrodomain SUD‐M was found as a part of the nsP3 in SARS coronaviruses. This unique macrodomain binds nucleic acids, preferentially RNA, and is crucial for viral genome replication/transcription
<xref rid="febs14078-bib-0164" ref-type="ref">164</xref>
. Numerous other examples show that viral macrodomains affect virus replication and interferon‐response in humans
<xref rid="febs14078-bib-0012" ref-type="ref">12</xref>
,
<xref rid="febs14078-bib-0013" ref-type="ref">13</xref>
. Viral macrodomains may act against mammalian PARPs that are known to possess antiviral activity
<xref rid="febs14078-bib-0010" ref-type="ref">10</xref>
. PARPs involved in the antiviral defence are interferon‐inducible, bear the signature of accelerated evolution and inhibit virus replication
<xref rid="febs14078-bib-0165" ref-type="ref">165</xref>
. Specifically, PARP7, PARP10 and PARP12 have been experimentally shown to act as inhibitors of virus replication
<xref rid="febs14078-bib-0166" ref-type="ref">166</xref>
. Another rapidly evolving PARP with broad antiviral activity is PARP13 (zinc finger antiviral protein), which specifically binds to viral RNA sequences targeting them for degradation
<xref rid="febs14078-bib-0167" ref-type="ref">167</xref>
. Evidences for positive selection have also been found in macro‐PARPs (PARP9, PARP14 and PARP15) and PARP4
<xref rid="febs14078-bib-0168" ref-type="ref">168</xref>
. In some cases, cellular PARP activity can be beneficial for viral infection rather than inhibitory
<xref rid="febs14078-bib-0169" ref-type="ref">169</xref>
,
<xref rid="febs14078-bib-0170" ref-type="ref">170</xref>
.</p>
</sec>
<sec id="febs14078-sec-0016">
<title>Concluding remarks and future work</title>
<p>Numerous studies investigating ADP‐ribosylation have been performed in the last several decades. Yet, our understanding of the molecular mechanisms governing ADP‐ribosylation signalling and the physiological and pathophysiological importance of the pathways regulated by ADP‐ribosylation are still poorly understood. Thus, there are many exciting findings waiting to be discovered in this field of research and the scientific community researching the ADP‐ribosylation has been steadily growing in recent years. Many researchers are now also investing great efforts in developing new platforms, tools, methods and pipelines to study the ADP‐ribosylation
<xref rid="febs14078-bib-0083" ref-type="ref">83</xref>
,
<xref rid="febs14078-bib-0091" ref-type="ref">91</xref>
,
<xref rid="febs14078-bib-0122" ref-type="ref">122</xref>
,
<xref rid="febs14078-bib-0123" ref-type="ref">123</xref>
,
<xref rid="febs14078-bib-0125" ref-type="ref">125</xref>
,
<xref rid="febs14078-bib-0161" ref-type="ref">161</xref>
,
<xref rid="febs14078-bib-0171" ref-type="ref">171</xref>
,
<xref rid="febs14078-bib-0172" ref-type="ref">172</xref>
,
<xref rid="febs14078-bib-0173" ref-type="ref">173</xref>
,
<xref rid="febs14078-bib-0174" ref-type="ref">174</xref>
,
<xref rid="febs14078-bib-0175" ref-type="ref">175</xref>
these should greatly facilitate further understanding of the complexity of molecular and cellular mechanisms controlled by ADP‐ribosylation.</p>
</sec>
<sec id="febs14078-sec-0018">
<title>Author contributions</title>
<p>LP, AM and IA cowrote the manuscript and designed the figures.</p>
</sec>
<sec sec-type="COI-statement" id="febs14078-sec-0019">
<title>Conflicts of interest</title>
<p>The authors have no conflicts of interest.</p>
</sec>
</body>
<back>
<ack id="febs14078-sec-0017">
<title>Acknowledgements</title>
<p>The authors are grateful to Johannes Rack and Kerryanne Crawford (University of Oxford) for their constructive comments on the manuscript. Ahel laboratory is funded by the Wellcome Trust (grant 101794), Cancer Research UK (grant C35050/A22284), and the European Research Council (grant 281739). This work is also supported by the Croatian Science Foundation (Project No. IP–2016–06–4242).</p>
</ack>
<ref-list content-type="cited-references" id="febs14078-bibl-0001">
<title>References</title>
<ref id="febs14078-bib-0001">
<label>1</label>
<mixed-citation publication-type="book" id="febs14078-cit-0001">
<string-name>
<surname>Darwin</surname>
<given-names>C</given-names>
</string-name>
(
<year>1859</year>
)
<source xml:lang="en">On the Origin of Species by Means of Natural Selection, or, the Preservation of Favoured Races in the Struggle for Life</source>
.
<publisher-name>J Murray</publisher-name>
,
<publisher-loc>London</publisher-loc>
.</mixed-citation>
</ref>
<ref id="febs14078-bib-0002">
<label>2</label>
<mixed-citation publication-type="book" id="febs14078-cit-0002">
<string-name>
<surname>Walsh</surname>
<given-names>C</given-names>
</string-name>
(
<year>2006</year>
)
<source xml:lang="en">Posttranslational Modification of Proteins: Expanding Nature's Inventory</source>
.
<publisher-name>Roberts and Co. Publishers</publisher-name>
,
<publisher-loc>Englewood, CO</publisher-loc>
XXI, pp.
<fpage>490</fpage>
.</mixed-citation>
</ref>
<ref id="febs14078-bib-0003">
<label>3</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0003">
<string-name>
<surname>Perina</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Mikoč</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Ahel</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Ćetković</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Žaja</surname>
<given-names>R</given-names>
</string-name>
&
<string-name>
<surname>Ahel</surname>
<given-names>I</given-names>
</string-name>
(
<year>2014</year>
)
<article-title>Distribution of protein poly(ADP‐ribosyl)ation systems across all domains of life</article-title>
.
<source xml:lang="en">DNA Repair (Amst)</source>
<volume>23</volume>
,
<fpage>4</fpage>
<lpage>16</lpage>
.
<pub-id pub-id-type="pmid">24865146</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0004">
<label>4</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0004">
<string-name>
<surname>Nakano</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Takahashi‐Nakaguchi</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Yamamoto</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Watanabe</surname>
<given-names>M</given-names>
</string-name>
(
<year>2015</year>
)
<article-title>Pierisins and CARP‐1: ADP‐ribosylation of DNA by ARTCs in butterflies and shellfish</article-title>
.
<source xml:lang="en">Curr Top Microbiol Immunol</source>
<volume>384</volume>
,
<fpage>127</fpage>
<lpage>149</lpage>
.
<pub-id pub-id-type="pmid">25033755</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0005">
<label>5</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0005">
<string-name>
<surname>Jankevicius</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Ariza</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Ahel</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Ahel</surname>
<given-names>I</given-names>
</string-name>
(
<year>2016</year>
)
<article-title>The toxin‐antitoxin system DarTG catalyzes reversible ADP‐ribosylation of DNA</article-title>
.
<source xml:lang="en">Mol Cell</source>
<volume>64</volume>
,
<fpage>1109</fpage>
<lpage>1116</lpage>
.
<pub-id pub-id-type="pmid">27939941</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0006">
<label>6</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0006">
<string-name>
<surname>Talhaoui</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Lebedeva</surname>
<given-names>NA</given-names>
</string-name>
,
<string-name>
<surname>Zarkovic</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Saint‐Pierre</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Kutuzov</surname>
<given-names>MM</given-names>
</string-name>
,
<string-name>
<surname>Sukhanova</surname>
<given-names>MV</given-names>
</string-name>
,
<string-name>
<surname>Matkarimov</surname>
<given-names>BT</given-names>
</string-name>
,
<string-name>
<surname>Gasparutto</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Saparbaev</surname>
<given-names>MK</given-names>
</string-name>
,
<string-name>
<surname>Lavrik</surname>
<given-names>OI</given-names>
</string-name>
<italic>et al</italic>
(
<year>2016</year>
)
<article-title>Poly(ADP‐ribose) polymerases covalently modify strand break termini in DNA fragments in vitro</article-title>
.
<source xml:lang="en">Nucleic Acids Res</source>
<volume>44</volume>
,
<fpage>9279</fpage>
<lpage>9295</lpage>
.
<pub-id pub-id-type="pmid">27471034</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0007">
<label>7</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0007">
<string-name>
<surname>Hottiger</surname>
<given-names>MO</given-names>
</string-name>
,
<string-name>
<surname>Hassa</surname>
<given-names>PO</given-names>
</string-name>
,
<string-name>
<surname>Lüscher</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Schüler</surname>
<given-names>H</given-names>
</string-name>
&
<string-name>
<surname>Koch‐Nolte</surname>
<given-names>F</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>Toward a unified nomenclature for mammalian ADP‐ribosyltransferases</article-title>
.
<source xml:lang="en">Trends Biochem Sci</source>
<volume>35</volume>
,
<fpage>208</fpage>
<lpage>219</lpage>
.
<pub-id pub-id-type="pmid">20106667</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0008">
<label>8</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0008">
<string-name>
<surname>Collier</surname>
<given-names>RJ</given-names>
</string-name>
(
<year>2001</year>
)
<article-title>Understanding the mode of action of diphtheria toxin: a perspective on progress during the 20th century</article-title>
.
<source xml:lang="en">Toxicon</source>
<volume>39</volume>
,
<fpage>1793</fpage>
<lpage>1803</lpage>
.
<pub-id pub-id-type="pmid">11595641</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0009">
<label>9</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0009">
<string-name>
<surname>Aravind</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>de Souza</surname>
<given-names>RF</given-names>
</string-name>
,
<string-name>
<surname>Anand</surname>
<given-names>S</given-names>
</string-name>
&
<string-name>
<surname>Iyer</surname>
<given-names>LM</given-names>
</string-name>
(
<year>2015</year>
)
<article-title>The natural history of ADP‐ribosyltransferases and the ADP‐ribosylation system</article-title>
.
<source xml:lang="en">Curr Top Microbiol Immunol</source>
<volume>384</volume>
,
<fpage>3</fpage>
<lpage>32</lpage>
.
<pub-id pub-id-type="pmid">25027823</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0010">
<label>10</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0010">
<string-name>
<surname>Li</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Debing</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Jankevicius</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Neyts</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Ahel</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Coutard</surname>
<given-names>B</given-names>
</string-name>
&
<string-name>
<surname>Canard</surname>
<given-names>B</given-names>
</string-name>
(
<year>2016</year>
)
<article-title>Viral macro domains reverse protein ADP‐ribosylation</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>90</volume>
,
<fpage>8478</fpage>
<lpage>8486</lpage>
.
<pub-id pub-id-type="pmid">27440879</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0011">
<label>11</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0011">
<string-name>
<surname>Fehr</surname>
<given-names>AR</given-names>
</string-name>
,
<string-name>
<surname>Channappanavar</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Jankevicius</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Fett</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Zhao</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Athmer</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Meyerholz</surname>
<given-names>DK</given-names>
</string-name>
,
<string-name>
<surname>Ahel</surname>
<given-names>I</given-names>
</string-name>
&
<string-name>
<surname>Perlman</surname>
<given-names>S</given-names>
</string-name>
(
<year>2016</year>
)
<article-title>The conserved coronavirus macrodomain promotes virulence and suppresses the innate immune response during severe acute respiratory syndrome coronavirus infection</article-title>
.
<source xml:lang="en">MBio</source>
<volume>7</volume>
, pii: e01721‐16.</mixed-citation>
</ref>
<ref id="febs14078-bib-0012">
<label>12</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0012">
<string-name>
<surname>McPherson</surname>
<given-names>RL</given-names>
</string-name>
,
<string-name>
<surname>Abraham</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Sreekumar</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Ong</surname>
<given-names>SE</given-names>
</string-name>
,
<string-name>
<surname>Cheng</surname>
<given-names>SJ</given-names>
</string-name>
,
<string-name>
<surname>Baxter</surname>
<given-names>VK</given-names>
</string-name>
,
<string-name>
<surname>Kistemaker</surname>
<given-names>HA</given-names>
</string-name>
,
<string-name>
<surname>Filippov</surname>
<given-names>DV</given-names>
</string-name>
,
<string-name>
<surname>Griffin</surname>
<given-names>DE</given-names>
</string-name>
&
<string-name>
<surname>Leung</surname>
<given-names>AK</given-names>
</string-name>
(
<year>2017</year>
)
<article-title>ADP‐ribosylhydrolase activity of Chikungunya virus macrodomain is critical for virus replication and virulence</article-title>
.
<source xml:lang="en">Proc Natl Acad Sci USA</source>
<volume>114</volume>
,
<fpage>1666</fpage>
<lpage>1671</lpage>
.
<pub-id pub-id-type="pmid">28143925</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0013">
<label>13</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0013">
<string-name>
<surname>Eckei</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Krieg</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Bütepage</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Lehmann</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Gross</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Lippok</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Grimm</surname>
<given-names>AR</given-names>
</string-name>
,
<string-name>
<surname>Kümmerer</surname>
<given-names>BM</given-names>
</string-name>
,
<string-name>
<surname>Rossetti</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Lüscher</surname>
<given-names>B</given-names>
</string-name>
<italic>et al</italic>
(
<year>2017</year>
)
<article-title>The conserved macrodomains of the non‐structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono‐ADP‐ribosylhydrolases</article-title>
.
<source xml:lang="en">Sci Rep</source>
<volume>7</volume>
,
<fpage>41746</fpage>
.
<pub-id pub-id-type="pmid">28150709</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0014">
<label>14</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0014">
<string-name>
<surname>Gibson</surname>
<given-names>BA</given-names>
</string-name>
&
<string-name>
<surname>Kraus</surname>
<given-names>WL</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>New insights into the molecular and cellular functions of poly(ADP‐ribose) and PARPs</article-title>
.
<source xml:lang="en">Nat Rev Mol Cell Biol</source>
<volume>13</volume>
,
<fpage>411</fpage>
<lpage>424</lpage>
.
<pub-id pub-id-type="pmid">22713970</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0015">
<label>15</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0015">
<string-name>
<surname>Kraus</surname>
<given-names>WL</given-names>
</string-name>
(
<year>2015</year>
)
<article-title>PARPs and ADP‐ribosylation: 50 years … and counting</article-title>
.
<source xml:lang="en">Mol Cell</source>
<volume>58</volume>
,
<fpage>902</fpage>
<lpage>910</lpage>
.
<pub-id pub-id-type="pmid">26091339</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0016">
<label>16</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0016">
<string-name>
<surname>Barkauskaite</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Jankevicius</surname>
<given-names>G</given-names>
</string-name>
&
<string-name>
<surname>Ahel</surname>
<given-names>I</given-names>
</string-name>
(
<year>2015</year>
)
<article-title>Structures and mechanisms of enzymes employed in the synthesis and degradation of PARP‐dependent protein ADP‐ribosylation</article-title>
.
<source xml:lang="en">Mol Cell</source>
<volume>58</volume>
,
<fpage>935</fpage>
<lpage>946</lpage>
.
<pub-id pub-id-type="pmid">26091342</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0017">
<label>17</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0017">
<string-name>
<surname>Corda</surname>
<given-names>D</given-names>
</string-name>
&
<string-name>
<surname>Di Girolamo</surname>
<given-names>M</given-names>
</string-name>
(
<year>2003</year>
)
<article-title>Functional aspects of protein mono‐ADP‐ribosylation</article-title>
.
<source xml:lang="en">EMBO J</source>
<volume>22</volume>
,
<fpage>1953</fpage>
<lpage>1958</lpage>
.
<pub-id pub-id-type="pmid">12727863</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0018">
<label>18</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0018">
<string-name>
<surname>Jwa</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Chang</surname>
<given-names>P</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>PARP16 is a tail‐anchored endoplasmic reticulum protein required for the PERK‐ and IRE1α‐mediated unfolded protein response</article-title>
.
<source xml:lang="en">Nat Cell Biol</source>
<volume>14</volume>
,
<fpage>1223</fpage>
<lpage>1230</lpage>
.
<pub-id pub-id-type="pmid">23103912</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0019">
<label>19</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0019">
<string-name>
<surname>Chang</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Coughlin</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Mitchison</surname>
<given-names>TJ</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>Tankyrase‐1 polymerization of poly(ADP‐ribose) is required for spindle structure and function</article-title>
.
<source xml:lang="en">Nat Cell Biol</source>
<volume>7</volume>
,
<fpage>1133</fpage>
<lpage>1139</lpage>
.
<pub-id pub-id-type="pmid">16244666</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0020">
<label>20</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0020">
<string-name>
<surname>Leung</surname>
<given-names>AK</given-names>
</string-name>
,
<string-name>
<surname>Vyas</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Rood</surname>
<given-names>JE</given-names>
</string-name>
,
<string-name>
<surname>Bhutkar</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Sharp</surname>
<given-names>PA</given-names>
</string-name>
&
<string-name>
<surname>Chang</surname>
<given-names>P</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>Poly(ADP‐ribose) regulates stress responses and microRNA activity in the cytoplasm</article-title>
.
<source xml:lang="en">Mol Cell</source>
<volume>42</volume>
,
<fpage>489</fpage>
<lpage>499</lpage>
.
<pub-id pub-id-type="pmid">21596313</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0021">
<label>21</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0021">
<string-name>
<surname>Bai</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Cantó</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Oudart</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Brunyánszki</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Cen</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Thomas</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Yamamoto</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Huber</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Kiss</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Houtkooper</surname>
<given-names>RH</given-names>
</string-name>
<italic>et al</italic>
(
<year>2011</year>
)
<article-title>PARP‐1 inhibition increases mitochondrial metabolism through SIRT1 activation</article-title>
.
<source xml:lang="en">Cell Metab</source>
<volume>13</volume>
,
<fpage>461</fpage>
<lpage>468</lpage>
.
<pub-id pub-id-type="pmid">21459330</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0022">
<label>22</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0022">
<string-name>
<surname>Bai</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Canto</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Brunyánszki</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Huber</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Szántó</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Cen</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Yamamoto</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Houten</surname>
<given-names>SM</given-names>
</string-name>
,
<string-name>
<surname>Kiss</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Oudart</surname>
<given-names>H</given-names>
</string-name>
<italic>et al</italic>
(
<year>2011</year>
)
<article-title>PARP‐2 regulates SIRT1 expression and whole‐body energy expenditure</article-title>
.
<source xml:lang="en">Cell Metab</source>
<volume>13</volume>
,
<fpage>450</fpage>
<lpage>460</lpage>
.
<pub-id pub-id-type="pmid">21459329</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0023">
<label>23</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0023">
<string-name>
<surname>Langelier</surname>
<given-names>MF</given-names>
</string-name>
&
<string-name>
<surname>Pascal</surname>
<given-names>JM</given-names>
</string-name>
(
<year>2013</year>
)
<article-title>PARP‐1 mechanisms for coupling DNA damage detection to poly(ADP‐ribose) synthesis</article-title>
.
<source xml:lang="en">Curr Opin Struct Biol</source>
<volume>23</volume>
,
<fpage>134</fpage>
<lpage>143</lpage>
.
<pub-id pub-id-type="pmid">23333033</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0024">
<label>24</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0024">
<string-name>
<surname>Feijs</surname>
<given-names>KL</given-names>
</string-name>
,
<string-name>
<surname>Verheugd</surname>
<given-names>P</given-names>
</string-name>
&
<string-name>
<surname>Lüscher</surname>
<given-names>B</given-names>
</string-name>
(
<year>2013</year>
)
<article-title>Expanding functions of intracellular resident mono‐ADP‐ribosylation in cell physiology</article-title>
.
<source xml:lang="en">FEBS J</source>
<volume>280</volume>
,
<fpage>3519</fpage>
<lpage>3529</lpage>
.
<pub-id pub-id-type="pmid">23639026</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0025">
<label>25</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0025">
<string-name>
<surname>Palazzo</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Della Monica</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Visconti</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Costanzo</surname>
<given-names>V</given-names>
</string-name>
&
<string-name>
<surname>Grieco</surname>
<given-names>D</given-names>
</string-name>
(
<year>2014</year>
)
<article-title>ATM controls proper mitotic spindle structure</article-title>
.
<source xml:lang="en">Cell Cycle</source>
<volume>13</volume>
,
<fpage>1091</fpage>
<lpage>1100</lpage>
.
<pub-id pub-id-type="pmid">24553124</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0026">
<label>26</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0026">
<string-name>
<surname>Tallis</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Morra</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Barkauskaite</surname>
<given-names>E</given-names>
</string-name>
&
<string-name>
<surname>Ahel</surname>
<given-names>I</given-names>
</string-name>
(
<year>2014</year>
)
<article-title>Poly(ADP‐ribosyl)ation in regulation of chromatin structure and the DNA damage response</article-title>
.
<source xml:lang="en">Chromosoma</source>
<volume>123</volume>
,
<fpage>79</fpage>
<lpage>90</lpage>
.
<pub-id pub-id-type="pmid">24162931</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0027">
<label>27</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0027">
<string-name>
<surname>Bai</surname>
<given-names>P</given-names>
</string-name>
(
<year>2015</year>
)
<article-title>Biology of poly(ADP‐ribose) polymerases: the factotums of cell maintenance</article-title>
.
<source xml:lang="en">Mol Cell</source>
<volume>58</volume>
,
<fpage>947</fpage>
<lpage>958</lpage>
.
<pub-id pub-id-type="pmid">26091343</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0028">
<label>28</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0028">
<string-name>
<surname>Bock</surname>
<given-names>FJ</given-names>
</string-name>
&
<string-name>
<surname>Chang</surname>
<given-names>P</given-names>
</string-name>
(
<year>2016</year>
)
<article-title>New directions in poly(ADP‐ribose) polymerase biology</article-title>
.
<source xml:lang="en">FEBS J</source>
<volume>283</volume>
,
<fpage>4017</fpage>
<lpage>4031</lpage>
.
<pub-id pub-id-type="pmid">27087568</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0029">
<label>29</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0029">
<string-name>
<surname>Gibson</surname>
<given-names>BA</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Jiang</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Hussey</surname>
<given-names>KM</given-names>
</string-name>
,
<string-name>
<surname>Shrimp</surname>
<given-names>JH</given-names>
</string-name>
,
<string-name>
<surname>Lin</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Schwede</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Yu</surname>
<given-names>Y</given-names>
</string-name>
&
<string-name>
<surname>Kraus</surname>
<given-names>WL</given-names>
</string-name>
(
<year>2016</year>
)
<article-title>Chemical genetic discovery of PARP targets reveals a role for PARP‐1 in transcription elongation</article-title>
.
<source xml:lang="en">Science</source>
<volume>353</volume>
,
<fpage>45</fpage>
<lpage>50</lpage>
.
<pub-id pub-id-type="pmid">27256882</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0030">
<label>30</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0030">
<string-name>
<surname>Posavec Marjanović</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Crawford</surname>
<given-names>K</given-names>
</string-name>
&
<string-name>
<surname>Ahel</surname>
<given-names>I</given-names>
</string-name>
(
<year>2017</year>
)
<article-title>PARP, transcription and chromatin modeling</article-title>
.
<source xml:lang="en">Semin Cell Dev Biol</source>
<volume>63</volume>
,
<fpage>102</fpage>
<lpage>113</lpage>
.
<pub-id pub-id-type="pmid">27677453</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0031">
<label>31</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0031">
<string-name>
<surname>Culver</surname>
<given-names>GM</given-names>
</string-name>
,
<string-name>
<surname>McCraith</surname>
<given-names>SM</given-names>
</string-name>
,
<string-name>
<surname>Consaul</surname>
<given-names>SA</given-names>
</string-name>
,
<string-name>
<surname>Stanford</surname>
<given-names>DR</given-names>
</string-name>
&
<string-name>
<surname>Phizicky</surname>
<given-names>EM</given-names>
</string-name>
(
<year>1997</year>
)
<article-title>A 2′‐phosphotransferase implicated in tRNA splicing is essential in
<italic>Saccharomyces cerevisiae</italic>
</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<volume>272</volume>
,
<fpage>13203</fpage>
<lpage>13210</lpage>
.
<pub-id pub-id-type="pmid">9148937</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0032">
<label>32</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0032">
<string-name>
<surname>Nishizuka</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Ueda</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Nakazawa</surname>
<given-names>K</given-names>
</string-name>
&
<string-name>
<surname>Hayaishi</surname>
<given-names>O</given-names>
</string-name>
(
<year>1967</year>
)
<article-title>Studies on the polymer of adenosine diphosphate ribose. I. Enzymic formation from nicotinamide adenine dinuclotide in mammalian nuclei</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<volume>242</volume>
,
<fpage>3164</fpage>
<lpage>3171</lpage>
.
<pub-id pub-id-type="pmid">4291072</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0033">
<label>33</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0033">
<string-name>
<surname>Reeder</surname>
<given-names>RH</given-names>
</string-name>
,
<string-name>
<surname>Ueda</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Honjo</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Nishizuka</surname>
<given-names>Y</given-names>
</string-name>
&
<string-name>
<surname>Hayaishi</surname>
<given-names>O</given-names>
</string-name>
(
<year>1967</year>
)
<article-title>Studies on the polymer of adenosine diphosphate ribose. II. Characterization of the polymer</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<volume>242</volume>
,
<fpage>3172</fpage>
<lpage>3179</lpage>
.
<pub-id pub-id-type="pmid">4291073</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0034">
<label>34</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0034">
<string-name>
<surname>Fujimura</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Hasegawa</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Shimizu</surname>
<given-names>Y</given-names>
</string-name>
&
<string-name>
<surname>Sugimura</surname>
<given-names>T</given-names>
</string-name>
(
<year>1967</year>
)
<article-title>Polymerization of the adenosine 5′‐diphosphate‐ribose moiety of nicotinamide‐adenine dinucleotide by nuclear enzyme. I. Enzymatic reactions</article-title>
.
<source xml:lang="en">Biochim Biophys Acta</source>
<volume>145</volume>
,
<fpage>247</fpage>
<lpage>259</lpage>
.
<pub-id pub-id-type="pmid">4294274</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0035">
<label>35</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0035">
<string-name>
<surname>Vyas</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Matic</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Uchima</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Rood</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Zaja</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Hay</surname>
<given-names>RT</given-names>
</string-name>
,
<string-name>
<surname>Ahel</surname>
<given-names>I</given-names>
</string-name>
&
<string-name>
<surname>Chang</surname>
<given-names>P</given-names>
</string-name>
(
<year>2014</year>
)
<article-title>Family‐wide analysis of poly(ADP‐ribose) polymerase activity</article-title>
.
<source xml:lang="en">Nat Commun</source>
<volume>5</volume>
,
<fpage>4426</fpage>
.
<pub-id pub-id-type="pmid">25043379</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0036">
<label>36</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0036">
<string-name>
<surname>Slade</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Dunstan</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Barkauskaite</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Weston</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Lafite</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Dixon</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Ahel</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Leys</surname>
<given-names>D</given-names>
</string-name>
&
<string-name>
<surname>Ahel</surname>
<given-names>I</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>The structure and catalytic mechanism of a poly(ADP‐ribose) glycohydrolase</article-title>
.
<source xml:lang="en">Nature</source>
<volume>477</volume>
,
<fpage>616</fpage>
<lpage>620</lpage>
.
<pub-id pub-id-type="pmid">21892188</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0037">
<label>37</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0037">
<string-name>
<surname>Gunn</surname>
<given-names>AR</given-names>
</string-name>
,
<string-name>
<surname>Banos‐Pinero</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Paschke</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Sanchez‐Pulido</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Ariza</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Day</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Emrich</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Leys</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Ponting</surname>
<given-names>CP</given-names>
</string-name>
,
<string-name>
<surname>Ahel</surname>
<given-names>I</given-names>
</string-name>
<italic>et al</italic>
(
<year>2016</year>
)
<article-title>The role of ADP‐ribosylation in regulating DNA interstrand crosslink repair</article-title>
.
<source xml:lang="en">J Cell Sci</source>
<volume>129</volume>
,
<fpage>3845</fpage>
<lpage>3858</lpage>
.
<pub-id pub-id-type="pmid">27587838</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0038">
<label>38</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0038">
<string-name>
<surname>Lopes</surname>
<given-names>RR</given-names>
</string-name>
,
<string-name>
<surname>Kessler</surname>
<given-names>AC</given-names>
</string-name>
,
<string-name>
<surname>Polycarpo</surname>
<given-names>C</given-names>
</string-name>
&
<string-name>
<surname>Alfonzo</surname>
<given-names>JD</given-names>
</string-name>
(
<year>2015</year>
)
<article-title>Cutting, dicing, healing and sealing: the molecular surgery of tRNA</article-title>
.
<source xml:lang="en">Wiley Interdiscip Rev RNA</source>
<volume>6</volume>
,
<fpage>337</fpage>
<lpage>349</lpage>
.
<pub-id pub-id-type="pmid">25755220</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0039">
<label>39</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0039">
<string-name>
<surname>Han</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Craig</surname>
<given-names>JA</given-names>
</string-name>
,
<string-name>
<surname>Putnam</surname>
<given-names>CD</given-names>
</string-name>
,
<string-name>
<surname>Carozzi</surname>
<given-names>NB</given-names>
</string-name>
&
<string-name>
<surname>Tainer</surname>
<given-names>JA</given-names>
</string-name>
(
<year>1999</year>
)
<article-title>Evolution and mechanism from structures of an ADP‐ribosylating toxin and NAD complex</article-title>
.
<source xml:lang="en">Nat Struct Biol</source>
<volume>6</volume>
,
<fpage>932</fpage>
<lpage>936</lpage>
.
<pub-id pub-id-type="pmid">10504727</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0040">
<label>40</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0040">
<string-name>
<surname>Tsuge</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Nagahama</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Oda</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Iwamoto</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Utsunomiya</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Marquez</surname>
<given-names>VE</given-names>
</string-name>
,
<string-name>
<surname>Katunuma</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Nishizawa</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Sakurai</surname>
<given-names>J</given-names>
</string-name>
(
<year>2008</year>
)
<article-title>Structural basis of actin recognition and arginine ADP‐ribosylation by
<italic>Clostridium perfringens</italic>
iota‐toxin</article-title>
.
<source xml:lang="en">Proc Natl Acad Sci USA</source>
<volume>105</volume>
,
<fpage>7399</fpage>
<lpage>7404</lpage>
.
<pub-id pub-id-type="pmid">18490658</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0041">
<label>41</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0041">
<string-name>
<surname>Margarit</surname>
<given-names>SM</given-names>
</string-name>
,
<string-name>
<surname>Davidson</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Frego</surname>
<given-names>L</given-names>
</string-name>
&
<string-name>
<surname>Stebbins</surname>
<given-names>CE</given-names>
</string-name>
(
<year>2006</year>
)
<article-title>A steric antagonism of actin polymerization by a
<italic>Salmonella</italic>
virulence protein</article-title>
.
<source xml:lang="en">Structure</source>
<volume>14</volume>
,
<fpage>1219</fpage>
<lpage>1229</lpage>
.
<pub-id pub-id-type="pmid">16905096</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0042">
<label>42</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0042">
<string-name>
<surname>Glowacki</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Braren</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Firner</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Nissen</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Kuhl</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Reche</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Bazan</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Cetkovic‐Cvrlje</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Leiter</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Haag</surname>
<given-names>F</given-names>
</string-name>
<italic>et al</italic>
(
<year>2002</year>
)
<article-title>The family of toxin‐related ecto‐ADP‐ribosyltransferases in humans and the mouse</article-title>
.
<source xml:lang="en">Protein Sci</source>
<volume>11</volume>
,
<fpage>1657</fpage>
<lpage>1670</lpage>
.
<pub-id pub-id-type="pmid">12070318</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0043">
<label>43</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0043">
<string-name>
<surname>Seman</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Adriouch</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Scheuplein</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Krebs</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Freese</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Glowacki</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Deterre</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Haag</surname>
<given-names>F</given-names>
</string-name>
&
<string-name>
<surname>Koch‐Nolte</surname>
<given-names>F</given-names>
</string-name>
(
<year>2003</year>
)
<article-title>NAD‐induced T cell death: ADP‐ribosylation of cell surface proteins by ART2 activates the cytolytic P2X7 purinoceptor</article-title>
.
<source xml:lang="en">Immunity</source>
<volume>19</volume>
,
<fpage>571</fpage>
<lpage>582</lpage>
.
<pub-id pub-id-type="pmid">14563321</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0044">
<label>44</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0044">
<string-name>
<surname>Frye</surname>
<given-names>RA</given-names>
</string-name>
(
<year>2000</year>
)
<article-title>Phylogenetic classification of prokaryotic and eukaryotic Sir2‐like proteins</article-title>
.
<source xml:lang="en">Biochem Biophys Res Commun</source>
<volume>273</volume>
,
<fpage>793</fpage>
<lpage>798</lpage>
.
<pub-id pub-id-type="pmid">10873683</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0045">
<label>45</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0045">
<string-name>
<surname>Verdin</surname>
<given-names>E</given-names>
</string-name>
(
<year>2015</year>
)
<article-title>NAD⁺ in aging, metabolism, and neurodegeneration</article-title>
.
<source xml:lang="en">Science</source>
<volume>350</volume>
,
<fpage>1208</fpage>
<lpage>1213</lpage>
.
<pub-id pub-id-type="pmid">26785480</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0046">
<label>46</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0046">
<string-name>
<surname>Vassilopoulos</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Fritz</surname>
<given-names>KS</given-names>
</string-name>
,
<string-name>
<surname>Petersen</surname>
<given-names>DR</given-names>
</string-name>
&
<string-name>
<surname>Gius</surname>
<given-names>D</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>The human sirtuin family: evolutionary divergences and functions</article-title>
.
<source xml:lang="en">Hum Genomics</source>
<volume>5</volume>
,
<fpage>485</fpage>
<lpage>496</lpage>
.
<pub-id pub-id-type="pmid">21807603</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0047">
<label>47</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0047">
<string-name>
<surname>Michan</surname>
<given-names>S</given-names>
</string-name>
&
<string-name>
<surname>Sinclair</surname>
<given-names>D</given-names>
</string-name>
(
<year>2007</year>
)
<article-title>Sirtuins in mammals: insights into their biological function</article-title>
.
<source xml:lang="en">Biochem J</source>
<volume>404</volume>
,
<fpage>1</fpage>
<lpage>13</lpage>
.
<pub-id pub-id-type="pmid">17447894</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0048">
<label>48</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0048">
<string-name>
<surname>Bheda</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Jing</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Wolberger</surname>
<given-names>C</given-names>
</string-name>
&
<string-name>
<surname>Lin</surname>
<given-names>H</given-names>
</string-name>
(
<year>2016</year>
)
<article-title>The substrate specificity of sirtuins</article-title>
.
<source xml:lang="en">Annu Rev Biochem</source>
<volume>85</volume>
,
<fpage>405</fpage>
<lpage>429</lpage>
.
<pub-id pub-id-type="pmid">27088879</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0049">
<label>49</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0049">
<string-name>
<surname>Rack</surname>
<given-names>JG</given-names>
</string-name>
,
<string-name>
<surname>Morra</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Barkauskaite</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Kraehenbuehl</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Ariza</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Qu</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Ortmayer</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Leidecker</surname>
<given-names>O</given-names>
</string-name>
,
<string-name>
<surname>Cameron</surname>
<given-names>DR</given-names>
</string-name>
,
<string-name>
<surname>Matic</surname>
<given-names>I</given-names>
</string-name>
<italic>et al</italic>
(
<year>2015</year>
)
<article-title>Identification of a class of protein ADP‐ribosylating sirtuins in microbial pathogens</article-title>
.
<source xml:lang="en">Mol Cell</source>
<volume>59</volume>
,
<fpage>309</fpage>
<lpage>320</lpage>
.
<pub-id pub-id-type="pmid">26166706</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0050">
<label>50</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0050">
<string-name>
<surname>Cervantes‐Laurean</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Jacobson</surname>
<given-names>EL</given-names>
</string-name>
&
<string-name>
<surname>Jacobson</surname>
<given-names>MK</given-names>
</string-name>
(
<year>1996</year>
)
<article-title>Glycation and glycoxidation of histones by ADP‐ribose</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<volume>271</volume>
,
<fpage>10461</fpage>
<lpage>10469</lpage>
.
<pub-id pub-id-type="pmid">8631841</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0051">
<label>51</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0051">
<string-name>
<surname>Kalisch</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Amé</surname>
<given-names>JC</given-names>
</string-name>
,
<string-name>
<surname>Dantzer</surname>
<given-names>F</given-names>
</string-name>
&
<string-name>
<surname>Schreiber</surname>
<given-names>V</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>New readers and interpretations of poly(ADP‐ribosyl)ation</article-title>
.
<source xml:lang="en">Trends Biochem Sci</source>
<volume>37</volume>
,
<fpage>381</fpage>
<lpage>390</lpage>
.
<pub-id pub-id-type="pmid">22766145</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0052">
<label>52</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0052">
<string-name>
<surname>Karras</surname>
<given-names>GI</given-names>
</string-name>
,
<string-name>
<surname>Kustatscher</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Buhecha</surname>
<given-names>HR</given-names>
</string-name>
,
<string-name>
<surname>Allen</surname>
<given-names>MD</given-names>
</string-name>
,
<string-name>
<surname>Pugieux</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Sait</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Bycroft</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Ladurner</surname>
<given-names>AG</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>The macro domain is an ADP‐ribose binding module</article-title>
.
<source xml:lang="en">EMBO J</source>
<volume>24</volume>
,
<fpage>1911</fpage>
<lpage>1920</lpage>
.
<pub-id pub-id-type="pmid">15902274</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0053">
<label>53</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0053">
<string-name>
<surname>Feijs</surname>
<given-names>KL</given-names>
</string-name>
,
<string-name>
<surname>Forst</surname>
<given-names>AH</given-names>
</string-name>
,
<string-name>
<surname>Verheugd</surname>
<given-names>P</given-names>
</string-name>
&
<string-name>
<surname>Lüscher</surname>
<given-names>B</given-names>
</string-name>
(
<year>2013</year>
)
<article-title>Macrodomain‐containing proteins: regulating new intracellular functions of mono(ADP‐ribosyl)ation</article-title>
.
<source xml:lang="en">Nat Rev Mol Cell Biol</source>
<volume>14</volume>
,
<fpage>443</fpage>
<lpage>451</lpage>
.
<pub-id pub-id-type="pmid">23736681</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0054">
<label>54</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0054">
<string-name>
<surname>Rack</surname>
<given-names>JG</given-names>
</string-name>
,
<string-name>
<surname>Perina</surname>
<given-names>D</given-names>
</string-name>
&
<string-name>
<surname>Ahel</surname>
<given-names>I</given-names>
</string-name>
(
<year>2016</year>
)
<article-title>Macrodomains: structure, function, evolution, and catalytic activities</article-title>
.
<source xml:lang="en">Annu Rev Biochem</source>
<volume>85</volume>
,
<fpage>431</fpage>
<lpage>454</lpage>
.
<pub-id pub-id-type="pmid">26844395</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0055">
<label>55</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0055">
<string-name>
<surname>Chen</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Vollmar</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Rossi</surname>
<given-names>MN</given-names>
</string-name>
,
<string-name>
<surname>Phillips</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Kraehenbuehl</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Slade</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Mehrotra</surname>
<given-names>PV</given-names>
</string-name>
,
<string-name>
<surname>von Delft</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Crosthwaite</surname>
<given-names>SK</given-names>
</string-name>
,
<string-name>
<surname>Gileadi</surname>
<given-names>O</given-names>
</string-name>
<italic>et al</italic>
(
<year>2011</year>
)
<article-title>Identification of macrodomain proteins as novel O‐acetyl‐ADP‐ribose deacetylases</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<volume>286</volume>
,
<fpage>13261</fpage>
<lpage>13271</lpage>
.
<pub-id pub-id-type="pmid">21257746</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0056">
<label>56</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0056">
<string-name>
<surname>Tan</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Vonrhein</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Smart</surname>
<given-names>OS</given-names>
</string-name>
,
<string-name>
<surname>Bricogne</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Bollati</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Kusov</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Hansen</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Mesters</surname>
<given-names>JR</given-names>
</string-name>
,
<string-name>
<surname>Schmidt</surname>
<given-names>CL</given-names>
</string-name>
&
<string-name>
<surname>Hilgenfeld</surname>
<given-names>R</given-names>
</string-name>
(
<year>2009</year>
)
<article-title>The SARS‐unique domain (SUD) of SARS coronavirus contains two macrodomains that bind G‐quadruplexes</article-title>
.
<source xml:lang="en">PLoS Pathog</source>
<volume>5</volume>
,
<fpage>e1000428</fpage>
.
<pub-id pub-id-type="pmid">19436709</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0057">
<label>57</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0057">
<string-name>
<surname>Neuvonen</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Ahola</surname>
<given-names>T</given-names>
</string-name>
(
<year>2009</year>
)
<article-title>Differential activities of cellular and viral macro domain proteins in binding of ADP‐ribose metabolites</article-title>
.
<source xml:lang="en">J Mol Biol</source>
<volume>385</volume>
,
<fpage>212</fpage>
<lpage>225</lpage>
.
<pub-id pub-id-type="pmid">18983849</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0058">
<label>58</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0058">
<string-name>
<surname>Barkauskaite</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Brassington</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Tan</surname>
<given-names>ES</given-names>
</string-name>
,
<string-name>
<surname>Warwicker</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Dunstan</surname>
<given-names>MS</given-names>
</string-name>
,
<string-name>
<surname>Banos</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Lafite</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Ahel</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Mitchison</surname>
<given-names>TJ</given-names>
</string-name>
,
<string-name>
<surname>Ahel</surname>
<given-names>I</given-names>
</string-name>
<italic>et al</italic>
(
<year>2013</year>
)
<article-title>Visualization of poly(ADP‐ribose) bound to PARG reveals inherent balance between exo‐ and endo‐glycohydrolase activities</article-title>
.
<source xml:lang="en">Nat Commun</source>
<volume>4</volume>
,
<fpage>2164</fpage>
.
<pub-id pub-id-type="pmid">23917065</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0059">
<label>59</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0059">
<string-name>
<surname>Sharifi</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Morra</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Appel</surname>
<given-names>CD</given-names>
</string-name>
,
<string-name>
<surname>Tallis</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Chioza</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Jankevicius</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Simpson</surname>
<given-names>MA</given-names>
</string-name>
,
<string-name>
<surname>Matic</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Ozkan</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Golia</surname>
<given-names>B</given-names>
</string-name>
<italic>et al</italic>
(
<year>2013</year>
)
<article-title>Deficiency of terminal ADP‐ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease</article-title>
.
<source xml:lang="en">EMBO J</source>
<volume>32</volume>
,
<fpage>1225</fpage>
<lpage>1237</lpage>
.
<pub-id pub-id-type="pmid">23481255</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0060">
<label>60</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0060">
<string-name>
<surname>Golia</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Moeller</surname>
<given-names>GK</given-names>
</string-name>
,
<string-name>
<surname>Jankevicius</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Schmidt</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Hegele</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Preißer</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Tran</surname>
<given-names>ML</given-names>
</string-name>
,
<string-name>
<surname>Imhof</surname>
<given-names>A</given-names>
</string-name>
&
<string-name>
<surname>Timinszky</surname>
<given-names>G</given-names>
</string-name>
(
<year>2017</year>
)
<article-title>ATM induces MacroD2 nuclear export upon DNA damage</article-title>
.
<source xml:lang="en">Nucleic Acids Res</source>
<volume>45</volume>
,
<fpage>244</fpage>
<lpage>254</lpage>
.
<pub-id pub-id-type="pmid">28069995</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0061">
<label>61</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0061">
<string-name>
<surname>Saikatendu</surname>
<given-names>KS</given-names>
</string-name>
,
<string-name>
<surname>Joseph</surname>
<given-names>JS</given-names>
</string-name>
,
<string-name>
<surname>Subramanian</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Clayton</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Griffith</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Moy</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Velasquez</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Neuman</surname>
<given-names>BW</given-names>
</string-name>
,
<string-name>
<surname>Buchmeier</surname>
<given-names>MJ</given-names>
</string-name>
,
<string-name>
<surname>Stevens</surname>
<given-names>RC</given-names>
</string-name>
<italic>et al</italic>
(
<year>2005</year>
)
<article-title>Structural basis of severe acute respiratory syndrome coronavirus ADP‐ribose‐1″‐phosphate dephosphorylation by a conserved domain of nsP3</article-title>
.
<source xml:lang="en">Structure</source>
<volume>13</volume>
,
<fpage>1665</fpage>
<lpage>1675</lpage>
.
<pub-id pub-id-type="pmid">16271890</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0062">
<label>62</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0062">
<string-name>
<surname>Ahel</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Ahel</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Matsusaka</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Clark</surname>
<given-names>AJ</given-names>
</string-name>
,
<string-name>
<surname>Pines</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Boulton</surname>
<given-names>SJ</given-names>
</string-name>
&
<string-name>
<surname>West</surname>
<given-names>SC</given-names>
</string-name>
(
<year>2008</year>
)
<article-title>Poly(ADP‐ribose)‐binding zinc finger motifs in DNA repair/checkpoint proteins</article-title>
.
<source xml:lang="en">Nature</source>
<volume>451</volume>
,
<fpage>81</fpage>
<lpage>85</lpage>
.
<pub-id pub-id-type="pmid">18172500</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0063">
<label>63</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0063">
<string-name>
<surname>Wang</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Michaud</surname>
<given-names>GA</given-names>
</string-name>
,
<string-name>
<surname>Cheng</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Hinds</surname>
<given-names>TR</given-names>
</string-name>
,
<string-name>
<surname>Fan</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Cong</surname>
<given-names>F</given-names>
</string-name>
&
<string-name>
<surname>Xu</surname>
<given-names>W</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>Recognition of the iso‐ADP‐ribose moiety in poly(ADP‐ribose) by WWE domains suggests a general mechanism for poly(ADP‐ribosyl)ation‐dependent ubiquitination</article-title>
.
<source xml:lang="en">Genes Dev</source>
<volume>26</volume>
,
<fpage>235</fpage>
<lpage>240</lpage>
.
<pub-id pub-id-type="pmid">22267412</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0064">
<label>64</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0064">
<string-name>
<surname>Zhang</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Yu</surname>
<given-names>X</given-names>
</string-name>
(
<year>2014</year>
)
<article-title>The oligonucleotide/oligosaccharide‐binding fold motif is a poly(ADP‐ribose)‐binding domain that mediates DNA damage response</article-title>
.
<source xml:lang="en">Proc Natl Acad Sci USA</source>
<volume>111</volume>
,
<fpage>7278</fpage>
<lpage>7283</lpage>
.
<pub-id pub-id-type="pmid">24799691</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0065">
<label>65</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0065">
<string-name>
<surname>Pleschke</surname>
<given-names>JM</given-names>
</string-name>
,
<string-name>
<surname>Kleczkowska</surname>
<given-names>ME</given-names>
</string-name>
,
<string-name>
<surname>Strohm</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Althaus</surname>
<given-names>FR</given-names>
</string-name>
(
<year>2000</year>
)
<article-title>Poly(ADP‐ribose) binds to specific domains in DNA damage checkpoint proteins</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<volume>275</volume>
,
<fpage>40974</fpage>
<lpage>40980</lpage>
.
<pub-id pub-id-type="pmid">11016934</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0066">
<label>66</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0066">
<string-name>
<surname>Barkauskaite</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Jankevicius</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Ladurner</surname>
<given-names>AG</given-names>
</string-name>
,
<string-name>
<surname>Ahel</surname>
<given-names>I</given-names>
</string-name>
&
<string-name>
<surname>Timinszky</surname>
<given-names>G</given-names>
</string-name>
(
<year>2013</year>
)
<article-title>The recognition and removal of cellular poly(ADP‐ribose) signals</article-title>
.
<source xml:lang="en">FEBS J</source>
<volume>280</volume>
,
<fpage>3491</fpage>
<lpage>3507</lpage>
.
<pub-id pub-id-type="pmid">23711178</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0067">
<label>67</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0067">
<string-name>
<surname>Moure</surname>
<given-names>VR</given-names>
</string-name>
,
<string-name>
<surname>Costa</surname>
<given-names>FF</given-names>
</string-name>
,
<string-name>
<surname>Cruz</surname>
<given-names>LM</given-names>
</string-name>
,
<string-name>
<surname>Pedrosa</surname>
<given-names>FO</given-names>
</string-name>
,
<string-name>
<surname>Souza</surname>
<given-names>EM</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>XD</given-names>
</string-name>
,
<string-name>
<surname>Winkler</surname>
<given-names>F</given-names>
</string-name>
&
<string-name>
<surname>Huergo</surname>
<given-names>LF</given-names>
</string-name>
(
<year>2015</year>
)
<article-title>Regulation of nitrogenase by reversible mono‐ADP‐ribosylation</article-title>
.
<source xml:lang="en">Curr Top Microbiol Immunol</source>
<volume>384</volume>
,
<fpage>89</fpage>
<lpage>106</lpage>
.
<pub-id pub-id-type="pmid">24934999</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0068">
<label>68</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0068">
<string-name>
<surname>Berthold</surname>
<given-names>CL</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Nordlund</surname>
<given-names>S</given-names>
</string-name>
&
<string-name>
<surname>Högbom</surname>
<given-names>M</given-names>
</string-name>
(
<year>2009</year>
)
<article-title>Mechanism of ADP‐ribosylation removal revealed by the structure and ligand complexes of the dimanganese mono‐ADP‐ribosylhydrolase DraG</article-title>
.
<source xml:lang="en">Proc Natl Acad Sci USA</source>
<volume>106</volume>
,
<fpage>14247</fpage>
<lpage>14252</lpage>
.
<pub-id pub-id-type="pmid">19706507</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0069">
<label>69</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0069">
<string-name>
<surname>Jankevicius</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Hassler</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Golia</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Rybin</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Zacharias</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Timinszky</surname>
<given-names>G</given-names>
</string-name>
&
<string-name>
<surname>Ladurner</surname>
<given-names>AG</given-names>
</string-name>
(
<year>2013</year>
)
<article-title>A family of macrodomain proteins reverses cellular mono‐ADP‐ribosylation</article-title>
.
<source xml:lang="en">Nat Struct Mol Biol</source>
<volume>20</volume>
,
<fpage>508</fpage>
<lpage>514</lpage>
.
<pub-id pub-id-type="pmid">23474712</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0070">
<label>70</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0070">
<string-name>
<surname>Rosenthal</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Feijs</surname>
<given-names>KL</given-names>
</string-name>
,
<string-name>
<surname>Frugier</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Bonalli</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Forst</surname>
<given-names>AH</given-names>
</string-name>
,
<string-name>
<surname>Imhof</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Winkler</surname>
<given-names>HC</given-names>
</string-name>
,
<string-name>
<surname>Fischer</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Caflisch</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Hassa</surname>
<given-names>PO</given-names>
</string-name>
<italic>et al</italic>
(
<year>2013</year>
)
<article-title>Macrodomain‐containing proteins are new mono‐ADP‐ribosylhydrolases</article-title>
.
<source xml:lang="en">Nat Struct Mol Biol</source>
<volume>20</volume>
,
<fpage>502</fpage>
<lpage>507</lpage>
.
<pub-id pub-id-type="pmid">23474714</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0071">
<label>71</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0071">
<string-name>
<surname>Winstall</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Affar</surname>
<given-names>EB</given-names>
</string-name>
,
<string-name>
<surname>Shah</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Bourassa</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Scovassi</surname>
<given-names>IA</given-names>
</string-name>
&
<string-name>
<surname>Poirier</surname>
<given-names>GG</given-names>
</string-name>
(
<year>1999</year>
)
<article-title>Preferential perinuclear localization of poly(ADP‐ribose) glycohydrolase</article-title>
.
<source xml:lang="en">Exp Cell Res</source>
<volume>251</volume>
,
<fpage>372</fpage>
<lpage>378</lpage>
.
<pub-id pub-id-type="pmid">10471322</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0072">
<label>72</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0072">
<string-name>
<surname>Meyer‐Ficca</surname>
<given-names>ML</given-names>
</string-name>
,
<string-name>
<surname>Meyer</surname>
<given-names>RG</given-names>
</string-name>
,
<string-name>
<surname>Coyle</surname>
<given-names>DL</given-names>
</string-name>
,
<string-name>
<surname>Jacobson</surname>
<given-names>EL</given-names>
</string-name>
&
<string-name>
<surname>Jacobson</surname>
<given-names>MK</given-names>
</string-name>
(
<year>2004</year>
)
<article-title>Human poly(ADP‐ribose) glycohydrolase is expressed in alternative splice variants yielding isoforms that localize to different cell compartments</article-title>
.
<source xml:lang="en">Exp Cell Res</source>
<volume>297</volume>
,
<fpage>521</fpage>
<lpage>532</lpage>
.
<pub-id pub-id-type="pmid">15212953</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0073">
<label>73</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0073">
<string-name>
<surname>Niere</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Mashimo</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Agledal</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Dölle</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Kasamatsu</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Kato</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Moss</surname>
<given-names>J</given-names>
</string-name>
&
<string-name>
<surname>Ziegler</surname>
<given-names>M</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>ADP‐ribosylhydrolase 3 (ARH3), not poly(ADP‐ribose) glycohydrolase (PARG) isoforms, is responsible for degradation of mitochondrial matrix‐associated poly(ADP‐ribose)</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<volume>287</volume>
,
<fpage>16088</fpage>
<lpage>16102</lpage>
.
<pub-id pub-id-type="pmid">22433848</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0074">
<label>74</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0074">
<string-name>
<surname>Peterson</surname>
<given-names>FC</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Lytle</surname>
<given-names>BL</given-names>
</string-name>
,
<string-name>
<surname>Rossi</surname>
<given-names>MN</given-names>
</string-name>
,
<string-name>
<surname>Ahel</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Denu</surname>
<given-names>JM</given-names>
</string-name>
&
<string-name>
<surname>Volkman</surname>
<given-names>BF</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>Orphan macrodomain protein (human C6orf130) is an O‐acyl‐ADP‐ribose deacylase: solution structure and catalytic properties</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<volume>286</volume>
,
<fpage>35955</fpage>
<lpage>35965</lpage>
.
<pub-id pub-id-type="pmid">21849506</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0075">
<label>75</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0075">
<string-name>
<surname>Shull</surname>
<given-names>NP</given-names>
</string-name>
,
<string-name>
<surname>Spinelli</surname>
<given-names>SL</given-names>
</string-name>
&
<string-name>
<surname>Phizicky</surname>
<given-names>EM</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>A highly specific phosphatase that acts on ADP‐ribose 1″‐phosphate, a metabolite of tRNA splicing in
<italic>Saccharomyces cerevisiae</italic>
</article-title>
.
<source xml:lang="en">Nucleic Acids Res</source>
<volume>33</volume>
,
<fpage>650</fpage>
<lpage>660</lpage>
.
<pub-id pub-id-type="pmid">15684411</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0076">
<label>76</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0076">
<string-name>
<surname>Nordlund</surname>
<given-names>S</given-names>
</string-name>
&
<string-name>
<surname>Högbom</surname>
<given-names>M</given-names>
</string-name>
(
<year>2013</year>
)
<article-title>ADP‐ribosylation, a mechanism regulating nitrogenase activity</article-title>
.
<source xml:lang="en">FEBS J</source>
<volume>280</volume>
,
<fpage>3484</fpage>
<lpage>3490</lpage>
.
<pub-id pub-id-type="pmid">23574616</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0077">
<label>77</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0077">
<string-name>
<surname>Kato</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Zhu</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>C</given-names>
</string-name>
&
<string-name>
<surname>Moss</surname>
<given-names>J</given-names>
</string-name>
(
<year>2007</year>
)
<article-title>Enhanced sensitivity to cholera toxin in ADP‐ribosylarginine hydrolase‐deficient mice</article-title>
.
<source xml:lang="en">Mol Cell Biol</source>
<volume>27</volume>
,
<fpage>5534</fpage>
<lpage>5543</lpage>
.
<pub-id pub-id-type="pmid">17526733</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0078">
<label>78</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0078">
<string-name>
<surname>Mueller‐Dieckmann</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Kernstock</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Lisurek</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>von Kries</surname>
<given-names>JP</given-names>
</string-name>
,
<string-name>
<surname>Haag</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Weiss</surname>
<given-names>MS</given-names>
</string-name>
&
<string-name>
<surname>Koch‐Nolte</surname>
<given-names>F</given-names>
</string-name>
(
<year>2006</year>
)
<article-title>The structure of human ADP‐ribosylhydrolase 3 (ARH3) provides insights into the reversibility of protein ADP‐ribosylation</article-title>
.
<source xml:lang="en">Proc Natl Acad Sci USA</source>
<volume>103</volume>
,
<fpage>15026</fpage>
<lpage>15031</lpage>
.
<pub-id pub-id-type="pmid">17015823</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0079">
<label>79</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0079">
<string-name>
<surname>Oka</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Kato</surname>
<given-names>J</given-names>
</string-name>
&
<string-name>
<surname>Moss</surname>
<given-names>J</given-names>
</string-name>
(
<year>2006</year>
)
<article-title>Identification and characterization of a mammalian 39‐kDa poly(ADP‐ribose) glycohydrolase</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<volume>281</volume>
,
<fpage>705</fpage>
<lpage>713</lpage>
.
<pub-id pub-id-type="pmid">16278211</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0080">
<label>80</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0080">
<string-name>
<surname>Bazan</surname>
<given-names>JF</given-names>
</string-name>
&
<string-name>
<surname>Koch‐Nolte</surname>
<given-names>F</given-names>
</string-name>
(
<year>1997</year>
)
<article-title>Sequence and structural links between distant ADP‐ribosyltransferase families</article-title>
.
<source xml:lang="en">Adv Exp Med Biol</source>
<volume>419</volume>
,
<fpage>99</fpage>
<lpage>107</lpage>
.
<pub-id pub-id-type="pmid">9193642</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0081">
<label>81</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0081">
<string-name>
<surname>Fabrizio</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Di Paola</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Stilla</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Giannotta</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Ruggiero</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Menzel</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Koch‐Nolte</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Sallese</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Di Girolamo</surname>
<given-names>M</given-names>
</string-name>
(
<year>2015</year>
)
<article-title>ARTC1‐mediated ADP‐ribosylation of GRP78/BiP: a new player in endoplasmic‐reticulum stress responses</article-title>
.
<source xml:lang="en">Cell Mol Life Sci</source>
<volume>72</volume>
,
<fpage>1209</fpage>
<lpage>1225</lpage>
.
<pub-id pub-id-type="pmid">25292337</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0082">
<label>82</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0082">
<string-name>
<surname>Matic</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Ahel</surname>
<given-names>I</given-names>
</string-name>
&
<string-name>
<surname>Hay</surname>
<given-names>RT</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>Reanalysis of phosphoproteomics data uncovers ADP‐ribosylation sites</article-title>
.
<source xml:lang="en">Nat Methods</source>
<volume>9</volume>
,
<fpage>771</fpage>
<lpage>772</lpage>
.
<pub-id pub-id-type="pmid">22847107</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0083">
<label>83</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0083">
<string-name>
<surname>Martello</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Leutert</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Jungmichel</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Bilan</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Larsen</surname>
<given-names>SC</given-names>
</string-name>
,
<string-name>
<surname>Young</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Hottiger</surname>
<given-names>MO</given-names>
</string-name>
&
<string-name>
<surname>Nielsen</surname>
<given-names>ML</given-names>
</string-name>
(
<year>2016</year>
)
<article-title>Proteome‐wide identification of the endogenous ADP‐ribosylome of mammalian cells and tissue</article-title>
.
<source xml:lang="en">Nat Commun</source>
<volume>7</volume>
,
<fpage>12917</fpage>
.
<pub-id pub-id-type="pmid">27686526</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0084">
<label>84</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0084">
<string-name>
<surname>Mashimo</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Kato</surname>
<given-names>J</given-names>
</string-name>
&
<string-name>
<surname>Moss</surname>
<given-names>J</given-names>
</string-name>
(
<year>2014</year>
)
<article-title>Structure and function of the ARH family of ADP‐ribosyl‐acceptor hydrolases</article-title>
.
<source xml:lang="en">DNA Repair (Amst)</source>
<volume>23</volume>
,
<fpage>88</fpage>
<lpage>94</lpage>
.
<pub-id pub-id-type="pmid">24746921</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0085">
<label>85</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0085">
<string-name>
<surname>Ono</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Kasamatsu</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Oka</surname>
<given-names>S</given-names>
</string-name>
&
<string-name>
<surname>Moss</surname>
<given-names>J</given-names>
</string-name>
(
<year>2006</year>
)
<article-title>The 39‐kDa poly(ADP‐ribose) glycohydrolase ARH3 hydrolyzes O‐acetyl‐ADP‐ribose, a product of the Sir2 family of acetyl‐histone deacetylases</article-title>
.
<source xml:lang="en">Proc Natl Acad Sci USA</source>
<volume>103</volume>
,
<fpage>16687</fpage>
<lpage>16691</lpage>
.
<pub-id pub-id-type="pmid">17075046</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0086">
<label>86</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0086">
<string-name>
<surname>Kasamatsu</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Nakao</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Smith</surname>
<given-names>BC</given-names>
</string-name>
,
<string-name>
<surname>Comstock</surname>
<given-names>LR</given-names>
</string-name>
,
<string-name>
<surname>Ono</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Kato</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Denu</surname>
<given-names>JM</given-names>
</string-name>
&
<string-name>
<surname>Moss</surname>
<given-names>J</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>Hydrolysis of O‐acetyl‐ADP‐ribose isomers by ADP‐ribosylhydrolase 3</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<volume>286</volume>
,
<fpage>21110</fpage>
<lpage>21117</lpage>
.
<pub-id pub-id-type="pmid">21498885</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0087">
<label>87</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0087">
<string-name>
<surname>Mildvan</surname>
<given-names>AS</given-names>
</string-name>
,
<string-name>
<surname>Xia</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Azurmendi</surname>
<given-names>HF</given-names>
</string-name>
,
<string-name>
<surname>Saraswat</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Legler</surname>
<given-names>PM</given-names>
</string-name>
,
<string-name>
<surname>Massiah</surname>
<given-names>MA</given-names>
</string-name>
,
<string-name>
<surname>Gabelli</surname>
<given-names>SB</given-names>
</string-name>
,
<string-name>
<surname>Bianchet</surname>
<given-names>MA</given-names>
</string-name>
,
<string-name>
<surname>Kang</surname>
<given-names>LW</given-names>
</string-name>
&
<string-name>
<surname>Amzel</surname>
<given-names>LM</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>Structures and mechanisms of Nudix hydrolases</article-title>
.
<source xml:lang="en">Arch Biochem Biophys</source>
<volume>433</volume>
,
<fpage>129</fpage>
<lpage>143</lpage>
.
<pub-id pub-id-type="pmid">15581572</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0088">
<label>88</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0088">
<string-name>
<surname>McLennan</surname>
<given-names>AG</given-names>
</string-name>
(
<year>2006</year>
)
<article-title>The Nudix hydrolase superfamily</article-title>
.
<source xml:lang="en">Cell Mol Life Sci</source>
<volume>63</volume>
,
<fpage>123</fpage>
<lpage>143</lpage>
.
<pub-id pub-id-type="pmid">16378245</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0089">
<label>89</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0089">
<string-name>
<surname>Wright</surname>
<given-names>RH</given-names>
</string-name>
,
<string-name>
<surname>Lioutas</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Le Dily</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Soronellas</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Pohl</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Bonet</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Nacht</surname>
<given-names>AS</given-names>
</string-name>
,
<string-name>
<surname>Samino</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Font‐Mateu</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Vicent</surname>
<given-names>GP</given-names>
</string-name>
<italic>et al</italic>
(
<year>2016</year>
)
<article-title>ADP‐ribose‐derived nuclear ATP synthesis by NUDIX5 is required for chromatin remodeling</article-title>
.
<source xml:lang="en">Science</source>
<volume>352</volume>
,
<fpage>1221</fpage>
<lpage>1225</lpage>
.
<pub-id pub-id-type="pmid">27257257</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0090">
<label>90</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0090">
<string-name>
<surname>Bollen</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Gijsbers</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Ceulemans</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Stalmans</surname>
<given-names>W</given-names>
</string-name>
&
<string-name>
<surname>Stefan</surname>
<given-names>C</given-names>
</string-name>
(
<year>2000</year>
)
<article-title>Nucleotide pyrophosphatases/phosphodiesterases on the move</article-title>
.
<source xml:lang="en">Crit Rev Biochem Mol Biol</source>
<volume>35</volume>
,
<fpage>393</fpage>
<lpage>432</lpage>
.
<pub-id pub-id-type="pmid">11202013</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0091">
<label>91</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0091">
<string-name>
<surname>Palazzo</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Thomas</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Jemth</surname>
<given-names>AS</given-names>
</string-name>
,
<string-name>
<surname>Colby</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Leidecker</surname>
<given-names>O</given-names>
</string-name>
,
<string-name>
<surname>Feijs</surname>
<given-names>KL</given-names>
</string-name>
,
<string-name>
<surname>Zaja</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Loseva</surname>
<given-names>O</given-names>
</string-name>
,
<string-name>
<surname>Puigvert</surname>
<given-names>JC</given-names>
</string-name>
,
<string-name>
<surname>Matic</surname>
<given-names>I</given-names>
</string-name>
<italic>et al</italic>
(
<year>2015</year>
)
<article-title>Processing of protein ADP‐ribosylation by Nudix hydrolases</article-title>
.
<source xml:lang="en">Biochem J</source>
<volume>468</volume>
,
<fpage>293</fpage>
<lpage>301</lpage>
.
<pub-id pub-id-type="pmid">25789582</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0092">
<label>92</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0092">
<string-name>
<surname>Daniels</surname>
<given-names>CM</given-names>
</string-name>
,
<string-name>
<surname>Thirawatananond</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Ong</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Gabelli</surname>
<given-names>SB</given-names>
</string-name>
&
<string-name>
<surname>Leung</surname>
<given-names>AK</given-names>
</string-name>
(
<year>2015</year>
)
<article-title>Nudix hydrolases degrade protein‐conjugated ADP‐ribose</article-title>
.
<source xml:lang="en">Sci Rep</source>
<volume>5</volume>
,
<fpage>18271</fpage>
.
<pub-id pub-id-type="pmid">26669448</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0093">
<label>93</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0093">
<string-name>
<surname>Palazzo</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Daniels</surname>
<given-names>CM</given-names>
</string-name>
,
<string-name>
<surname>Nettleship</surname>
<given-names>JE</given-names>
</string-name>
,
<string-name>
<surname>Rahman</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>McPherson</surname>
<given-names>RL</given-names>
</string-name>
,
<string-name>
<surname>Ong</surname>
<given-names>SE</given-names>
</string-name>
,
<string-name>
<surname>Kato</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Nureki</surname>
<given-names>O</given-names>
</string-name>
,
<string-name>
<surname>Leung</surname>
<given-names>AK</given-names>
</string-name>
&
<string-name>
<surname>Ahel</surname>
<given-names>I</given-names>
</string-name>
(
<year>2016</year>
)
<article-title>ENPP1 processes protein ADP‐ribosylation in vitro</article-title>
.
<source xml:lang="en">FEBS J</source>
<volume>283</volume>
,
<fpage>3371</fpage>
<lpage>3388</lpage>
.
<pub-id pub-id-type="pmid">27406238</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0094">
<label>94</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0094">
<string-name>
<surname>Oka</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Ueda</surname>
<given-names>K</given-names>
</string-name>
&
<string-name>
<surname>Hayaishi</surname>
<given-names>O</given-names>
</string-name>
(
<year>1978</year>
)
<article-title>Snake venom phosphodiesterase: simple purification with Blue Sepharose and its application to poly(ADP‐ribose) study</article-title>
.
<source xml:lang="en">Biochem Biophys Res Commun</source>
<volume>80</volume>
,
<fpage>841</fpage>
<lpage>848</lpage>
.
<pub-id pub-id-type="pmid">205220</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0095">
<label>95</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0095">
<string-name>
<surname>Bhogaraju</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Kalayil</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Bonn</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Colby</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Matic</surname>
<given-names>I</given-names>
</string-name>
&
<string-name>
<surname>Dikic</surname>
<given-names>I</given-names>
</string-name>
(
<year>2016</year>
)
<article-title>Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination</article-title>
.
<source xml:lang="en">Cell</source>
<volume>167</volume>
,
<fpage>1636</fpage>
<lpage>1649</lpage>
.
<pub-id pub-id-type="pmid">27912065</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0096">
<label>96</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0096">
<string-name>
<surname>Kotewicz</surname>
<given-names>KM</given-names>
</string-name>
,
<string-name>
<surname>Ramabhadran</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Sjoblom</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Vogel</surname>
<given-names>JP</given-names>
</string-name>
,
<string-name>
<surname>Haenssler</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Behringer</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Scheck</surname>
<given-names>RA</given-names>
</string-name>
&
<string-name>
<surname>Isberg</surname>
<given-names>RR</given-names>
</string-name>
(
<year>2017</year>
)
<article-title>A single legionella effector catalyzes a multistep ubiquitination pathway to rearrange tubular endoplasmic reticulum for replication</article-title>
.
<source xml:lang="en">Cell Host Microbe</source>
<volume>21</volume>
,
<fpage>169</fpage>
<lpage>181</lpage>
.
<pub-id pub-id-type="pmid">28041930</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0097">
<label>97</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0097">
<string-name>
<surname>Schultz</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Lopez</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Saleh‐Gohari</surname>
<given-names>N</given-names>
</string-name>
&
<string-name>
<surname>Helleday</surname>
<given-names>T</given-names>
</string-name>
(
<year>2003</year>
)
<article-title>Poly(ADP‐ribose) polymerase (PARP‐1) has a controlling role in homologous recombination</article-title>
.
<source xml:lang="en">Nucleic Acids Res</source>
<volume>31</volume>
,
<fpage>4959</fpage>
<lpage>4964</lpage>
.
<pub-id pub-id-type="pmid">12930944</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0098">
<label>98</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0098">
<string-name>
<surname>De Vos</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Schreiber</surname>
<given-names>V</given-names>
</string-name>
&
<string-name>
<surname>Dantzer</surname>
<given-names>F</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art</article-title>
.
<source xml:lang="en">Biochem Pharmacol</source>
<volume>84</volume>
,
<fpage>137</fpage>
<lpage>146</lpage>
.
<pub-id pub-id-type="pmid">22469522</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0099">
<label>99</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0099">
<string-name>
<surname>Langelier</surname>
<given-names>MF</given-names>
</string-name>
,
<string-name>
<surname>Planck</surname>
<given-names>JL</given-names>
</string-name>
,
<string-name>
<surname>Roy</surname>
<given-names>S</given-names>
</string-name>
&
<string-name>
<surname>Pascal</surname>
<given-names>JM</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>Structural basis for DNA damage‐dependent poly(ADP‐ribosyl)ation by human PARP‐1</article-title>
.
<source xml:lang="en">Science</source>
<volume>336</volume>
,
<fpage>728</fpage>
<lpage>732</lpage>
.
<pub-id pub-id-type="pmid">22582261</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0100">
<label>100</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0100">
<string-name>
<surname>Hu</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Petit</surname>
<given-names>SA</given-names>
</string-name>
,
<string-name>
<surname>Ficarro</surname>
<given-names>SB</given-names>
</string-name>
,
<string-name>
<surname>Toomire</surname>
<given-names>KJ</given-names>
</string-name>
,
<string-name>
<surname>Xie</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Lim</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Cao</surname>
<given-names>SA</given-names>
</string-name>
,
<string-name>
<surname>Park</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Eck</surname>
<given-names>MJ</given-names>
</string-name>
,
<string-name>
<surname>Scully</surname>
<given-names>R</given-names>
</string-name>
<italic>et al</italic>
(
<year>2014</year>
)
<article-title>PARP1‐driven poly‐ADP‐ribosylation regulates BRCA1 function in homologous recombination‐mediated DNA repair</article-title>
.
<source xml:lang="en">Cancer Discov</source>
<volume>4</volume>
,
<fpage>1430</fpage>
<lpage>1447</lpage>
.
<pub-id pub-id-type="pmid">25252691</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0101">
<label>101</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0101">
<string-name>
<surname>Xie</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Mortusewicz</surname>
<given-names>O</given-names>
</string-name>
,
<string-name>
<surname>Ma</surname>
<given-names>HT</given-names>
</string-name>
,
<string-name>
<surname>Herr</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Poon</surname>
<given-names>RY</given-names>
</string-name>
,
<string-name>
<surname>Helleday</surname>
<given-names>T</given-names>
</string-name>
&
<string-name>
<surname>Qian</surname>
<given-names>C</given-names>
</string-name>
(
<year>2015</year>
)
<article-title>Timeless interacts with PARP‐1 to promote homologous recombination repair</article-title>
.
<source xml:lang="en">Mol Cell</source>
<volume>60</volume>
,
<fpage>163</fpage>
<lpage>176</lpage>
.
<pub-id pub-id-type="pmid">26344098</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0102">
<label>102</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0102">
<string-name>
<surname>Rulten</surname>
<given-names>SL</given-names>
</string-name>
,
<string-name>
<surname>Fisher</surname>
<given-names>AE</given-names>
</string-name>
,
<string-name>
<surname>Robert</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Zuma</surname>
<given-names>MC</given-names>
</string-name>
,
<string-name>
<surname>Rouleau</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Ju</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Poirier</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Reina‐San‐Martin</surname>
<given-names>B</given-names>
</string-name>
&
<string-name>
<surname>Caldecott</surname>
<given-names>KW</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>PARP‐3 and APLF function together to accelerate nonhomologous end‐joining</article-title>
.
<source xml:lang="en">Mol Cell</source>
<volume>41</volume>
,
<fpage>33</fpage>
<lpage>45</lpage>
.
<pub-id pub-id-type="pmid">21211721</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0103">
<label>103</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0103">
<string-name>
<surname>Vida</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Márton</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Mikó</surname>
<given-names>E</given-names>
</string-name>
&
<string-name>
<surname>Bai</surname>
<given-names>P</given-names>
</string-name>
(
<year>2017</year>
)
<article-title>Metabolic roles of poly(ADP‐ribose) polymerases</article-title>
.
<source xml:lang="en">Semin Cell Dev Biol</source>
<volume>63</volume>
,
<fpage>135</fpage>
<lpage>143</lpage>
.
<pub-id pub-id-type="pmid">28013023</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0104">
<label>104</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0104">
<string-name>
<surname>Kickhoefer</surname>
<given-names>VA</given-names>
</string-name>
,
<string-name>
<surname>Siva</surname>
<given-names>AC</given-names>
</string-name>
,
<string-name>
<surname>Kedersha</surname>
<given-names>NL</given-names>
</string-name>
,
<string-name>
<surname>Inman</surname>
<given-names>EM</given-names>
</string-name>
,
<string-name>
<surname>Ruland</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Streuli</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Rome</surname>
<given-names>LH</given-names>
</string-name>
(
<year>1999</year>
)
<article-title>The 193‐kD vault protein, VPARP, is a novel poly(ADP‐ribose) polymerase</article-title>
.
<source xml:lang="en">J Cell Biol</source>
<volume>146</volume>
,
<fpage>917</fpage>
<lpage>928</lpage>
.
<pub-id pub-id-type="pmid">10477748</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0105">
<label>105</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0105">
<string-name>
<surname>Huang</surname>
<given-names>SM</given-names>
</string-name>
,
<string-name>
<surname>Mishina</surname>
<given-names>YM</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Cheung</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Stegmeier</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Michaud</surname>
<given-names>GA</given-names>
</string-name>
,
<string-name>
<surname>Charlat</surname>
<given-names>O</given-names>
</string-name>
,
<string-name>
<surname>Wiellette</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Wiessner</surname>
<given-names>S</given-names>
</string-name>
<italic>et al</italic>
(
<year>2009</year>
)
<article-title>Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling</article-title>
.
<source xml:lang="en">Nature</source>
<volume>461</volume>
,
<fpage>614</fpage>
<lpage>620</lpage>
.
<pub-id pub-id-type="pmid">19759537</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0106">
<label>106</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0106">
<string-name>
<surname>Fearon</surname>
<given-names>ER</given-names>
</string-name>
(
<year>2009</year>
)
<article-title>PARsing the phrase “all in for Axin”‐ Wnt pathway targets in cancer</article-title>
.
<source xml:lang="en">Cancer Cell</source>
<volume>16</volume>
,
<fpage>366</fpage>
<lpage>368</lpage>
.
<pub-id pub-id-type="pmid">19878868</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0107">
<label>107</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0107">
<string-name>
<surname>Mariotti</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Templeton</surname>
<given-names>CM</given-names>
</string-name>
,
<string-name>
<surname>Ranes</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Paracuellos</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Cronin</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Beuron</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Morris</surname>
<given-names>E</given-names>
</string-name>
&
<string-name>
<surname>Guettler</surname>
<given-names>S</given-names>
</string-name>
(
<year>2016</year>
)
<article-title>Tankyrase requires SAM domain‐dependent polymerization to support Wnt‐β‐catenin signaling</article-title>
.
<source xml:lang="en">Mol Cell</source>
<volume>63</volume>
,
<fpage>498</fpage>
<lpage>513</lpage>
.
<pub-id pub-id-type="pmid">27494558</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0108">
<label>108</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0108">
<string-name>
<surname>Haikarainen</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Krauss</surname>
<given-names>S</given-names>
</string-name>
&
<string-name>
<surname>Lehtio</surname>
<given-names>L</given-names>
</string-name>
(
<year>2014</year>
)
<article-title>Tankyrases: structure, function and therapeutic implications in cancer</article-title>
.
<source xml:lang="en">Curr Pharm Des</source>
<volume>20</volume>
,
<fpage>6472</fpage>
<lpage>6488</lpage>
.
<pub-id pub-id-type="pmid">24975604</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0109">
<label>109</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0109">
<string-name>
<surname>Smith</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Giriat</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Schmitt</surname>
<given-names>A</given-names>
</string-name>
&
<string-name>
<surname>de Lange</surname>
<given-names>T</given-names>
</string-name>
(
<year>1998</year>
)
<article-title>Tankyrase, a poly(ADP‐ribose) polymerase at human telomeres</article-title>
.
<source xml:lang="en">Science</source>
<volume>282</volume>
,
<fpage>1484</fpage>
<lpage>1487</lpage>
.
<pub-id pub-id-type="pmid">9822378</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0110">
<label>110</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0110">
<string-name>
<surname>Nagy</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Kalousi</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Furst</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Koch</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Fischer</surname>
<given-names>B</given-names>
</string-name>
&
<string-name>
<surname>Soutoglou</surname>
<given-names>E</given-names>
</string-name>
(
<year>2016</year>
)
<article-title>Tankyrases promote homologous recombination and check point activation in response to DSBs</article-title>
.
<source xml:lang="en">PLoS Genet</source>
<volume>12</volume>
,
<fpage>e1005791</fpage>
.
<pub-id pub-id-type="pmid">26845027</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0111">
<label>111</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0111">
<string-name>
<surname>Huang</surname>
<given-names>JY</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Vermehren‐Schmaedick</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Adelman</surname>
<given-names>J</given-names>
</string-name>
&
<string-name>
<surname>Cohen</surname>
<given-names>MS</given-names>
</string-name>
(
<year>2016</year>
)
<article-title>PARP6 is a regulator of hippocampal dendritic morphogenesis</article-title>
.
<source xml:lang="en">Sci Rep</source>
<volume>6</volume>
,
<fpage>18512</fpage>
.
<pub-id pub-id-type="pmid">26725726</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0112">
<label>112</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0112">
<string-name>
<surname>Bock</surname>
<given-names>FJ</given-names>
</string-name>
,
<string-name>
<surname>Todorova</surname>
<given-names>TT</given-names>
</string-name>
&
<string-name>
<surname>Chang</surname>
<given-names>P</given-names>
</string-name>
(
<year>2015</year>
)
<article-title>RNA regulation by poly(ADP‐ribose) polymerases</article-title>
.
<source xml:lang="en">Mol Cell</source>
<volume>58</volume>
,
<fpage>959</fpage>
<lpage>969</lpage>
.
<pub-id pub-id-type="pmid">26091344</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0113">
<label>113</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0113">
<string-name>
<surname>Bütepage</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Eckei</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Verheugd</surname>
<given-names>P</given-names>
</string-name>
&
<string-name>
<surname>Lüscher</surname>
<given-names>B</given-names>
</string-name>
(
<year>2015</year>
)
<article-title>Intracellular mono‐ADP‐ribosylation in signaling and disease</article-title>
.
<source xml:lang="en">Cells</source>
<volume>4</volume>
,
<fpage>569</fpage>
<lpage>595</lpage>
.
<pub-id pub-id-type="pmid">26426055</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0114">
<label>114</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0114">
<string-name>
<surname>Verheugd</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Forst</surname>
<given-names>AH</given-names>
</string-name>
,
<string-name>
<surname>Milke</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Herzog</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Feijs</surname>
<given-names>KL</given-names>
</string-name>
,
<string-name>
<surname>Kremmer</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Kleine</surname>
<given-names>H</given-names>
</string-name>
&
<string-name>
<surname>Lüscher</surname>
<given-names>B</given-names>
</string-name>
(
<year>2013</year>
)
<article-title>Regulation of NF‐κB signalling by the mono‐ADP‐ribosyltransferase ARTD10</article-title>
.
<source xml:lang="en">Nat Commun</source>
<volume>4</volume>
,
<fpage>1683</fpage>
.
<pub-id pub-id-type="pmid">23575687</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0115">
<label>115</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0115">
<string-name>
<surname>Feijs</surname>
<given-names>KL</given-names>
</string-name>
,
<string-name>
<surname>Kleine</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Braczynski</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Forst</surname>
<given-names>AH</given-names>
</string-name>
,
<string-name>
<surname>Herzog</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Verheugd</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Linzen</surname>
<given-names>U</given-names>
</string-name>
,
<string-name>
<surname>Kremmer</surname>
<given-names>E</given-names>
</string-name>
&
<string-name>
<surname>Lüscher</surname>
<given-names>B</given-names>
</string-name>
(
<year>2013</year>
)
<article-title>ARTD10 substrate identification on protein microarrays: regulation of GSK3β by mono‐ADP‐ribosylation</article-title>
.
<source xml:lang="en">Cell Commun Signal</source>
<volume>11</volume>
,
<fpage>5</fpage>
.
<pub-id pub-id-type="pmid">23332125</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0116">
<label>116</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0116">
<string-name>
<surname>Yu</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Schreek</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Cerni</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Schamberger</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Lesniewicz</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Poreba</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Vervoorts</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Walsemann</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Grötzinger</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Kremmer</surname>
<given-names>E</given-names>
</string-name>
<italic>et al</italic>
(
<year>2005</year>
)
<article-title>PARP‐10, a novel Myc‐interacting protein with poly(ADP‐ribose) polymerase activity, inhibits transformation</article-title>
.
<source xml:lang="en">Oncogene</source>
<volume>24</volume>
,
<fpage>1982</fpage>
<lpage>1993</lpage>
.
<pub-id pub-id-type="pmid">15674325</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0117">
<label>117</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0117">
<string-name>
<surname>Iwata</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Goettsch</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Sharma</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Ricchiuto</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Goh</surname>
<given-names>WW</given-names>
</string-name>
,
<string-name>
<surname>Halu</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Yamada</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Yoshida</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Hara</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Wei</surname>
<given-names>M</given-names>
</string-name>
<italic>et al</italic>
(
<year>2016</year>
)
<article-title>PARP9 and PARP14 cross‐regulate macrophage activation via STAT1 ADP‐ribosylation</article-title>
.
<source xml:lang="en">Nat Commun</source>
<volume>7</volume>
,
<fpage>12849</fpage>
.
<pub-id pub-id-type="pmid">27796300</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0118">
<label>118</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0118">
<string-name>
<surname>Meyer‐Ficca</surname>
<given-names>ML</given-names>
</string-name>
,
<string-name>
<surname>Ihara</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Bader</surname>
<given-names>JJ</given-names>
</string-name>
,
<string-name>
<surname>Leu</surname>
<given-names>NA</given-names>
</string-name>
,
<string-name>
<surname>Beneke</surname>
<given-names>S</given-names>
</string-name>
&
<string-name>
<surname>Meyer</surname>
<given-names>RG</given-names>
</string-name>
(
<year>2015</year>
)
<article-title>Spermatid head elongation with normal nuclear shaping requires ADP‐ribosyltransferase PARP11 (ARTD11) in mice</article-title>
.
<source xml:lang="en">Biol Reprod</source>
<volume>92</volume>
,
<fpage>80</fpage>
.
<pub-id pub-id-type="pmid">25673562</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0119">
<label>119</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0119">
<string-name>
<surname>Carter‐O'Connell</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Jin</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Morgan</surname>
<given-names>RK</given-names>
</string-name>
,
<string-name>
<surname>Zaja</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>David</surname>
<given-names>LL</given-names>
</string-name>
,
<string-name>
<surname>Ahel</surname>
<given-names>I</given-names>
</string-name>
&
<string-name>
<surname>Cohen</surname>
<given-names>MS</given-names>
</string-name>
(
<year>2016</year>
)
<article-title>Identifying family‐member‐specific targets of mono‐ARTDs by using a chemical genetics approach</article-title>
.
<source xml:lang="en">Cell Rep</source>
<volume>14</volume>
,
<fpage>621</fpage>
<lpage>631</lpage>
.
<pub-id pub-id-type="pmid">26774478</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0120">
<label>120</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0120">
<string-name>
<surname>Westcott</surname>
<given-names>NP</given-names>
</string-name>
,
<string-name>
<surname>Fernandez</surname>
<given-names>JP</given-names>
</string-name>
,
<string-name>
<surname>Molina</surname>
<given-names>H</given-names>
</string-name>
&
<string-name>
<surname>Hang</surname>
<given-names>HC</given-names>
</string-name>
(
<year>2017</year>
)
<article-title>Chemical proteomics reveals ADP‐ribosylation of small GTPases during oxidative stress</article-title>
.
<source xml:lang="en">Nat Chem Biol</source>
<volume>13</volume>
,
<fpage>302</fpage>
<lpage>308</lpage>
.
<pub-id pub-id-type="pmid">28092360</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0121">
<label>121</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0121">
<string-name>
<surname>Chapman</surname>
<given-names>JD</given-names>
</string-name>
,
<string-name>
<surname>Gagné</surname>
<given-names>JP</given-names>
</string-name>
,
<string-name>
<surname>Poirier</surname>
<given-names>GG</given-names>
</string-name>
&
<string-name>
<surname>Goodlett</surname>
<given-names>DR</given-names>
</string-name>
(
<year>2013</year>
)
<article-title>Mapping PARP‐1 auto‐ADP‐ribosylation sites by liquid chromatography‐tandem mass spectrometry</article-title>
.
<source xml:lang="en">J Proteome Res</source>
<volume>12</volume>
,
<fpage>1868</fpage>
<lpage>1880</lpage>
.
<pub-id pub-id-type="pmid">23438649</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0122">
<label>122</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0122">
<string-name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Ding</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Yu</surname>
<given-names>Y</given-names>
</string-name>
(
<year>2013</year>
)
<article-title>Site‐specific characterization of the Asp‐ and Glu‐ADP‐ribosylated proteome</article-title>
.
<source xml:lang="en">Nat Methods</source>
<volume>10</volume>
,
<fpage>981</fpage>
<lpage>984</lpage>
.
<pub-id pub-id-type="pmid">23955771</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0123">
<label>123</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0123">
<string-name>
<surname>Daniels</surname>
<given-names>CM</given-names>
</string-name>
,
<string-name>
<surname>Ong</surname>
<given-names>SE</given-names>
</string-name>
&
<string-name>
<surname>Leung</surname>
<given-names>AK</given-names>
</string-name>
(
<year>2015</year>
)
<article-title>The promise of proteomics for the study of ADP‐ribosylation</article-title>
.
<source xml:lang="en">Mol Cell</source>
<volume>58</volume>
,
<fpage>911</fpage>
<lpage>924</lpage>
.
<pub-id pub-id-type="pmid">26091340</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0124">
<label>124</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0124">
<string-name>
<surname>Daniels</surname>
<given-names>CM</given-names>
</string-name>
,
<string-name>
<surname>Ong</surname>
<given-names>SE</given-names>
</string-name>
&
<string-name>
<surname>Leung</surname>
<given-names>AK</given-names>
</string-name>
(
<year>2014</year>
)
<article-title>Phosphoproteomic approach to characterize protein mono‐ and poly(ADP‐ribosyl)ation sites from cells</article-title>
.
<source xml:lang="en">J Proteome Res</source>
<volume>13</volume>
,
<fpage>3510</fpage>
<lpage>3522</lpage>
.
<pub-id pub-id-type="pmid">24920161</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0125">
<label>125</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0125">
<string-name>
<surname>Leidecker</surname>
<given-names>O</given-names>
</string-name>
,
<string-name>
<surname>Bonfiglio</surname>
<given-names>JJ</given-names>
</string-name>
,
<string-name>
<surname>Colby</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Atanassov</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Zaja</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Palazzo</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Stockum</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Ahel</surname>
<given-names>I</given-names>
</string-name>
&
<string-name>
<surname>Matic</surname>
<given-names>I</given-names>
</string-name>
(
<year>2016</year>
)
<article-title>Serine is a new target residue for endogenous ADP‐ribosylation on histones</article-title>
.
<source xml:lang="en">Nat Chem Biol</source>
<volume>12</volume>
,
<fpage>998</fpage>
<lpage>1000</lpage>
.
<pub-id pub-id-type="pmid">27723750</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0126">
<label>126</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0126">
<string-name>
<surname>Bilan</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Leutert</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Nanni</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Panse</surname>
<given-names>C</given-names>
</string-name>
&
<string-name>
<surname>Hottiger</surname>
<given-names>MO</given-names>
</string-name>
(
<year>2017</year>
)
<article-title>Combining Higher‐Energy Collision Dissociation and Electron‐Transfer/Higher‐Energy Collision Dissociation Fragmentation in a Product‐Dependent Manner Confidently Assigns Proteome wide ADP‐Ribose Acceptor Sites</article-title>
.
<source xml:lang="en">Anal Chem</source>
<volume>89</volume>
,
<fpage>1523</fpage>
<lpage>1530</lpage>
.
<pub-id pub-id-type="pmid">28035797</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0127">
<label>127</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0127">
<string-name>
<surname>Bonfiglio</surname>
<given-names>JJ</given-names>
</string-name>
,
<string-name>
<surname>Fontana</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>Q</given-names>
</string-name>
,
<string-name>
<surname>Colby</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Gibbs‐Seymour</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Atanassov</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Bartlett</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Zaja</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Ahel</surname>
<given-names>I</given-names>
</string-name>
&
<string-name>
<surname>Matic</surname>
<given-names>I</given-names>
</string-name>
(
<year>2017</year>
)
<article-title>Serine ADP‐ribosylation depends on HPF1</article-title>
.
<source xml:lang="en">Mol Cell</source>
<volume>65</volume>
,
<fpage>932</fpage>
<lpage>940</lpage>
.
<pub-id pub-id-type="pmid">28190768</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0128">
<label>128</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0128">
<string-name>
<surname>Gibbs‐Seymour</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Fontana</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Rack</surname>
<given-names>JG</given-names>
</string-name>
&
<string-name>
<surname>Ahel</surname>
<given-names>I</given-names>
</string-name>
(
<year>2016</year>
)
<article-title>HPF1/C4orf27 Is a PARP‐1‐interacting protein that regulates PARP‐1 ADP‐ribosylation activity</article-title>
.
<source xml:lang="en">Mol Cell</source>
<volume>62</volume>
,
<fpage>432</fpage>
<lpage>442</lpage>
.
<pub-id pub-id-type="pmid">27067600</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0129">
<label>129</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0129">
<string-name>
<surname>Holbourn</surname>
<given-names>KP</given-names>
</string-name>
,
<string-name>
<surname>Shone</surname>
<given-names>CC</given-names>
</string-name>
&
<string-name>
<surname>Acharya</surname>
<given-names>KR</given-names>
</string-name>
(
<year>2006</year>
)
<article-title>A family of killer toxins – exploring the mechanism of ADP‐ribosylating toxins</article-title>
.
<source xml:lang="en">FEBS J</source>
<volume>273</volume>
,
<fpage>4579</fpage>
<lpage>4593</lpage>
.
<pub-id pub-id-type="pmid">16956368</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0130">
<label>130</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0130">
<string-name>
<surname>Huh</surname>
<given-names>JW</given-names>
</string-name>
,
<string-name>
<surname>Shima</surname>
<given-names>J</given-names>
</string-name>
&
<string-name>
<surname>Ochi</surname>
<given-names>K</given-names>
</string-name>
(
<year>1996</year>
)
<article-title>ADP‐ribosylation of proteins in
<italic>Bacillus subtilis</italic>
and its possible importance in sporulation</article-title>
.
<source xml:lang="en">J Bacteriol</source>
<volume>178</volume>
,
<fpage>4935</fpage>
<lpage>4941</lpage>
.
<pub-id pub-id-type="pmid">8759858</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0131">
<label>131</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0131">
<string-name>
<surname>Eastman</surname>
<given-names>D</given-names>
</string-name>
&
<string-name>
<surname>Dworkin</surname>
<given-names>M</given-names>
</string-name>
(
<year>1994</year>
)
<article-title>Endogenous Adp‐ribosylation during development of the prokaryote
<italic>Myxococcus xanthus</italic>
</article-title>
.
<source xml:lang="en">Microbiology</source>
<volume>140</volume>
,
<fpage>3167</fpage>
<lpage>3176</lpage>
.
<pub-id pub-id-type="pmid">7812456</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0132">
<label>132</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0132">
<string-name>
<surname>Hildebrandt</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Eastman</surname>
<given-names>D</given-names>
</string-name>
&
<string-name>
<surname>Dworkin</surname>
<given-names>M</given-names>
</string-name>
(
<year>1997</year>
)
<article-title>ADP‐ribosylation by the extracellular fibrils of
<italic>Myxococcus xanthus</italic>
</article-title>
.
<source xml:lang="en">Mol Microbiol</source>
<volume>23</volume>
,
<fpage>231</fpage>
<lpage>235</lpage>
.
<pub-id pub-id-type="pmid">9044257</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0133">
<label>133</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0133">
<string-name>
<surname>Ochi</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Penyige</surname>
<given-names>A</given-names>
</string-name>
&
<string-name>
<surname>Barabas</surname>
<given-names>G</given-names>
</string-name>
(
<year>1992</year>
)
<article-title>The possible role of ADP‐ribosylation in sporulation and streptomycin production by
<italic>Streptomyces griseus</italic>
</article-title>
.
<source xml:lang="en">J Gen Microbiol</source>
<volume>138</volume>
,
<fpage>1745</fpage>
<lpage>1750</lpage>
.
<pub-id pub-id-type="pmid">1527513</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0134">
<label>134</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0134">
<string-name>
<surname>Penyige</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Deak</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Kalmanczhelyi</surname>
<given-names>A</given-names>
</string-name>
&
<string-name>
<surname>Barabas</surname>
<given-names>G</given-names>
</string-name>
(
<year>1996</year>
)
<article-title>Evidence of a role for NAD(+)‐glycohydrolase and ADP‐ribosyltransferase in growth and differentiation of
<italic>Streptomyces griseus</italic>
NRRL B‐2682: inhibition by m‐aminophenylboronic acid</article-title>
.
<source xml:lang="en">Microbiology</source>
<volume>142</volume>
,
<fpage>1937</fpage>
<lpage>1944</lpage>
.
<pub-id pub-id-type="pmid">8800814</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0135">
<label>135</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0135">
<string-name>
<surname>Penyige</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Keseru</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Fazakas</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Schmelczer</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Szirak</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Barabas</surname>
<given-names>G</given-names>
</string-name>
&
<string-name>
<surname>Biro</surname>
<given-names>S</given-names>
</string-name>
(
<year>2009</year>
)
<article-title>Analysis and identification of ADP‐ribosylated proteins of
<italic>Streptomyces coelicolor</italic>
M145</article-title>
.
<source xml:lang="en">J Microbiol</source>
<volume>47</volume>
,
<fpage>549</fpage>
<lpage>556</lpage>
.
<pub-id pub-id-type="pmid">19851727</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0136">
<label>136</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0136">
<string-name>
<surname>Szirak</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Keseru</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Biro</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Schmelczer</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Barabas</surname>
<given-names>G</given-names>
</string-name>
&
<string-name>
<surname>Penyige</surname>
<given-names>A</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>Disruption of SCO5461 gene coding for a mono‐ADP‐ribosyltransferase enzyme produces a conditional pleiotropic phenotype affecting morphological differentiation and antibiotic production in
<italic>Streptomyces coelicolor</italic>
</article-title>
.
<source xml:lang="en">J Microbiol</source>
<volume>50</volume>
,
<fpage>409</fpage>
<lpage>418</lpage>
.
<pub-id pub-id-type="pmid">22752904</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0137">
<label>137</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0137">
<string-name>
<surname>Penyige</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Barabás</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Szabó</surname>
<given-names>I</given-names>
</string-name>
&
<string-name>
<surname>Ensign</surname>
<given-names>JC</given-names>
</string-name>
(
<year>1990</year>
)
<article-title>ADP‐ribosylation of membrane proteins of
<italic>Streptomyces griseus</italic>
strain 52‐1</article-title>
.
<source xml:lang="en">FEMS Microbiol Lett</source>
<volume>57</volume>
,
<fpage>293</fpage>
<lpage>297</lpage>
.
<pub-id pub-id-type="pmid">2120108</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0138">
<label>138</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0138">
<string-name>
<surname>Penyige</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Saido‐Sakanaka</surname>
<given-names>H</given-names>
</string-name>
&
<string-name>
<surname>Ochi</surname>
<given-names>K</given-names>
</string-name>
(
<year>1996</year>
)
<article-title>Endogenous ADP‐ribosylation of proteins during development of
<italic>Streptomyces griseus</italic>
</article-title>
.
<source xml:lang="en">Actinomycetologica</source>
<volume>10</volume>
,
<fpage>98</fpage>
<lpage>103</lpage>
.</mixed-citation>
</ref>
<ref id="febs14078-bib-0139">
<label>139</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0139">
<string-name>
<surname>Shima</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Penyige</surname>
<given-names>A</given-names>
</string-name>
&
<string-name>
<surname>Ochi</surname>
<given-names>K</given-names>
</string-name>
(
<year>1996</year>
)
<article-title>Changes in patterns of ADP‐ribosylated proteins during differentiation of
<italic>Streptomyces coelicolor</italic>
A3(2) and its developmental mutants</article-title>
.
<source xml:lang="en">J Bacteriol</source>
<volume>178</volume>
,
<fpage>3785</fpage>
<lpage>3790</lpage>
.
<pub-id pub-id-type="pmid">8682781</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0140">
<label>140</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0140">
<string-name>
<surname>Nakano</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Matsushima‐Hibiya</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Yamamoto</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Takahashi‐Nakaguchi</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Fukuda</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Ono</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Takamura‐Enya</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Kinashi</surname>
<given-names>H</given-names>
</string-name>
&
<string-name>
<surname>Totsuka</surname>
<given-names>Y</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>ADP‐ribosylation of guanosine by SCO5461 protein secreted from
<italic>Streptomyces coelicolor</italic>
</article-title>
.
<source xml:lang="en">Toxicon</source>
<volume>63</volume>
,
<fpage>55</fpage>
<lpage>63</lpage>
.
<pub-id pub-id-type="pmid">23212047</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0141">
<label>141</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0141">
<string-name>
<surname>Lyons</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Ravulapalli</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Lanoue</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Lugo</surname>
<given-names>MR</given-names>
</string-name>
,
<string-name>
<surname>Dutta</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Carlin</surname>
<given-names>S</given-names>
</string-name>
&
<string-name>
<surname>Merrill</surname>
<given-names>AR</given-names>
</string-name>
(
<year>2016</year>
)
<article-title>Scabin, a novel DNA‐acting ADP‐ribosyltransferase from
<italic>Streptomyces scabies</italic>
</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<volume>291</volume>
,
<fpage>11198</fpage>
<lpage>11215</lpage>
.
<pub-id pub-id-type="pmid">27002155</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0142">
<label>142</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0142">
<string-name>
<surname>Sawaya</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Schwer</surname>
<given-names>B</given-names>
</string-name>
&
<string-name>
<surname>Shuman</surname>
<given-names>S</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>Structure‐function analysis of the yeast NAD+‐dependent tRNA 2′‐phosphotransferase Tpt1</article-title>
.
<source xml:lang="en">RNA</source>
<volume>11</volume>
,
<fpage>107</fpage>
<lpage>113</lpage>
.
<pub-id pub-id-type="pmid">15611301</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0143">
<label>143</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0143">
<string-name>
<surname>Baysarowich</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Koteva</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Hughes</surname>
<given-names>DW</given-names>
</string-name>
,
<string-name>
<surname>Ejim</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Griffiths</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Junop</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Wright</surname>
<given-names>GD</given-names>
</string-name>
(
<year>2008</year>
)
<article-title>Rifamycin antibiotic resistance by ADP‐ribosylation: structure and diversity of Arr</article-title>
.
<source xml:lang="en">Proc Natl Acad Sci USA</source>
<volume>105</volume>
,
<fpage>4886</fpage>
<lpage>4891</lpage>
.
<pub-id pub-id-type="pmid">18349144</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0144">
<label>144</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0144">
<string-name>
<surname>Stallings</surname>
<given-names>CL</given-names>
</string-name>
,
<string-name>
<surname>Chu</surname>
<given-names>LD</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>LX</given-names>
</string-name>
&
<string-name>
<surname>Glickman</surname>
<given-names>MS</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>Catalytic and non‐catalytic roles for the mono‐ADP‐ribosyltransferase Arr in the mycobacterial DNA damage response</article-title>
.
<source xml:lang="en">PLoS One</source>
<volume>6</volume>
,
<fpage>e21807</fpage>
.
<pub-id pub-id-type="pmid">21789183</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0145">
<label>145</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0145">
<string-name>
<surname>Liu</surname>
<given-names>YQ</given-names>
</string-name>
,
<string-name>
<surname>Zhou</surname>
<given-names>JZ</given-names>
</string-name>
,
<string-name>
<surname>Omelchenko</surname>
<given-names>MV</given-names>
</string-name>
,
<string-name>
<surname>Beliaev</surname>
<given-names>AS</given-names>
</string-name>
,
<string-name>
<surname>Venkateswaran</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Stair</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Wu</surname>
<given-names>LY</given-names>
</string-name>
,
<string-name>
<surname>Thompson</surname>
<given-names>DK</given-names>
</string-name>
,
<string-name>
<surname>Xu</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Rogozin</surname>
<given-names>IB</given-names>
</string-name>
<italic>et al</italic>
(
<year>2003</year>
)
<article-title>Transcriptome dynamics of
<italic>Deinococcus radiodurans</italic>
recovering from ionizing radiation</article-title>
.
<source xml:lang="en">Proc Natl Acad Sci USA</source>
<volume>100</volume>
,
<fpage>4191</fpage>
<lpage>4196</lpage>
.
<pub-id pub-id-type="pmid">12651953</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0146">
<label>146</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0146">
<string-name>
<surname>Kim</surname>
<given-names>KS</given-names>
</string-name>
,
<string-name>
<surname>Manasherob</surname>
<given-names>R</given-names>
</string-name>
&
<string-name>
<surname>Cohen</surname>
<given-names>SN</given-names>
</string-name>
(
<year>2008</year>
)
<article-title>YmdB: a stress‐responsive ribonuclease‐binding regulator of
<italic>E. coli</italic>
RNase III activity</article-title>
.
<source xml:lang="en">Genes Dev</source>
<volume>22</volume>
,
<fpage>3497</fpage>
<lpage>3508</lpage>
.
<pub-id pub-id-type="pmid">19141481</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0147">
<label>147</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0147">
<string-name>
<surname>Kim</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Lee</surname>
<given-names>J</given-names>
</string-name>
&
<string-name>
<surname>Kim</surname>
<given-names>KS</given-names>
</string-name>
(
<year>2013</year>
)
<article-title>
<italic>Escherichia coli</italic>
YmdB regulates biofilm formation independently of its role as an RNase III modulator</article-title>
.
<source xml:lang="en">BMC Microbiol</source>
<volume>13</volume>
,
<fpage>266</fpage>
.
<pub-id pub-id-type="pmid">24267348</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0148">
<label>148</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0148">
<string-name>
<surname>Lalic</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Posavec Marjanovic</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Palazzo</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Perina</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Sabljic</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Zaja</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Colby</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Plese</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Halasz</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Jankevicius</surname>
<given-names>G</given-names>
</string-name>
<italic>et al</italic>
(
<year>2016</year>
)
<article-title>Disruption of macrodomain protein SCO6735 increases antibiotic production in
<italic>Streptomyces coelicolor</italic>
</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<volume>291</volume>
,
<fpage>23175</fpage>
<lpage>23187</lpage>
.
<pub-id pub-id-type="pmid">27634042</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0149">
<label>149</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0149">
<string-name>
<surname>Ahel</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Vujaklija</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Mikoc</surname>
<given-names>A</given-names>
</string-name>
&
<string-name>
<surname>Gamulin</surname>
<given-names>V</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>Transcriptional analysis of the recA gene in
<italic>Streptomyces rimosus</italic>
: identification of the new type of promoter</article-title>
.
<source xml:lang="en">FEMS Microbiol Lett</source>
<volume>209</volume>
,
<fpage>133</fpage>
<lpage>137</lpage>
.
<pub-id pub-id-type="pmid">12007666</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0150">
<label>150</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0150">
<string-name>
<surname>Gamulin</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Cetkovic</surname>
<given-names>H</given-names>
</string-name>
&
<string-name>
<surname>Ahel</surname>
<given-names>I</given-names>
</string-name>
(
<year>2004</year>
)
<article-title>Identification of a promoter motif regulating the major DNA damage response mechanism of
<italic>Mycobacterium tuberculosis</italic>
</article-title>
.
<source xml:lang="en">FEMS Microbiol Lett</source>
<volume>238</volume>
,
<fpage>57</fpage>
<lpage>63</lpage>
.
<pub-id pub-id-type="pmid">15336403</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0151">
<label>151</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0151">
<string-name>
<surname>Mikulik</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Felsberg</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Kudrnacova</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Bezouskova</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Setinova</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Stodulkova</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Zidkova</surname>
<given-names>J</given-names>
</string-name>
&
<string-name>
<surname>Zidek</surname>
<given-names>V</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>CobB1 deacetylase activity in
<italic>Streptomyces coelicolor</italic>
</article-title>
.
<source xml:lang="en">Biochem Cell Biol</source>
<volume>90</volume>
,
<fpage>179</fpage>
<lpage>187</lpage>
.
<pub-id pub-id-type="pmid">22300453</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0152">
<label>152</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0152">
<string-name>
<surname>Tan</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Xu</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Tao</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Ni</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Zhao</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Lu</surname>
<given-names>J</given-names>
</string-name>
&
<string-name>
<surname>Yao</surname>
<given-names>YF</given-names>
</string-name>
(
<year>2016</year>
)
<article-title>A SIRT4‐like auto ADP‐ribosyltransferase is essential for the environmental growth of
<italic>Mycobacterium smegmatis</italic>
</article-title>
.
<source xml:lang="en">Acta Biochim Biophys Sin (Shanghai)</source>
<volume>48</volume>
,
<fpage>145</fpage>
<lpage>152</lpage>
.
<pub-id pub-id-type="pmid">26685303</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0153">
<label>153</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0153">
<string-name>
<surname>Moore</surname>
<given-names>JM</given-names>
</string-name>
,
<string-name>
<surname>Bradshaw</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Seipke</surname>
<given-names>RF</given-names>
</string-name>
,
<string-name>
<surname>Hutchings</surname>
<given-names>MI</given-names>
</string-name>
&
<string-name>
<surname>McArthur</surname>
<given-names>M</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>Use and discovery of chemical elicitors that stimulate biosynthetic gene clusters in
<italic>Streptomyces</italic>
bacteria</article-title>
.
<source xml:lang="en">Methods Enzymol</source>
<volume>517</volume>
,
<fpage>367</fpage>
<lpage>385</lpage>
.
<pub-id pub-id-type="pmid">23084948</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0154">
<label>154</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0154">
<string-name>
<surname>Harms</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Maisonneuve</surname>
<given-names>E</given-names>
</string-name>
&
<string-name>
<surname>Gerdes</surname>
<given-names>K</given-names>
</string-name>
(
<year>2016</year>
)
<article-title>Mechanisms of bacterial persistence during stress and antibiotic exposure</article-title>
.
<source xml:lang="en">Science</source>
<volume>354</volume>
, pii: aaf4268, doi:
<pub-id pub-id-type="doi">10.1126/science.aaf4268</pub-id>
.</mixed-citation>
</ref>
<ref id="febs14078-bib-0155">
<label>155</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0155">
<string-name>
<surname>Sberro</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Leavitt</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Kiro</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Koh</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Peleg</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Qimron</surname>
<given-names>U</given-names>
</string-name>
&
<string-name>
<surname>Sorek</surname>
<given-names>R</given-names>
</string-name>
(
<year>2013</year>
)
<article-title>Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning</article-title>
.
<source xml:lang="en">Mol Cell</source>
<volume>50</volume>
,
<fpage>136</fpage>
<lpage>148</lpage>
.
<pub-id pub-id-type="pmid">23478446</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0156">
<label>156</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0156">
<string-name>
<surname>Spalding</surname>
<given-names>MD</given-names>
</string-name>
&
<string-name>
<surname>Prigge</surname>
<given-names>ST</given-names>
</string-name>
(
<year>2009</year>
)
<article-title>The amidase domain of lipoamidase specifically inactivates lipoylated proteins in vivo</article-title>
.
<source xml:lang="en">PLoS One</source>
<volume>4</volume>
,
<fpage>e7392</fpage>
.
<pub-id pub-id-type="pmid">19812687</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0157">
<label>157</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0157">
<string-name>
<surname>Welchman</surname>
<given-names>RL</given-names>
</string-name>
,
<string-name>
<surname>Gordon</surname>
<given-names>C</given-names>
</string-name>
&
<string-name>
<surname>Mayer</surname>
<given-names>RJ</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>Ubiquitin and ubiquitin‐like proteins as multifunctional signals</article-title>
.
<source xml:lang="en">Nat Rev Mol Cell Biol</source>
<volume>6</volume>
,
<fpage>599</fpage>
<lpage>609</lpage>
.
<pub-id pub-id-type="pmid">16064136</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0158">
<label>158</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0158">
<string-name>
<surname>Qiu</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Sheedlo</surname>
<given-names>MJ</given-names>
</string-name>
,
<string-name>
<surname>Yu</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Tan</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Nakayasu</surname>
<given-names>ES</given-names>
</string-name>
,
<string-name>
<surname>Das</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>X</given-names>
</string-name>
&
<string-name>
<surname>Luo</surname>
<given-names>ZQ</given-names>
</string-name>
(
<year>2016</year>
)
<article-title>Ubiquitination independent of E1 and E2 enzymes by bacterial effectors</article-title>
.
<source xml:lang="en">Nature</source>
<volume>533</volume>
,
<fpage>120</fpage>
<lpage>124</lpage>
.
<pub-id pub-id-type="pmid">27049943</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0159">
<label>159</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0159">
<string-name>
<surname>Bell</surname>
<given-names>SD</given-names>
</string-name>
,
<string-name>
<surname>Botting</surname>
<given-names>CH</given-names>
</string-name>
,
<string-name>
<surname>Wardleworth</surname>
<given-names>BN</given-names>
</string-name>
,
<string-name>
<surname>Jackson</surname>
<given-names>SP</given-names>
</string-name>
&
<string-name>
<surname>White</surname>
<given-names>MF</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation</article-title>
.
<source xml:lang="en">Science</source>
<volume>296</volume>
,
<fpage>148</fpage>
<lpage>151</lpage>
.
<pub-id pub-id-type="pmid">11935028</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0160">
<label>160</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0160">
<string-name>
<surname>Faraone‐Mennella</surname>
<given-names>MR</given-names>
</string-name>
,
<string-name>
<surname>Gambacorta</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Nicolaus</surname>
<given-names>B</given-names>
</string-name>
&
<string-name>
<surname>Farina</surname>
<given-names>B</given-names>
</string-name>
(
<year>1998</year>
)
<article-title>Purification and biochemical characterization of a poly(ADP‐ribose) polymerase‐like enzyme from the thermophilic archaeon
<italic>Sulfolobus solfataricus</italic>
</article-title>
.
<source xml:lang="en">Biochem J</source>
<volume>335</volume>
,
<fpage>441</fpage>
<lpage>447</lpage>
.
<pub-id pub-id-type="pmid">9761745</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0161">
<label>161</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0161">
<string-name>
<surname>Dani</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Stilla</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Marchegiani</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Tamburro</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Till</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Ladurner</surname>
<given-names>AG</given-names>
</string-name>
,
<string-name>
<surname>Corda</surname>
<given-names>D</given-names>
</string-name>
&
<string-name>
<surname>Di Girolamo</surname>
<given-names>M</given-names>
</string-name>
(
<year>2009</year>
)
<article-title>Combining affinity purification by ADP‐ribose‐binding macro domains with mass spectrometry to define the mammalian ADP‐ribosyl proteome</article-title>
.
<source xml:lang="en">Proc Natl Acad Sci USA</source>
<volume>106</volume>
,
<fpage>4243</fpage>
<lpage>4248</lpage>
.
<pub-id pub-id-type="pmid">19246377</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0162">
<label>162</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0162">
<string-name>
<surname>Uzan</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Miller</surname>
<given-names>ES</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>Post‐transcriptional control by bacteriophage T4: mRNA decay and inhibition of translation initiation</article-title>
.
<source xml:lang="en">Virol J</source>
<volume>7</volume>
,
<fpage>360</fpage>
.
<pub-id pub-id-type="pmid">21129205</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0163">
<label>163</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0163">
<string-name>
<surname>Alawneh</surname>
<given-names>AM</given-names>
</string-name>
,
<string-name>
<surname>Qi</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Yonesaki</surname>
<given-names>T</given-names>
</string-name>
&
<string-name>
<surname>Otsuka</surname>
<given-names>Y</given-names>
</string-name>
(
<year>2016</year>
)
<article-title>An ADP‐ribosyltransferase Alt of bacteriophage T4 negatively regulates the
<italic>Escherichia coli</italic>
MazF toxin of a toxin‐antitoxin module</article-title>
.
<source xml:lang="en">Mol Microbiol</source>
<volume>99</volume>
,
<fpage>188</fpage>
<lpage>198</lpage>
.
<pub-id pub-id-type="pmid">26395283</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0164">
<label>164</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0164">
<string-name>
<surname>Kusov</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Tan</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Alvarez</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Enjuanes</surname>
<given-names>L</given-names>
</string-name>
&
<string-name>
<surname>Hilgenfeld</surname>
<given-names>R</given-names>
</string-name>
(
<year>2015</year>
)
<article-title>A G‐quadruplex‐binding macrodomain within the “SARS‐unique domain” is essential for the activity of the SARS‐coronavirus replication‐transcription complex</article-title>
.
<source xml:lang="en">Virology</source>
<volume>484</volume>
,
<fpage>313</fpage>
<lpage>322</lpage>
.
<pub-id pub-id-type="pmid">26149721</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0165">
<label>165</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0165">
<string-name>
<surname>Kuny</surname>
<given-names>CV</given-names>
</string-name>
&
<string-name>
<surname>Sullivan</surname>
<given-names>CS</given-names>
</string-name>
(
<year>2016</year>
)
<article-title>Virus‐host interactions and the ARTD/PARP family of enzymes</article-title>
.
<source xml:lang="en">PLoS Pathog</source>
<volume>12</volume>
,
<fpage>e1005453</fpage>
.
<pub-id pub-id-type="pmid">27010460</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0166">
<label>166</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0166">
<string-name>
<surname>Atasheva</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Frolova</surname>
<given-names>EI</given-names>
</string-name>
&
<string-name>
<surname>Frolov</surname>
<given-names>I</given-names>
</string-name>
(
<year>2014</year>
)
<article-title>Interferon‐stimulated poly(ADP‐Ribose) polymerases are potent inhibitors of cellular translation and virus replication</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>88</volume>
,
<fpage>2116</fpage>
<lpage>2130</lpage>
.
<pub-id pub-id-type="pmid">24335297</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0167">
<label>167</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0167">
<string-name>
<surname>Guo</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Ma</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Sun</surname>
<given-names>J</given-names>
</string-name>
&
<string-name>
<surname>Gao</surname>
<given-names>G</given-names>
</string-name>
(
<year>2007</year>
)
<article-title>The zinc‐finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA</article-title>
.
<source xml:lang="en">Proc Natl Acad Sci USA</source>
<volume>104</volume>
,
<fpage>151</fpage>
<lpage>156</lpage>
.
<pub-id pub-id-type="pmid">17185417</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0168">
<label>168</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0168">
<string-name>
<surname>Daugherty</surname>
<given-names>MD</given-names>
</string-name>
,
<string-name>
<surname>Young</surname>
<given-names>JM</given-names>
</string-name>
,
<string-name>
<surname>Kerns</surname>
<given-names>JA</given-names>
</string-name>
&
<string-name>
<surname>Malik</surname>
<given-names>HS</given-names>
</string-name>
(
<year>2014</year>
)
<article-title>Rapid evolution of PARP genes suggests a broad role for ADP‐ribosylation in host‐virus conflicts</article-title>
.
<source xml:lang="en">PLoS Genet</source>
<volume>10</volume>
,
<fpage>e1004403</fpage>
.
<pub-id pub-id-type="pmid">24875882</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0169">
<label>169</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0169">
<string-name>
<surname>Tempera</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Deng</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Atanasiu</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>CJ</given-names>
</string-name>
,
<string-name>
<surname>D'Erme</surname>
<given-names>M</given-names>
</string-name>
&
<string-name>
<surname>Lieberman</surname>
<given-names>PM</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>Regulation of Epstein‐Barr virus OriP replication by poly(ADP‐ribose) polymerase 1</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>84</volume>
,
<fpage>4988</fpage>
<lpage>4997</lpage>
.
<pub-id pub-id-type="pmid">20219917</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0170">
<label>170</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0170">
<string-name>
<surname>Grady</surname>
<given-names>SL</given-names>
</string-name>
,
<string-name>
<surname>Hwang</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Vastag</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Rabinowitz</surname>
<given-names>JD</given-names>
</string-name>
&
<string-name>
<surname>Shenk</surname>
<given-names>T</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>Herpes simplex virus 1 infection activates poly(ADP‐ribose) polymerase and triggers the degradation of poly(ADP‐ribose) glycohydrolase</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>86</volume>
,
<fpage>8259</fpage>
<lpage>8268</lpage>
.
<pub-id pub-id-type="pmid">22623791</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0171">
<label>171</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0171">
<string-name>
<surname>Carter‐O'Connell</surname>
<given-names>I</given-names>
</string-name>
&
<string-name>
<surname>Cohen</surname>
<given-names>MSI</given-names>
</string-name>
(
<year>2015</year>
)
<article-title>Identifying direct protein targets of poly‐ADP‐ribose polymerases (PARPs) using engineered PARP variants‐orthogonal nicotinamide adenine dinucleotide (NAD+) analog pairs</article-title>
.
<source xml:lang="en">Curr Protoc Chem Biol</source>
<volume>7</volume>
,
<fpage>121</fpage>
<lpage>139</lpage>
.
<pub-id pub-id-type="pmid">26344237</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0172">
<label>172</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0172">
<string-name>
<surname>Bartolomei</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Leutert</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Manzo</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Baubec</surname>
<given-names>T</given-names>
</string-name>
&
<string-name>
<surname>Hottiger</surname>
<given-names>MO</given-names>
</string-name>
(
<year>2016</year>
)
<article-title>Analysis of chromatin ADP‐ribosylation at the genome‐wide level and at specific loci by ADPr‐ChAP</article-title>
.
<source xml:lang="en">Mol Cell</source>
<volume>61</volume>
,
<fpage>474</fpage>
<lpage>485</lpage>
.
<pub-id pub-id-type="pmid">26833088</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0173">
<label>173</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0173">
<string-name>
<surname>Kistemaker</surname>
<given-names>HA</given-names>
</string-name>
,
<string-name>
<surname>Lameijer</surname>
<given-names>LN</given-names>
</string-name>
,
<string-name>
<surname>Meeuwenoord</surname>
<given-names>NJ</given-names>
</string-name>
,
<string-name>
<surname>Overkleeft</surname>
<given-names>HS</given-names>
</string-name>
,
<string-name>
<surname>van der Marel</surname>
<given-names>GA</given-names>
</string-name>
&
<string-name>
<surname>Filippov</surname>
<given-names>DV</given-names>
</string-name>
(
<year>2015</year>
)
<article-title>Synthesis of well‐defined adenosine diphosphate ribose oligomers</article-title>
.
<source xml:lang="en">Angew Chem Int Ed Engl</source>
<volume>54</volume>
,
<fpage>4915</fpage>
<lpage>4918</lpage>
.
<pub-id pub-id-type="pmid">25704172</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0174">
<label>174</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0174">
<string-name>
<surname>Lambrecht</surname>
<given-names>MJ</given-names>
</string-name>
,
<string-name>
<surname>Brichacek</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Barkauskaite</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Ariza</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Ahel</surname>
<given-names>I</given-names>
</string-name>
&
<string-name>
<surname>Hergenrother</surname>
<given-names>PJ</given-names>
</string-name>
(
<year>2015</year>
)
<article-title>Synthesis of dimeric ADP‐ribose and its structure with human poly(ADP‐ribose) glycohydrolase</article-title>
.
<source xml:lang="en">J Am Chem Soc</source>
<volume>137</volume>
,
<fpage>3558</fpage>
<lpage>3564</lpage>
.
<pub-id pub-id-type="pmid">25706250</pub-id>
</mixed-citation>
</ref>
<ref id="febs14078-bib-0175">
<label>175</label>
<mixed-citation publication-type="journal" id="febs14078-cit-0175">
<string-name>
<surname>Kistemaker</surname>
<given-names>HA</given-names>
</string-name>
,
<string-name>
<surname>Nardozza</surname>
<given-names>AP</given-names>
</string-name>
,
<string-name>
<surname>Overkleeft</surname>
<given-names>HS</given-names>
</string-name>
,
<string-name>
<surname>van der Marel</surname>
<given-names>GA</given-names>
</string-name>
,
<string-name>
<surname>Ladurner</surname>
<given-names>AG</given-names>
</string-name>
&
<string-name>
<surname>Filippov</surname>
<given-names>DV</given-names>
</string-name>
(
<year>2016</year>
)
<article-title>Synthesis and macrodomain binding of mono‐ADP‐ribosylated peptides</article-title>
.
<source xml:lang="en">Angew Chem Int Ed Engl</source>
<volume>55</volume>
,
<fpage>10634</fpage>
<lpage>10638</lpage>
.
<pub-id pub-id-type="pmid">27464500</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/StressCovidV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000915 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000915 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    StressCovidV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:7163968
   |texte=   ADP‐ribosylation: new facets of an ancient modification
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:28383827" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a StressCovidV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed May 6 16:44:09 2020. Site generation: Sun Mar 28 08:26:57 2021