Serveur d'exploration Stress et Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The cellular protein P58IPK regulates influenza virus mRNA translation and replication through a PKR-mediated mechanism.

Identifieur interne : 000227 ( Ncbi/Merge ); précédent : 000226; suivant : 000228

The cellular protein P58IPK regulates influenza virus mRNA translation and replication through a PKR-mediated mechanism.

Auteurs : Alan G. Goodman [États-Unis] ; Jennifer A. Smith ; Siddharth Balachandran ; Olivia Perwitasari ; Sean C. Proll ; Matthew J. Thomas ; Marcus J. Korth ; Glen N. Barber ; Leslie A. Schiff ; Michael G. Katze

Source :

RBID : pubmed:17166899

Descripteurs français

English descriptors

Abstract

We previously hypothesized that efficient translation of influenza virus mRNA requires the recruitment of P58(IPK), the cellular inhibitor of PKR, an interferon-induced kinase that targets the eukaryotic translation initiation factor eIF2alpha. P58(IPK) also inhibits PERK, an eIF2alpha kinase that is localized in the endoplasmic reticulum (ER) and induced during ER stress. The ability of P58(IPK) to interact with and inhibit multiple eIF2alpha kinases suggests it is a critical regulator of both cellular and viral mRNA translation. In this study, we sought to definitively define the role of P58(IPK) during viral infection of mammalian cells. Using mouse embryo fibroblasts from P58(IPK-/-) mice, we demonstrated that the absence of P58(IPK) led to an increase in eIF2alpha phosphorylation and decreased influenza virus mRNA translation. The absence of P58(IPK) also resulted in decreased vesicular stomatitis virus replication but enhanced reovirus yields. In cells lacking the P58(IPK) target, PKR, the trends were reversed-eIF2alpha phosphorylation was decreased, and influenza virus mRNA translation was increased. Although P58(IPK) also inhibits PERK, the presence or absence of this kinase had little effect on influenza virus mRNA translation, despite reduced levels of eIF2alpha phosphorylation in cells lacking PERK. Finally, we showed that influenza virus protein synthesis and viral mRNA levels decrease in cells that express a constitutively active, nonphosphorylatable eIF2alpha. Taken together, our results support a model in which P58(IPK) regulates influenza virus mRNA translation and infection through a PKR-mediated mechanism which is independent of PERK.

DOI: 10.1128/JVI.02151-06
PubMed: 17166899

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:17166899

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The cellular protein P58IPK regulates influenza virus mRNA translation and replication through a PKR-mediated mechanism.</title>
<author>
<name sortKey="Goodman, Alan G" sort="Goodman, Alan G" uniqKey="Goodman A" first="Alan G" last="Goodman">Alan G. Goodman</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, University of Washington, Box 358070, Seattle, WA 98195-8070, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, University of Washington, Box 358070, Seattle, WA 98195-8070</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Smith, Jennifer A" sort="Smith, Jennifer A" uniqKey="Smith J" first="Jennifer A" last="Smith">Jennifer A. Smith</name>
</author>
<author>
<name sortKey="Balachandran, Siddharth" sort="Balachandran, Siddharth" uniqKey="Balachandran S" first="Siddharth" last="Balachandran">Siddharth Balachandran</name>
</author>
<author>
<name sortKey="Perwitasari, Olivia" sort="Perwitasari, Olivia" uniqKey="Perwitasari O" first="Olivia" last="Perwitasari">Olivia Perwitasari</name>
</author>
<author>
<name sortKey="Proll, Sean C" sort="Proll, Sean C" uniqKey="Proll S" first="Sean C" last="Proll">Sean C. Proll</name>
</author>
<author>
<name sortKey="Thomas, Matthew J" sort="Thomas, Matthew J" uniqKey="Thomas M" first="Matthew J" last="Thomas">Matthew J. Thomas</name>
</author>
<author>
<name sortKey="Korth, Marcus J" sort="Korth, Marcus J" uniqKey="Korth M" first="Marcus J" last="Korth">Marcus J. Korth</name>
</author>
<author>
<name sortKey="Barber, Glen N" sort="Barber, Glen N" uniqKey="Barber G" first="Glen N" last="Barber">Glen N. Barber</name>
</author>
<author>
<name sortKey="Schiff, Leslie A" sort="Schiff, Leslie A" uniqKey="Schiff L" first="Leslie A" last="Schiff">Leslie A. Schiff</name>
</author>
<author>
<name sortKey="Katze, Michael G" sort="Katze, Michael G" uniqKey="Katze M" first="Michael G" last="Katze">Michael G. Katze</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17166899</idno>
<idno type="pmid">17166899</idno>
<idno type="doi">10.1128/JVI.02151-06</idno>
<idno type="wicri:Area/PubMed/Corpus">000816</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000816</idno>
<idno type="wicri:Area/PubMed/Curation">000813</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000813</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000769</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000769</idno>
<idno type="wicri:Area/Ncbi/Merge">000227</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The cellular protein P58IPK regulates influenza virus mRNA translation and replication through a PKR-mediated mechanism.</title>
<author>
<name sortKey="Goodman, Alan G" sort="Goodman, Alan G" uniqKey="Goodman A" first="Alan G" last="Goodman">Alan G. Goodman</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, University of Washington, Box 358070, Seattle, WA 98195-8070, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, University of Washington, Box 358070, Seattle, WA 98195-8070</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Smith, Jennifer A" sort="Smith, Jennifer A" uniqKey="Smith J" first="Jennifer A" last="Smith">Jennifer A. Smith</name>
</author>
<author>
<name sortKey="Balachandran, Siddharth" sort="Balachandran, Siddharth" uniqKey="Balachandran S" first="Siddharth" last="Balachandran">Siddharth Balachandran</name>
</author>
<author>
<name sortKey="Perwitasari, Olivia" sort="Perwitasari, Olivia" uniqKey="Perwitasari O" first="Olivia" last="Perwitasari">Olivia Perwitasari</name>
</author>
<author>
<name sortKey="Proll, Sean C" sort="Proll, Sean C" uniqKey="Proll S" first="Sean C" last="Proll">Sean C. Proll</name>
</author>
<author>
<name sortKey="Thomas, Matthew J" sort="Thomas, Matthew J" uniqKey="Thomas M" first="Matthew J" last="Thomas">Matthew J. Thomas</name>
</author>
<author>
<name sortKey="Korth, Marcus J" sort="Korth, Marcus J" uniqKey="Korth M" first="Marcus J" last="Korth">Marcus J. Korth</name>
</author>
<author>
<name sortKey="Barber, Glen N" sort="Barber, Glen N" uniqKey="Barber G" first="Glen N" last="Barber">Glen N. Barber</name>
</author>
<author>
<name sortKey="Schiff, Leslie A" sort="Schiff, Leslie A" uniqKey="Schiff L" first="Leslie A" last="Schiff">Leslie A. Schiff</name>
</author>
<author>
<name sortKey="Katze, Michael G" sort="Katze, Michael G" uniqKey="Katze M" first="Michael G" last="Katze">Michael G. Katze</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="ISSN">0022-538X</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>Cells, Cultured</term>
<term>Eukaryotic Initiation Factor-2 (metabolism)</term>
<term>HSP40 Heat-Shock Proteins (deficiency)</term>
<term>HSP40 Heat-Shock Proteins (genetics)</term>
<term>HSP40 Heat-Shock Proteins (metabolism)</term>
<term>Mice</term>
<term>Mice, Knockout</term>
<term>Models, Biological</term>
<term>Orthomyxoviridae (genetics)</term>
<term>Orthomyxoviridae (physiology)</term>
<term>Phosphorylation</term>
<term>Protein Biosynthesis</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>RNA, Viral (genetics)</term>
<term>RNA, Viral (metabolism)</term>
<term>Reoviridae (genetics)</term>
<term>Reoviridae (physiology)</term>
<term>Vesicular stomatitis Indiana virus (genetics)</term>
<term>Vesicular stomatitis Indiana virus (physiology)</term>
<term>Viral Proteins (biosynthesis)</term>
<term>Virus Replication</term>
<term>eIF-2 Kinase (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>ARN viral (génétique)</term>
<term>ARN viral (métabolisme)</term>
<term>Animaux</term>
<term>Biosynthèse des protéines</term>
<term>Cellules cultivées</term>
<term>Facteur-2 d'initiation eucaryote (métabolisme)</term>
<term>Modèles biologiques</term>
<term>Orthomyxoviridae (génétique)</term>
<term>Orthomyxoviridae (physiologie)</term>
<term>Phosphorylation</term>
<term>Protéines du choc thermique HSP40 (déficit)</term>
<term>Protéines du choc thermique HSP40 (génétique)</term>
<term>Protéines du choc thermique HSP40 (métabolisme)</term>
<term>Protéines virales (biosynthèse)</term>
<term>Reoviridae (génétique)</term>
<term>Reoviridae (physiologie)</term>
<term>Réplication virale</term>
<term>Souris</term>
<term>Souris knockout</term>
<term>Séquence nucléotidique</term>
<term>Virus de la stomatite vésiculeuse de type Indiana (génétique)</term>
<term>Virus de la stomatite vésiculeuse de type Indiana (physiologie)</term>
<term>eIF-2 Kinase (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>HSP40 Heat-Shock Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>HSP40 Heat-Shock Proteins</term>
<term>RNA, Messenger</term>
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Eukaryotic Initiation Factor-2</term>
<term>HSP40 Heat-Shock Proteins</term>
<term>RNA, Messenger</term>
<term>RNA, Viral</term>
<term>eIF-2 Kinase</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Protéines virales</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Protéines du choc thermique HSP40</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Orthomyxoviridae</term>
<term>Reoviridae</term>
<term>Vesicular stomatitis Indiana virus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>ARN viral</term>
<term>Orthomyxoviridae</term>
<term>Protéines du choc thermique HSP40</term>
<term>Reoviridae</term>
<term>Virus de la stomatite vésiculeuse de type Indiana</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>ARN viral</term>
<term>Facteur-2 d'initiation eucaryote</term>
<term>Protéines du choc thermique HSP40</term>
<term>eIF-2 Kinase</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Orthomyxoviridae</term>
<term>Reoviridae</term>
<term>Virus de la stomatite vésiculeuse de type Indiana</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Orthomyxoviridae</term>
<term>Reoviridae</term>
<term>Vesicular stomatitis Indiana virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>Cells, Cultured</term>
<term>Mice</term>
<term>Mice, Knockout</term>
<term>Models, Biological</term>
<term>Phosphorylation</term>
<term>Protein Biosynthesis</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Biosynthèse des protéines</term>
<term>Cellules cultivées</term>
<term>Modèles biologiques</term>
<term>Phosphorylation</term>
<term>Réplication virale</term>
<term>Souris</term>
<term>Souris knockout</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We previously hypothesized that efficient translation of influenza virus mRNA requires the recruitment of P58(IPK), the cellular inhibitor of PKR, an interferon-induced kinase that targets the eukaryotic translation initiation factor eIF2alpha. P58(IPK) also inhibits PERK, an eIF2alpha kinase that is localized in the endoplasmic reticulum (ER) and induced during ER stress. The ability of P58(IPK) to interact with and inhibit multiple eIF2alpha kinases suggests it is a critical regulator of both cellular and viral mRNA translation. In this study, we sought to definitively define the role of P58(IPK) during viral infection of mammalian cells. Using mouse embryo fibroblasts from P58(IPK-/-) mice, we demonstrated that the absence of P58(IPK) led to an increase in eIF2alpha phosphorylation and decreased influenza virus mRNA translation. The absence of P58(IPK) also resulted in decreased vesicular stomatitis virus replication but enhanced reovirus yields. In cells lacking the P58(IPK) target, PKR, the trends were reversed-eIF2alpha phosphorylation was decreased, and influenza virus mRNA translation was increased. Although P58(IPK) also inhibits PERK, the presence or absence of this kinase had little effect on influenza virus mRNA translation, despite reduced levels of eIF2alpha phosphorylation in cells lacking PERK. Finally, we showed that influenza virus protein synthesis and viral mRNA levels decrease in cells that express a constitutively active, nonphosphorylatable eIF2alpha. Taken together, our results support a model in which P58(IPK) regulates influenza virus mRNA translation and infection through a PKR-mediated mechanism which is independent of PERK.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17166899</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>03</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0022-538X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>81</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2007</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>The cellular protein P58IPK regulates influenza virus mRNA translation and replication through a PKR-mediated mechanism.</ArticleTitle>
<Pagination>
<MedlinePgn>2221-30</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>We previously hypothesized that efficient translation of influenza virus mRNA requires the recruitment of P58(IPK), the cellular inhibitor of PKR, an interferon-induced kinase that targets the eukaryotic translation initiation factor eIF2alpha. P58(IPK) also inhibits PERK, an eIF2alpha kinase that is localized in the endoplasmic reticulum (ER) and induced during ER stress. The ability of P58(IPK) to interact with and inhibit multiple eIF2alpha kinases suggests it is a critical regulator of both cellular and viral mRNA translation. In this study, we sought to definitively define the role of P58(IPK) during viral infection of mammalian cells. Using mouse embryo fibroblasts from P58(IPK-/-) mice, we demonstrated that the absence of P58(IPK) led to an increase in eIF2alpha phosphorylation and decreased influenza virus mRNA translation. The absence of P58(IPK) also resulted in decreased vesicular stomatitis virus replication but enhanced reovirus yields. In cells lacking the P58(IPK) target, PKR, the trends were reversed-eIF2alpha phosphorylation was decreased, and influenza virus mRNA translation was increased. Although P58(IPK) also inhibits PERK, the presence or absence of this kinase had little effect on influenza virus mRNA translation, despite reduced levels of eIF2alpha phosphorylation in cells lacking PERK. Finally, we showed that influenza virus protein synthesis and viral mRNA levels decrease in cells that express a constitutively active, nonphosphorylatable eIF2alpha. Taken together, our results support a model in which P58(IPK) regulates influenza virus mRNA translation and infection through a PKR-mediated mechanism which is independent of PERK.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Goodman</LastName>
<ForeName>Alan G</ForeName>
<Initials>AG</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, University of Washington, Box 358070, Seattle, WA 98195-8070, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>Jennifer A</ForeName>
<Initials>JA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Balachandran</LastName>
<ForeName>Siddharth</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Perwitasari</LastName>
<ForeName>Olivia</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Proll</LastName>
<ForeName>Sean C</ForeName>
<Initials>SC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thomas</LastName>
<ForeName>Matthew J</ForeName>
<Initials>MJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Korth</LastName>
<ForeName>Marcus J</ForeName>
<Initials>MJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Barber</LastName>
<ForeName>Glen N</ForeName>
<Initials>GN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schiff</LastName>
<ForeName>Leslie A</ForeName>
<Initials>LA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Katze</LastName>
<ForeName>Michael G</ForeName>
<Initials>MG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>T32 HL 07741</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI 045990</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI045990</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 CA 09229</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 CA009229</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>5R01 CA 086431-08</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 HL007741</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI022646</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA086431</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI 022646</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>12</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C500846">Dnajc3 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015852">Eukaryotic Initiation Factor-2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050956">HSP40 Heat-Shock Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012367">RNA, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D019892">eIF-2 Kinase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015852" MajorTopicYN="N">Eukaryotic Initiation Factor-2</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050956" MajorTopicYN="N">HSP40 Heat-Shock Proteins</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009975" MajorTopicYN="N">Orthomyxoviridae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014176" MajorTopicYN="N">Protein Biosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012367" MajorTopicYN="N">RNA, Viral</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012087" MajorTopicYN="N">Reoviridae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014721" MajorTopicYN="N">Vesicular stomatitis Indiana virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019892" MajorTopicYN="N">eIF-2 Kinase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17166899</ArticleId>
<ArticleId IdType="pii">JVI.02151-06</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.02151-06</ArticleId>
<ArticleId IdType="pmc">PMC1865913</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1993 Oct 25;268(30):22223-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8226725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1994 Apr;14(4):2331-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7511204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1995 Jan;69(1):552-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7527088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1995 Dec 1;214(1):222-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8525619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Dec 15;14(24):6095-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8557029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1996 Aug;16(8):4172-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8754816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1997 Apr 14;230(2):217-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9143277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1997 May 26;232(1):62-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9185589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1998 May;18(5):2431-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9566864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Dec 1;17(23):6888-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Feb 5;274(6):3797-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9920933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6694-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10359774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Jul;19(7):4757-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10373525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Dec;78(23):12747-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15542627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Dec;24(23):10161-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15542827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Dec;10(12 Suppl):S82-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15577936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Feb;79(3):1379-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15650164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Dev Biol. 2005 Feb;16(1):3-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15659334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Feb;79(4):2240-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15681426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2005 Apr;54(4):1074-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15793246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2005 Apr;13(4):159-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15817385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2005 Sep;19(11):1510-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16006626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 2000 Mar 13;114(2):123-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10799709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 Aug;87(16):6208-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1696720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2000 Jul;13(1):129-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10933401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Sep;74(17):7989-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10933707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Dec;74(24):11566-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11090154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2001 Jun;7(6):1153-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11430819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2001 Jun;7(6):1165-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11430820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Feb 22;108(4):545-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11909525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 May;76(9):4162-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11932381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Aug;76(15):7430-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12097555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Oct;76(19):9588-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12208938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15920-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12446838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 May 2;278(18):15558-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12601012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1991 Aug;114(3):401-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1650370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Enzyme. 1990;44(1-4):265-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2133654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 May 5;267(13):9383-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1577765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Jul 15;267(20):14238-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1378438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1992 Nov;66(11):6408-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1328674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1992 Dec;66(12):6878-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1433498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Oct 5;24(19):3470-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16148948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Feb;80(4):2019-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16439558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2006 Apr 19;25(8):1730-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16601681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2006 Jul;119(1):111-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16630668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Aug 25;126(4):727-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16923392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Oct 5;443(7111):578-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17006449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2003 May;4(5):651-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12737801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Jan 14;23(1):169-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14713949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Jul 8;430(6996):209-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15241415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1975 Dec;16(6):1464-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1202245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1979 Apr;76(4):1618-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">287003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1981 Mar;23(3):847-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6261960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1986 May;6(5):1741-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3785177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1987 Mar;6(3):689-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3582371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1988 Jan;62(1):246-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3275434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1988 Mar 31;332(6163):462-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3352747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1988 Oct;62(10):3710-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3418783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1988 Dec;62(12):4594-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2460637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1990 Jul 27;62(2):379-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1695551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2000 May;5(5):897-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10882126</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
<settlement>
<li>Seattle</li>
</settlement>
<orgName>
<li>Université de Washington</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Balachandran, Siddharth" sort="Balachandran, Siddharth" uniqKey="Balachandran S" first="Siddharth" last="Balachandran">Siddharth Balachandran</name>
<name sortKey="Barber, Glen N" sort="Barber, Glen N" uniqKey="Barber G" first="Glen N" last="Barber">Glen N. Barber</name>
<name sortKey="Katze, Michael G" sort="Katze, Michael G" uniqKey="Katze M" first="Michael G" last="Katze">Michael G. Katze</name>
<name sortKey="Korth, Marcus J" sort="Korth, Marcus J" uniqKey="Korth M" first="Marcus J" last="Korth">Marcus J. Korth</name>
<name sortKey="Perwitasari, Olivia" sort="Perwitasari, Olivia" uniqKey="Perwitasari O" first="Olivia" last="Perwitasari">Olivia Perwitasari</name>
<name sortKey="Proll, Sean C" sort="Proll, Sean C" uniqKey="Proll S" first="Sean C" last="Proll">Sean C. Proll</name>
<name sortKey="Schiff, Leslie A" sort="Schiff, Leslie A" uniqKey="Schiff L" first="Leslie A" last="Schiff">Leslie A. Schiff</name>
<name sortKey="Smith, Jennifer A" sort="Smith, Jennifer A" uniqKey="Smith J" first="Jennifer A" last="Smith">Jennifer A. Smith</name>
<name sortKey="Thomas, Matthew J" sort="Thomas, Matthew J" uniqKey="Thomas M" first="Matthew J" last="Thomas">Matthew J. Thomas</name>
</noCountry>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Goodman, Alan G" sort="Goodman, Alan G" uniqKey="Goodman A" first="Alan G" last="Goodman">Alan G. Goodman</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/StressCovidV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000227 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000227 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    StressCovidV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:17166899
   |texte=   The cellular protein P58IPK regulates influenza virus mRNA translation and replication through a PKR-mediated mechanism.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:17166899" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a StressCovidV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed May 6 16:44:09 2020. Site generation: Sun Mar 28 08:26:57 2021