Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Intracellular targeting signals contribute to localization of coronavirus spike proteins near the virus assembly site.

Identifieur interne : 002E00 ( PubMed/Curation ); précédent : 002D99; suivant : 002E01

Intracellular targeting signals contribute to localization of coronavirus spike proteins near the virus assembly site.

Auteurs : Erik Lontok [États-Unis] ; Emily Corse ; Carolyn E. Machamer

Source :

RBID : pubmed:15140989

Descripteurs français

English descriptors

Abstract

Coronavirus budding at the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) requires accumulation of the viral envelope proteins at this point in the secretory pathway. Here we demonstrate that the spike (S) protein from the group 3 coronavirus infectious bronchitis virus (IBV) contains a canonical dilysine endoplasmic reticulum retrieval signal (-KKXX-COOH) in its cytoplasmic tail. This signal can retain a chimeric reporter protein in the ERGIC and when mutated allows transport of the full-length S protein as well as the chimera to the plasma membrane. Interestingly, the IBV S protein also contains a tyrosine-based endocytosis signal in its cytoplasmic tail, suggesting that any S protein that escapes the ERGIC will be rapidly endocytosed when it reaches the plasma membrane. We also identified a novel dibasic motif (-KXHXX-COOH) in the cytoplasmic tails of S proteins from group 1 coronaviruses and from the newly identified coronavirus implicated in severe acute respiratory syndrome. This dibasic motif also retained a reporter protein in the ERGIC, similar to the dilysine motif in IBV S. The cytoplasmic tails of S proteins from group 2 coronaviruses lack an intracellular localization signal. The inherent differences in S-protein trafficking could point to interesting variations in pathogenesis of coronaviruses, since increased levels of surface S protein could promote syncytium formation and direct cell-to-cell spread of the infection.

DOI: 10.1128/JVI.78.11.5913-5922.2004
PubMed: 15140989

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:15140989

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Intracellular targeting signals contribute to localization of coronavirus spike proteins near the virus assembly site.</title>
<author>
<name sortKey="Lontok, Erik" sort="Lontok, Erik" uniqKey="Lontok E" first="Erik" last="Lontok">Erik Lontok</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Corse, Emily" sort="Corse, Emily" uniqKey="Corse E" first="Emily" last="Corse">Emily Corse</name>
</author>
<author>
<name sortKey="Machamer, Carolyn E" sort="Machamer, Carolyn E" uniqKey="Machamer C" first="Carolyn E" last="Machamer">Carolyn E. Machamer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15140989</idno>
<idno type="pmid">15140989</idno>
<idno type="doi">10.1128/JVI.78.11.5913-5922.2004</idno>
<idno type="wicri:Area/PubMed/Corpus">002E00</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002E00</idno>
<idno type="wicri:Area/PubMed/Curation">002E00</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002E00</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Intracellular targeting signals contribute to localization of coronavirus spike proteins near the virus assembly site.</title>
<author>
<name sortKey="Lontok, Erik" sort="Lontok, Erik" uniqKey="Lontok E" first="Erik" last="Lontok">Erik Lontok</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Corse, Emily" sort="Corse, Emily" uniqKey="Corse E" first="Emily" last="Corse">Emily Corse</name>
</author>
<author>
<name sortKey="Machamer, Carolyn E" sort="Machamer, Carolyn E" uniqKey="Machamer C" first="Carolyn E" last="Machamer">Carolyn E. Machamer</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="ISSN">0022-538X</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Amino Acid Sequence</term>
<term>Dipeptides</term>
<term>Endoplasmic Reticulum (physiology)</term>
<term>Golgi Apparatus (physiology)</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Infectious bronchitis virus (physiology)</term>
<term>Membrane Glycoproteins (chemistry)</term>
<term>Membrane Glycoproteins (physiology)</term>
<term>Molecular Sequence Data</term>
<term>Protein Transport</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Viral Envelope Proteins (chemistry)</term>
<term>Viral Envelope Proteins (physiology)</term>
<term>Virus Assembly</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Appareil de Golgi (physiologie)</term>
<term>Assemblage viral</term>
<term>Cellules HeLa</term>
<term>Dipeptides</term>
<term>Données de séquences moléculaires</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Glycoprotéines membranaires ()</term>
<term>Glycoprotéines membranaires (physiologie)</term>
<term>Humains</term>
<term>Motifs d'acides aminés</term>
<term>Protéines de l'enveloppe virale ()</term>
<term>Protéines de l'enveloppe virale (physiologie)</term>
<term>Réticulum endoplasmique (physiologie)</term>
<term>Séquence d'acides aminés</term>
<term>Transport de protéines</term>
<term>Virus de la bronchite infectieuse (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Dipeptides</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Appareil de Golgi</term>
<term>Glycoprotéines membranaires</term>
<term>Protéines de l'enveloppe virale</term>
<term>Réticulum endoplasmique</term>
<term>Virus de la bronchite infectieuse</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Endoplasmic Reticulum</term>
<term>Golgi Apparatus</term>
<term>Infectious bronchitis virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Amino Acid Sequence</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Molecular Sequence Data</term>
<term>Protein Transport</term>
<term>Virus Assembly</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Assemblage viral</term>
<term>Cellules HeLa</term>
<term>Dipeptides</term>
<term>Données de séquences moléculaires</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Glycoprotéines membranaires</term>
<term>Humains</term>
<term>Motifs d'acides aminés</term>
<term>Protéines de l'enveloppe virale</term>
<term>Séquence d'acides aminés</term>
<term>Transport de protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Coronavirus budding at the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) requires accumulation of the viral envelope proteins at this point in the secretory pathway. Here we demonstrate that the spike (S) protein from the group 3 coronavirus infectious bronchitis virus (IBV) contains a canonical dilysine endoplasmic reticulum retrieval signal (-KKXX-COOH) in its cytoplasmic tail. This signal can retain a chimeric reporter protein in the ERGIC and when mutated allows transport of the full-length S protein as well as the chimera to the plasma membrane. Interestingly, the IBV S protein also contains a tyrosine-based endocytosis signal in its cytoplasmic tail, suggesting that any S protein that escapes the ERGIC will be rapidly endocytosed when it reaches the plasma membrane. We also identified a novel dibasic motif (-KXHXX-COOH) in the cytoplasmic tails of S proteins from group 1 coronaviruses and from the newly identified coronavirus implicated in severe acute respiratory syndrome. This dibasic motif also retained a reporter protein in the ERGIC, similar to the dilysine motif in IBV S. The cytoplasmic tails of S proteins from group 2 coronaviruses lack an intracellular localization signal. The inherent differences in S-protein trafficking could point to interesting variations in pathogenesis of coronaviruses, since increased levels of surface S protein could promote syncytium formation and direct cell-to-cell spread of the infection.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15140989</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>06</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0022-538X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>78</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2004</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Intracellular targeting signals contribute to localization of coronavirus spike proteins near the virus assembly site.</ArticleTitle>
<Pagination>
<MedlinePgn>5913-22</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Coronavirus budding at the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) requires accumulation of the viral envelope proteins at this point in the secretory pathway. Here we demonstrate that the spike (S) protein from the group 3 coronavirus infectious bronchitis virus (IBV) contains a canonical dilysine endoplasmic reticulum retrieval signal (-KKXX-COOH) in its cytoplasmic tail. This signal can retain a chimeric reporter protein in the ERGIC and when mutated allows transport of the full-length S protein as well as the chimera to the plasma membrane. Interestingly, the IBV S protein also contains a tyrosine-based endocytosis signal in its cytoplasmic tail, suggesting that any S protein that escapes the ERGIC will be rapidly endocytosed when it reaches the plasma membrane. We also identified a novel dibasic motif (-KXHXX-COOH) in the cytoplasmic tails of S proteins from group 1 coronaviruses and from the newly identified coronavirus implicated in severe acute respiratory syndrome. This dibasic motif also retained a reporter protein in the ERGIC, similar to the dilysine motif in IBV S. The cytoplasmic tails of S proteins from group 2 coronaviruses lack an intracellular localization signal. The inherent differences in S-protein trafficking could point to interesting variations in pathogenesis of coronaviruses, since increased levels of surface S protein could promote syncytium formation and direct cell-to-cell spread of the infection.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lontok</LastName>
<ForeName>Erik</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Corse</LastName>
<ForeName>Emily</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Machamer</LastName>
<ForeName>Carolyn E</ForeName>
<Initials>CE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM064647</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM64647</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004151">Dipeptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578553">MHV surface projection glycoprotein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>96TER1JROC</RegistryNumber>
<NameOfSubstance UI="C024575">lysyllysine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004151" MajorTopicYN="N">Dipeptides</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004721" MajorTopicYN="N">Endoplasmic Reticulum</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006056" MajorTopicYN="N">Golgi Apparatus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001351" MajorTopicYN="N">Infectious bronchitis virus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019065" MajorTopicYN="Y">Virus Assembly</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>6</Month>
<Day>21</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15140989</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.78.11.5913-5922.2004</ArticleId>
<ArticleId IdType="pii">78/11/5913</ArticleId>
<ArticleId IdType="pmc">PMC415842</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1980 Jan;33(1):449-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6245243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Jan;11(1):13-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10637287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 May;74(9):4319-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10756047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2001 Jan 20;279(2):371-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11162792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1982 Aug;121(1):168-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6180551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol Methods. 1985 Jul;11(3):265-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2993338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1986 Jun;102(6):2147-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3011809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1987 Sep;105(3):1205-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2821010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1989 Aug 25;58(4):707-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2527615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1990 Jan;64(1):339-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2403441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1990 Apr;64(4):1834-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2319653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 Sep;87(18):6944-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2169615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1990 Oct;9(10):3153-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2120038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1991 Oct;115(1):19-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1655802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 1991;169:161-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1935227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Biol. 1992 Oct;3(5):367-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1333835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1993 Apr;121(2):317-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8468349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1993 Sep;122(6):1185-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8397214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1993 Dec;67(12):7394-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8230460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Mar 18;263(5153):1629-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8128252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 1993 Jul;1(4):124-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8143127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1994 Apr 1;13(7):1696-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8157008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1994 Aug 1;202(2):574-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8030223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1994 Oct;127(1):21-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7929564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1995 May;129(4):971-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7744968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Aug 25;82(4):543-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7664333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1995 Oct;131(2):339-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7593163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 1995;140(12):2201-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8572941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Apr 15;15(8):2020-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8617249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 1996;12:27-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8970721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Jan;71(1):778-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8985416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Dec;71(12):9278-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9371586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1998 Aug 14;1404(1-2):33-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9714721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Oct;72(10):7885-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9733825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11649-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9751720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 1998 Dec;62(4):1171-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9841669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 1999 Mar;22(3):537-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10197533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 May 21;274(21):15080-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Sep;73(9):7210-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10438808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1994 Oct;68(10):6523-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8083990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2431-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11226256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2001 Nov;75(22):10787-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11602720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2001;494:571-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11774527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Feb;76(3):1273-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11773403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2002 Mar 8;291(4):751-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11866428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Nov;76(22):11518-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12388713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Nov 15;111(4):577-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12437930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Apr;77(8):4597-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12663766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2003 Apr 15;13(8):638-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12699619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 May 13;100(10):5783-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12724521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2003 Jun;111(11):1605-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12782660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2003 Jul 20;312(1):25-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12890618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2003 Aug;15(4):438-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2003 Nov;148(11):2207-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14579179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2003;72:395-447</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651740</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002E00 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 002E00 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:15140989
   |texte=   Intracellular targeting signals contribute to localization of coronavirus spike proteins near the virus assembly site.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:15140989" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021