Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity.

Identifieur interne : 002A32 ( PubMed/Curation ); précédent : 002A31; suivant : 002A33

Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity.

Auteurs : Brian H. Harcourt [États-Unis] ; Dalia Jukneliene ; Amornrat Kanjanahaluethai ; John Bechill ; Kari M. Severson ; Catherine M. Smith ; Paul A. Rota ; Susan C. Baker

Source :

RBID : pubmed:15564471

Descripteurs français

English descriptors

Abstract

Gene 1 of the coronavirus associated with severe acute respiratory syndrome (SARS) encodes replicase polyproteins that are predicted to be processed into 16 nonstructural proteins (nsps 1 to 16) by two viral proteases, a papain-like protease (PLpro) and a 3C-like protease (3CLpro). Here, we identify SARS coronavirus amino-terminal replicase products nsp1, nsp2, and nsp3 and describe trans-cleavage assays that characterize the protease activity required to generate these products. We generated polyclonal antisera to glutathione S-transferase-replicase fusion proteins and used the antisera to detect replicase intermediates and products in pulse-chase experiments. We found that nsp1 (p20) is rapidly processed from the replicase polyprotein. In contrast, processing at the nsp2/3 site is less efficient, since a approximately 300-kDa intermediate (NSP2-3) is detected, but ultimately nsp2 (p71) and nsp3 (p213) are generated. We found that SARS coronavirus replicase products can be detected by 4 h postinfection in the cytoplasm of infected cells and that nsps 1 to 3 colocalize with newly synthesized viral RNA in punctate, perinuclear sites consistent with their predicted role in viral RNA synthesis. To determine if PLpro is responsible for processing these products, we cloned and expressed the PLpro domain and the predicted substrates and established PLpro trans-cleavage assays. We found that the PLpro domain is sufficient for processing the predicted nsp1/2 and nsp2/3 sites. Interestingly, expression of an extended region of PLpro that includes the downstream hydrophobic domain was required for processing at the predicted nsp3/4 site. We found that the hydrophobic domain is inserted into membranes and that the lumenal domain is glycosylated at asparagine residues 2249 and 2252. Thus, the hydrophobic domain may anchor the replication complex to intracellular membranes. These studies revealed that PLpro can cleave in trans at the three predicted cleavage sites and that it requires membrane association to process the nsp3/4 cleavage site.

DOI: 10.1128/JVI.78.24.13600-13612.2004
PubMed: 15564471

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:15564471

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity.</title>
<author>
<name sortKey="Harcourt, Brian H" sort="Harcourt, Brian H" uniqKey="Harcourt B" first="Brian H" last="Harcourt">Brian H. Harcourt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centers for Disease Control and Prevention, Atlanta, Georgia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Centers for Disease Control and Prevention, Atlanta, Georgia</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Jukneliene, Dalia" sort="Jukneliene, Dalia" uniqKey="Jukneliene D" first="Dalia" last="Jukneliene">Dalia Jukneliene</name>
</author>
<author>
<name sortKey="Kanjanahaluethai, Amornrat" sort="Kanjanahaluethai, Amornrat" uniqKey="Kanjanahaluethai A" first="Amornrat" last="Kanjanahaluethai">Amornrat Kanjanahaluethai</name>
</author>
<author>
<name sortKey="Bechill, John" sort="Bechill, John" uniqKey="Bechill J" first="John" last="Bechill">John Bechill</name>
</author>
<author>
<name sortKey="Severson, Kari M" sort="Severson, Kari M" uniqKey="Severson K" first="Kari M" last="Severson">Kari M. Severson</name>
</author>
<author>
<name sortKey="Smith, Catherine M" sort="Smith, Catherine M" uniqKey="Smith C" first="Catherine M" last="Smith">Catherine M. Smith</name>
</author>
<author>
<name sortKey="Rota, Paul A" sort="Rota, Paul A" uniqKey="Rota P" first="Paul A" last="Rota">Paul A. Rota</name>
</author>
<author>
<name sortKey="Baker, Susan C" sort="Baker, Susan C" uniqKey="Baker S" first="Susan C" last="Baker">Susan C. Baker</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15564471</idno>
<idno type="pmid">15564471</idno>
<idno type="doi">10.1128/JVI.78.24.13600-13612.2004</idno>
<idno type="wicri:Area/PubMed/Corpus">002A32</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002A32</idno>
<idno type="wicri:Area/PubMed/Curation">002A32</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002A32</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity.</title>
<author>
<name sortKey="Harcourt, Brian H" sort="Harcourt, Brian H" uniqKey="Harcourt B" first="Brian H" last="Harcourt">Brian H. Harcourt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centers for Disease Control and Prevention, Atlanta, Georgia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Centers for Disease Control and Prevention, Atlanta, Georgia</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Jukneliene, Dalia" sort="Jukneliene, Dalia" uniqKey="Jukneliene D" first="Dalia" last="Jukneliene">Dalia Jukneliene</name>
</author>
<author>
<name sortKey="Kanjanahaluethai, Amornrat" sort="Kanjanahaluethai, Amornrat" uniqKey="Kanjanahaluethai A" first="Amornrat" last="Kanjanahaluethai">Amornrat Kanjanahaluethai</name>
</author>
<author>
<name sortKey="Bechill, John" sort="Bechill, John" uniqKey="Bechill J" first="John" last="Bechill">John Bechill</name>
</author>
<author>
<name sortKey="Severson, Kari M" sort="Severson, Kari M" uniqKey="Severson K" first="Kari M" last="Severson">Kari M. Severson</name>
</author>
<author>
<name sortKey="Smith, Catherine M" sort="Smith, Catherine M" uniqKey="Smith C" first="Catherine M" last="Smith">Catherine M. Smith</name>
</author>
<author>
<name sortKey="Rota, Paul A" sort="Rota, Paul A" uniqKey="Rota P" first="Paul A" last="Rota">Paul A. Rota</name>
</author>
<author>
<name sortKey="Baker, Susan C" sort="Baker, Susan C" uniqKey="Baker S" first="Susan C" last="Baker">Susan C. Baker</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="ISSN">0022-538X</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Cell Line</term>
<term>Humans</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Papain (chemistry)</term>
<term>Papain (genetics)</term>
<term>Papain (metabolism)</term>
<term>Polyproteins (metabolism)</term>
<term>Protein Processing, Post-Translational</term>
<term>RNA Replicase (chemistry)</term>
<term>RNA Replicase (genetics)</term>
<term>RNA Replicase (metabolism)</term>
<term>SARS Virus (enzymology)</term>
<term>SARS Virus (genetics)</term>
<term>SARS Virus (physiology)</term>
<term>Viral Nonstructural Proteins (chemistry)</term>
<term>Viral Nonstructural Proteins (genetics)</term>
<term>Viral Nonstructural Proteins (metabolism)</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Données de séquences moléculaires</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Mutation</term>
<term>Papaïne ()</term>
<term>Papaïne (génétique)</term>
<term>Papaïne (métabolisme)</term>
<term>Polyprotéines (métabolisme)</term>
<term>Protéines virales non structurales ()</term>
<term>Protéines virales non structurales (génétique)</term>
<term>Protéines virales non structurales (métabolisme)</term>
<term>RNA replicase ()</term>
<term>RNA replicase (génétique)</term>
<term>RNA replicase (métabolisme)</term>
<term>Réplication virale</term>
<term>Séquence d'acides aminés</term>
<term>Virus du SRAS (enzymologie)</term>
<term>Virus du SRAS (génétique)</term>
<term>Virus du SRAS (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Papain</term>
<term>RNA Replicase</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Papain</term>
<term>RNA Replicase</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Papain</term>
<term>Polyproteins</term>
<term>RNA Replicase</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Papaïne</term>
<term>Protéines virales non structurales</term>
<term>RNA replicase</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Papaïne</term>
<term>Polyprotéines</term>
<term>Protéines virales non structurales</term>
<term>RNA replicase</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Cell Line</term>
<term>Humans</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Protein Processing, Post-Translational</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Données de séquences moléculaires</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Mutation</term>
<term>Papaïne</term>
<term>Protéines virales non structurales</term>
<term>RNA replicase</term>
<term>Réplication virale</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Gene 1 of the coronavirus associated with severe acute respiratory syndrome (SARS) encodes replicase polyproteins that are predicted to be processed into 16 nonstructural proteins (nsps 1 to 16) by two viral proteases, a papain-like protease (PLpro) and a 3C-like protease (3CLpro). Here, we identify SARS coronavirus amino-terminal replicase products nsp1, nsp2, and nsp3 and describe trans-cleavage assays that characterize the protease activity required to generate these products. We generated polyclonal antisera to glutathione S-transferase-replicase fusion proteins and used the antisera to detect replicase intermediates and products in pulse-chase experiments. We found that nsp1 (p20) is rapidly processed from the replicase polyprotein. In contrast, processing at the nsp2/3 site is less efficient, since a approximately 300-kDa intermediate (NSP2-3) is detected, but ultimately nsp2 (p71) and nsp3 (p213) are generated. We found that SARS coronavirus replicase products can be detected by 4 h postinfection in the cytoplasm of infected cells and that nsps 1 to 3 colocalize with newly synthesized viral RNA in punctate, perinuclear sites consistent with their predicted role in viral RNA synthesis. To determine if PLpro is responsible for processing these products, we cloned and expressed the PLpro domain and the predicted substrates and established PLpro trans-cleavage assays. We found that the PLpro domain is sufficient for processing the predicted nsp1/2 and nsp2/3 sites. Interestingly, expression of an extended region of PLpro that includes the downstream hydrophobic domain was required for processing at the predicted nsp3/4 site. We found that the hydrophobic domain is inserted into membranes and that the lumenal domain is glycosylated at asparagine residues 2249 and 2252. Thus, the hydrophobic domain may anchor the replication complex to intracellular membranes. These studies revealed that PLpro can cleave in trans at the three predicted cleavage sites and that it requires membrane association to process the nsp3/4 cleavage site.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15564471</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>12</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0022-538X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>78</Volume>
<Issue>24</Issue>
<PubDate>
<Year>2004</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity.</ArticleTitle>
<Pagination>
<MedlinePgn>13600-12</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Gene 1 of the coronavirus associated with severe acute respiratory syndrome (SARS) encodes replicase polyproteins that are predicted to be processed into 16 nonstructural proteins (nsps 1 to 16) by two viral proteases, a papain-like protease (PLpro) and a 3C-like protease (3CLpro). Here, we identify SARS coronavirus amino-terminal replicase products nsp1, nsp2, and nsp3 and describe trans-cleavage assays that characterize the protease activity required to generate these products. We generated polyclonal antisera to glutathione S-transferase-replicase fusion proteins and used the antisera to detect replicase intermediates and products in pulse-chase experiments. We found that nsp1 (p20) is rapidly processed from the replicase polyprotein. In contrast, processing at the nsp2/3 site is less efficient, since a approximately 300-kDa intermediate (NSP2-3) is detected, but ultimately nsp2 (p71) and nsp3 (p213) are generated. We found that SARS coronavirus replicase products can be detected by 4 h postinfection in the cytoplasm of infected cells and that nsps 1 to 3 colocalize with newly synthesized viral RNA in punctate, perinuclear sites consistent with their predicted role in viral RNA synthesis. To determine if PLpro is responsible for processing these products, we cloned and expressed the PLpro domain and the predicted substrates and established PLpro trans-cleavage assays. We found that the PLpro domain is sufficient for processing the predicted nsp1/2 and nsp2/3 sites. Interestingly, expression of an extended region of PLpro that includes the downstream hydrophobic domain was required for processing at the predicted nsp3/4 site. We found that the hydrophobic domain is inserted into membranes and that the lumenal domain is glycosylated at asparagine residues 2249 and 2252. Thus, the hydrophobic domain may anchor the replication complex to intracellular membranes. These studies revealed that PLpro can cleave in trans at the three predicted cleavage sites and that it requires membrane association to process the nsp3/4 cleavage site.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Harcourt</LastName>
<ForeName>Brian H</ForeName>
<Initials>BH</Initials>
<AffiliationInfo>
<Affiliation>Centers for Disease Control and Prevention, Atlanta, Georgia, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jukneliene</LastName>
<ForeName>Dalia</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kanjanahaluethai</LastName>
<ForeName>Amornrat</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bechill</LastName>
<ForeName>John</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Severson</LastName>
<ForeName>Kari M</ForeName>
<Initials>KM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>Catherine M</ForeName>
<Initials>CM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rota</LastName>
<ForeName>Paul A</ForeName>
<Initials>PA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Baker</LastName>
<ForeName>Susan C</ForeName>
<Initials>SC</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI045798</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI 45798</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020815">Polyproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017361">Viral Nonstructural Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.48</RegistryNumber>
<NameOfSubstance UI="C521592">Nsp1 protein, SARS coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.48</RegistryNumber>
<NameOfSubstance UI="D012324">RNA Replicase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.2</RegistryNumber>
<NameOfSubstance UI="D010206">Papain</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.2</RegistryNumber>
<NameOfSubstance UI="C000657884">papain-like protease, Coronavirus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010206" MajorTopicYN="N">Papain</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020815" MajorTopicYN="N">Polyproteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="N">Protein Processing, Post-Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012324" MajorTopicYN="N">RNA Replicase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017361" MajorTopicYN="N">Viral Nonstructural Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>11</Month>
<Day>27</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>11</Month>
<Day>27</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15564471</ArticleId>
<ArticleId IdType="pii">78/24/13600</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.78.24.13600-13612.2004</ArticleId>
<ArticleId IdType="pmc">PMC533933</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2000 Feb;74(4):1674-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10644337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):5619-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Sep;74(17):7911-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10933699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Aug 31;276(35):33220-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11431476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Nov 23;276(47):44052-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11557752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1995 Apr 1;208(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11831690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Apr;76(8):3697-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11907209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Apr 19;361(9366):1319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Jul;77(13):7376-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jun 13;300(5626):1763-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Jul 26;362(9380):263-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2003 Sep;84(Pt 9):2305-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Oct;77(19):10515-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12995-3000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14569023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1989 Sep;63(9):3693-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2547993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1995 Jun 1;209(2):489-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7539970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Feb;71(2):900-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8995606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Feb;72(2):910-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9444982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1998 Mar 15;242(2):288-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9514967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1998 Jun 5;245(2):303-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9636369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Mar;73(3):2016-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9971782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 May 21;274(21):14918-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Jul;73(7):5957-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10364348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13190-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14585926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2003 Dec;84(Pt 12):3291-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14645910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2004 Feb;10(2):320-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15030705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2003 Dec;1(3):209-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15035025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2003 Nov;1(2):E2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14624234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2000 Apr;81(Pt 4):853-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725411</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A32 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 002A32 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:15564471
   |texte=   Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:15564471" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021