Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of critical active-site residues in angiotensin-converting enzyme-2 (ACE2) by site-directed mutagenesis.

Identifieur interne : 002649 ( PubMed/Curation ); précédent : 002648; suivant : 002650

Identification of critical active-site residues in angiotensin-converting enzyme-2 (ACE2) by site-directed mutagenesis.

Auteurs : Jodie L. Guy [Royaume-Uni] ; Richard M. Jackson ; Hanne A. Jensen ; Nigel M. Hooper ; Anthony J. Turner

Source :

RBID : pubmed:16008552

Descripteurs français

English descriptors

Abstract

Angiotensin-converting enzyme-2 (ACE2) may play an important role in cardiorenal disease and it has also been implicated as a cellular receptor for the severe acute respiratory syndrome (SARS) virus. The ACE2 active-site model and its crystal structure, which was solved recently, highlighted key differences between ACE2 and its counterpart angiotensin-converting enzyme (ACE), which are responsible for their differing substrate and inhibitor sensitivities. In this study the role of ACE2 active-site residues was explored by site-directed mutagenesis. Arg273 was found to be critical for substrate binding such that its replacement causes enzyme activity to be abolished. Although both His505 and His345 are involved in catalysis, it is His345 and not His505 that acts as the hydrogen bond donor/acceptor in the formation of the tetrahedral peptide intermediate. The difference in chloride sensitivity between ACE2 and ACE was investigated, and the absence of a second chloride-binding site (CL2) in ACE2 confirmed. Thus ACE2 has only one chloride-binding site (CL1) whereas ACE has two sites. This is the first study to address the differences that exist between ACE2 and ACE at the molecular level. The results can be applied to future studies aimed at unravelling the role of ACE2, relative to ACE, in vivo.

DOI: 10.1111/j.1742-4658.2005.04756.x
PubMed: 16008552

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:16008552

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of critical active-site residues in angiotensin-converting enzyme-2 (ACE2) by site-directed mutagenesis.</title>
<author>
<name sortKey="Guy, Jodie L" sort="Guy, Jodie L" uniqKey="Guy J" first="Jodie L" last="Guy">Jodie L. Guy</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biochemistry and Microbiology, University of Leeds, UK. bmbjlg@bmb.leeds.ac.uk</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Biochemistry and Microbiology, University of Leeds</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Jackson, Richard M" sort="Jackson, Richard M" uniqKey="Jackson R" first="Richard M" last="Jackson">Richard M. Jackson</name>
</author>
<author>
<name sortKey="Jensen, Hanne A" sort="Jensen, Hanne A" uniqKey="Jensen H" first="Hanne A" last="Jensen">Hanne A. Jensen</name>
</author>
<author>
<name sortKey="Hooper, Nigel M" sort="Hooper, Nigel M" uniqKey="Hooper N" first="Nigel M" last="Hooper">Nigel M. Hooper</name>
</author>
<author>
<name sortKey="Turner, Anthony J" sort="Turner, Anthony J" uniqKey="Turner A" first="Anthony J" last="Turner">Anthony J. Turner</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:16008552</idno>
<idno type="pmid">16008552</idno>
<idno type="doi">10.1111/j.1742-4658.2005.04756.x</idno>
<idno type="wicri:Area/PubMed/Corpus">002649</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002649</idno>
<idno type="wicri:Area/PubMed/Curation">002649</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002649</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification of critical active-site residues in angiotensin-converting enzyme-2 (ACE2) by site-directed mutagenesis.</title>
<author>
<name sortKey="Guy, Jodie L" sort="Guy, Jodie L" uniqKey="Guy J" first="Jodie L" last="Guy">Jodie L. Guy</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biochemistry and Microbiology, University of Leeds, UK. bmbjlg@bmb.leeds.ac.uk</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Biochemistry and Microbiology, University of Leeds</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Jackson, Richard M" sort="Jackson, Richard M" uniqKey="Jackson R" first="Richard M" last="Jackson">Richard M. Jackson</name>
</author>
<author>
<name sortKey="Jensen, Hanne A" sort="Jensen, Hanne A" uniqKey="Jensen H" first="Hanne A" last="Jensen">Hanne A. Jensen</name>
</author>
<author>
<name sortKey="Hooper, Nigel M" sort="Hooper, Nigel M" uniqKey="Hooper N" first="Nigel M" last="Hooper">Nigel M. Hooper</name>
</author>
<author>
<name sortKey="Turner, Anthony J" sort="Turner, Anthony J" uniqKey="Turner A" first="Anthony J" last="Turner">Anthony J. Turner</name>
</author>
</analytic>
<series>
<title level="j">The FEBS journal</title>
<idno type="ISSN">1742-464X</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arginine (genetics)</term>
<term>Arginine (metabolism)</term>
<term>Binding Sites</term>
<term>Carboxypeptidases (chemistry)</term>
<term>Carboxypeptidases (genetics)</term>
<term>Carboxypeptidases (metabolism)</term>
<term>Catalysis</term>
<term>Cell Line</term>
<term>Chlorides (metabolism)</term>
<term>Histidine (genetics)</term>
<term>Histidine (metabolism)</term>
<term>Humans</term>
<term>Male</term>
<term>Models, Molecular</term>
<term>Mutagenesis, Site-Directed (genetics)</term>
<term>Peptidyl-Dipeptidase A</term>
<term>Protein Structure, Tertiary</term>
<term>Substrate Specificity</term>
<term>Testis (enzymology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arginine (génétique)</term>
<term>Arginine (métabolisme)</term>
<term>Carboxypeptidases ()</term>
<term>Carboxypeptidases (génétique)</term>
<term>Carboxypeptidases (métabolisme)</term>
<term>Catalyse</term>
<term>Chlorures (métabolisme)</term>
<term>Histidine (génétique)</term>
<term>Histidine (métabolisme)</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Modèles moléculaires</term>
<term>Mutagenèse dirigée (génétique)</term>
<term>Mâle</term>
<term>Peptidyl-Dipeptidase A</term>
<term>Sites de fixation</term>
<term>Spécificité du substrat</term>
<term>Structure tertiaire des protéines</term>
<term>Testicule (enzymologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Carboxypeptidases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arginine</term>
<term>Carboxypeptidases</term>
<term>Histidine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Arginine</term>
<term>Carboxypeptidases</term>
<term>Chlorides</term>
<term>Histidine</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Testicule</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Testis</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mutagenesis, Site-Directed</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arginine</term>
<term>Carboxypeptidases</term>
<term>Histidine</term>
<term>Mutagenèse dirigée</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arginine</term>
<term>Carboxypeptidases</term>
<term>Chlorures</term>
<term>Histidine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Catalysis</term>
<term>Cell Line</term>
<term>Humans</term>
<term>Male</term>
<term>Models, Molecular</term>
<term>Peptidyl-Dipeptidase A</term>
<term>Protein Structure, Tertiary</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Carboxypeptidases</term>
<term>Catalyse</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Modèles moléculaires</term>
<term>Mâle</term>
<term>Peptidyl-Dipeptidase A</term>
<term>Sites de fixation</term>
<term>Spécificité du substrat</term>
<term>Structure tertiaire des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Angiotensin-converting enzyme-2 (ACE2) may play an important role in cardiorenal disease and it has also been implicated as a cellular receptor for the severe acute respiratory syndrome (SARS) virus. The ACE2 active-site model and its crystal structure, which was solved recently, highlighted key differences between ACE2 and its counterpart angiotensin-converting enzyme (ACE), which are responsible for their differing substrate and inhibitor sensitivities. In this study the role of ACE2 active-site residues was explored by site-directed mutagenesis. Arg273 was found to be critical for substrate binding such that its replacement causes enzyme activity to be abolished. Although both His505 and His345 are involved in catalysis, it is His345 and not His505 that acts as the hydrogen bond donor/acceptor in the formation of the tetrahedral peptide intermediate. The difference in chloride sensitivity between ACE2 and ACE was investigated, and the absence of a second chloride-binding site (CL2) in ACE2 confirmed. Thus ACE2 has only one chloride-binding site (CL1) whereas ACE has two sites. This is the first study to address the differences that exist between ACE2 and ACE at the molecular level. The results can be applied to future studies aimed at unravelling the role of ACE2, relative to ACE, in vivo.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16008552</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>09</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1742-464X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>272</Volume>
<Issue>14</Issue>
<PubDate>
<Year>2005</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>The FEBS journal</Title>
<ISOAbbreviation>FEBS J.</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification of critical active-site residues in angiotensin-converting enzyme-2 (ACE2) by site-directed mutagenesis.</ArticleTitle>
<Pagination>
<MedlinePgn>3512-20</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Angiotensin-converting enzyme-2 (ACE2) may play an important role in cardiorenal disease and it has also been implicated as a cellular receptor for the severe acute respiratory syndrome (SARS) virus. The ACE2 active-site model and its crystal structure, which was solved recently, highlighted key differences between ACE2 and its counterpart angiotensin-converting enzyme (ACE), which are responsible for their differing substrate and inhibitor sensitivities. In this study the role of ACE2 active-site residues was explored by site-directed mutagenesis. Arg273 was found to be critical for substrate binding such that its replacement causes enzyme activity to be abolished. Although both His505 and His345 are involved in catalysis, it is His345 and not His505 that acts as the hydrogen bond donor/acceptor in the formation of the tetrahedral peptide intermediate. The difference in chloride sensitivity between ACE2 and ACE was investigated, and the absence of a second chloride-binding site (CL2) in ACE2 confirmed. Thus ACE2 has only one chloride-binding site (CL1) whereas ACE has two sites. This is the first study to address the differences that exist between ACE2 and ACE at the molecular level. The results can be applied to future studies aimed at unravelling the role of ACE2, relative to ACE, in vivo.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Guy</LastName>
<ForeName>Jodie L</ForeName>
<Initials>JL</Initials>
<AffiliationInfo>
<Affiliation>School of Biochemistry and Microbiology, University of Leeds, UK. bmbjlg@bmb.leeds.ac.uk</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jackson</LastName>
<ForeName>Richard M</ForeName>
<Initials>RM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jensen</LastName>
<ForeName>Hanne A</ForeName>
<Initials>HA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hooper</LastName>
<ForeName>Nigel M</ForeName>
<Initials>NM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Turner</LastName>
<ForeName>Anthony J</ForeName>
<Initials>AJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>FEBS J</MedlineTA>
<NlmUniqueID>101229646</NlmUniqueID>
<ISSNLinking>1742-464X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002712">Chlorides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4QD397987E</RegistryNumber>
<NameOfSubstance UI="D006639">Histidine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>94ZLA3W45F</RegistryNumber>
<NameOfSubstance UI="D001120">Arginine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.-</RegistryNumber>
<NameOfSubstance UI="D002268">Carboxypeptidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.15.1</RegistryNumber>
<NameOfSubstance UI="D007703">Peptidyl-Dipeptidase A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.17.-</RegistryNumber>
<NameOfSubstance UI="C413524">angiotensin converting enzyme 2</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001120" MajorTopicYN="N">Arginine</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002268" MajorTopicYN="N">Carboxypeptidases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002712" MajorTopicYN="N">Chlorides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006639" MajorTopicYN="N">Histidine</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007703" MajorTopicYN="N">Peptidyl-Dipeptidase A</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013737" MajorTopicYN="N">Testis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>7</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>7</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16008552</ArticleId>
<ArticleId IdType="pii">EJB4756</ArticleId>
<ArticleId IdType="doi">10.1111/j.1742-4658.2005.04756.x</ArticleId>
<ArticleId IdType="pmc">PMC7164114</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Endocrinology. 2003 Aug;144(8):3338-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12865311</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Structure. 2002 Feb;10(2):215-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11839307</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 1970 Aug 15;227(5259):680-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5432063</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2004 Jul 13;43(27):8718-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15236580</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2001 Sep 7;276(36):33518-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11432860</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Cell Cardiol. 2003 Sep;35(9):1043-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12967627</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Anal Biochem. 1985 Oct;150(1):76-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3843705</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2004 Apr 23;279(17):17996-8007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14754895</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 2003 Mar 13;538(1-3):65-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12633854</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2003 May 2;278(18):15532-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12606557</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Circulation. 2003 Oct 7;108(14):1707-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14504186</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2001 Feb 16;276(7):4998-5004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11067854</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Hypertension. 2004 May;43(5):1120-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15078862</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2002 Jun 20;417(6891):822-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12075344</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Aug 1;1751(1):2-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16054014</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Hypertension. 2003 Mar;41(3):392-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12623933</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2002 Apr 26;277(17):14838-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11815627</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Eng. 2003 Dec;16(12):993-1003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14983080</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Pathol. 2004 Jun;203(2):631-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15141377</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Hypertension. 2004 Dec;44(6):903-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15492138</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Circ Res. 2000 Sep 1;87(5):E1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10969042</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2000 Oct 27;275(43):33238-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10924499</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2003 Nov 18;42(45):13185-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14609329</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 1983 Jan 4;22(1):110-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6299331</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2003 Jan 30;421(6922):551-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12540854</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Pharmacol Sci. 2004 Jun;25(6):291-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15165741</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Hypertension. 2003 Oct;42(4):749-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12874086</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Am Chem Soc. 2002 Oct 9;124(40):11852-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12358520</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002649 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 002649 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:16008552
   |texte=   Identification of critical active-site residues in angiotensin-converting enzyme-2 (ACE2) by site-directed mutagenesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:16008552" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021