Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An atypical RNA pseudoknot stimulator and an upstream attenuation signal for -1 ribosomal frameshifting of SARS coronavirus.

Identifieur interne : 002610 ( PubMed/Curation ); précédent : 002609; suivant : 002611

An atypical RNA pseudoknot stimulator and an upstream attenuation signal for -1 ribosomal frameshifting of SARS coronavirus.

Auteurs : Mei-Chi Su [Taïwan] ; Chung-Te Chang ; Chiu-Hui Chu ; Ching-Hsiu Tsai ; Kung-Yao Chang

Source :

RBID : pubmed:16055920

Descripteurs français

English descriptors

Abstract

The -1 ribosomal frameshifting requires the existence of an in cis RNA slippery sequence and is promoted by a downstream stimulator RNA. An atypical RNA pseudoknot with an extra stem formed by complementary sequences within loop 2 of an H-type pseudoknot is characterized in the severe acute respiratory syndrome coronavirus (SARS CoV) genome. This pseudoknot can serve as an efficient stimulator for -1 frameshifting in vitro. Mutational analysis of the extra stem suggests frameshift efficiency can be modulated via manipulation of the secondary structure within the loop 2 of an infectious bronchitis virus-type pseudoknot. More importantly, an upstream RNA sequence separated by a linker 5' to the slippery site is also identified to be capable of modulating the -1 frameshift efficiency. RNA sequence containing this attenuation element can downregulate -1 frameshifting promoted by an atypical pseudoknot of SARS CoV and two other pseudoknot stimulators. Furthermore, frameshift efficiency can be reduced to half in the presence of the attenuation signal in vivo. Therefore, this in cis RNA attenuator represents a novel negative determinant of general importance for the regulation of -1 frameshift efficiency, and is thus a potential antiviral target.

DOI: 10.1093/nar/gki731
PubMed: 16055920

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:16055920

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">An atypical RNA pseudoknot stimulator and an upstream attenuation signal for -1 ribosomal frameshifting of SARS coronavirus.</title>
<author>
<name sortKey="Su, Mei Chi" sort="Su, Mei Chi" uniqKey="Su M" first="Mei-Chi" last="Su">Mei-Chi Su</name>
<affiliation wicri:level="1">
<nlm:affiliation>Graduate Institute of Biochemistry, National Chung-Hsing University 250 Kuo-Kung Road, Taichung, 402 Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Graduate Institute of Biochemistry, National Chung-Hsing University 250 Kuo-Kung Road, Taichung</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chang, Chung Te" sort="Chang, Chung Te" uniqKey="Chang C" first="Chung-Te" last="Chang">Chung-Te Chang</name>
</author>
<author>
<name sortKey="Chu, Chiu Hui" sort="Chu, Chiu Hui" uniqKey="Chu C" first="Chiu-Hui" last="Chu">Chiu-Hui Chu</name>
</author>
<author>
<name sortKey="Tsai, Ching Hsiu" sort="Tsai, Ching Hsiu" uniqKey="Tsai C" first="Ching-Hsiu" last="Tsai">Ching-Hsiu Tsai</name>
</author>
<author>
<name sortKey="Chang, Kung Yao" sort="Chang, Kung Yao" uniqKey="Chang K" first="Kung-Yao" last="Chang">Kung-Yao Chang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:16055920</idno>
<idno type="pmid">16055920</idno>
<idno type="doi">10.1093/nar/gki731</idno>
<idno type="wicri:Area/PubMed/Corpus">002610</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002610</idno>
<idno type="wicri:Area/PubMed/Curation">002610</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002610</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">An atypical RNA pseudoknot stimulator and an upstream attenuation signal for -1 ribosomal frameshifting of SARS coronavirus.</title>
<author>
<name sortKey="Su, Mei Chi" sort="Su, Mei Chi" uniqKey="Su M" first="Mei-Chi" last="Su">Mei-Chi Su</name>
<affiliation wicri:level="1">
<nlm:affiliation>Graduate Institute of Biochemistry, National Chung-Hsing University 250 Kuo-Kung Road, Taichung, 402 Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Graduate Institute of Biochemistry, National Chung-Hsing University 250 Kuo-Kung Road, Taichung</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chang, Chung Te" sort="Chang, Chung Te" uniqKey="Chang C" first="Chung-Te" last="Chang">Chung-Te Chang</name>
</author>
<author>
<name sortKey="Chu, Chiu Hui" sort="Chu, Chiu Hui" uniqKey="Chu C" first="Chiu-Hui" last="Chu">Chiu-Hui Chu</name>
</author>
<author>
<name sortKey="Tsai, Ching Hsiu" sort="Tsai, Ching Hsiu" uniqKey="Tsai C" first="Ching-Hsiu" last="Tsai">Ching-Hsiu Tsai</name>
</author>
<author>
<name sortKey="Chang, Kung Yao" sort="Chang, Kung Yao" uniqKey="Chang K" first="Kung-Yao" last="Chang">Kung-Yao Chang</name>
</author>
</analytic>
<series>
<title level="j">Nucleic acids research</title>
<idno type="eISSN">1362-4962</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence</term>
<term>Down-Regulation</term>
<term>Frameshifting, Ribosomal</term>
<term>Gene Expression Regulation, Viral</term>
<term>Molecular Sequence Data</term>
<term>Nucleic Acid Conformation</term>
<term>RNA, Viral (chemistry)</term>
<term>Regulatory Sequences, Ribonucleic Acid</term>
<term>SARS Virus (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN viral ()</term>
<term>Conformation d'acide nucléique</term>
<term>Données de séquences moléculaires</term>
<term>Décalage ribosomique du cadre de lecture</term>
<term>Régulation de l'expression des gènes viraux</term>
<term>Régulation négative</term>
<term>Séquence nucléotidique</term>
<term>Séquences régulatrices de l'acide ribonucléique</term>
<term>Virus du SRAS (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Down-Regulation</term>
<term>Frameshifting, Ribosomal</term>
<term>Gene Expression Regulation, Viral</term>
<term>Molecular Sequence Data</term>
<term>Nucleic Acid Conformation</term>
<term>Regulatory Sequences, Ribonucleic Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ARN viral</term>
<term>Conformation d'acide nucléique</term>
<term>Données de séquences moléculaires</term>
<term>Décalage ribosomique du cadre de lecture</term>
<term>Régulation de l'expression des gènes viraux</term>
<term>Régulation négative</term>
<term>Séquence nucléotidique</term>
<term>Séquences régulatrices de l'acide ribonucléique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The -1 ribosomal frameshifting requires the existence of an in cis RNA slippery sequence and is promoted by a downstream stimulator RNA. An atypical RNA pseudoknot with an extra stem formed by complementary sequences within loop 2 of an H-type pseudoknot is characterized in the severe acute respiratory syndrome coronavirus (SARS CoV) genome. This pseudoknot can serve as an efficient stimulator for -1 frameshifting in vitro. Mutational analysis of the extra stem suggests frameshift efficiency can be modulated via manipulation of the secondary structure within the loop 2 of an infectious bronchitis virus-type pseudoknot. More importantly, an upstream RNA sequence separated by a linker 5' to the slippery site is also identified to be capable of modulating the -1 frameshift efficiency. RNA sequence containing this attenuation element can downregulate -1 frameshifting promoted by an atypical pseudoknot of SARS CoV and two other pseudoknot stimulators. Furthermore, frameshift efficiency can be reduced to half in the presence of the attenuation signal in vivo. Therefore, this in cis RNA attenuator represents a novel negative determinant of general importance for the regulation of -1 frameshift efficiency, and is thus a potential antiviral target.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16055920</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>08</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1362-4962</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>33</Volume>
<Issue>13</Issue>
<PubDate>
<Year>2005</Year>
</PubDate>
</JournalIssue>
<Title>Nucleic acids research</Title>
<ISOAbbreviation>Nucleic Acids Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>An atypical RNA pseudoknot stimulator and an upstream attenuation signal for -1 ribosomal frameshifting of SARS coronavirus.</ArticleTitle>
<Pagination>
<MedlinePgn>4265-75</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The -1 ribosomal frameshifting requires the existence of an in cis RNA slippery sequence and is promoted by a downstream stimulator RNA. An atypical RNA pseudoknot with an extra stem formed by complementary sequences within loop 2 of an H-type pseudoknot is characterized in the severe acute respiratory syndrome coronavirus (SARS CoV) genome. This pseudoknot can serve as an efficient stimulator for -1 frameshifting in vitro. Mutational analysis of the extra stem suggests frameshift efficiency can be modulated via manipulation of the secondary structure within the loop 2 of an infectious bronchitis virus-type pseudoknot. More importantly, an upstream RNA sequence separated by a linker 5' to the slippery site is also identified to be capable of modulating the -1 frameshift efficiency. RNA sequence containing this attenuation element can downregulate -1 frameshifting promoted by an atypical pseudoknot of SARS CoV and two other pseudoknot stimulators. Furthermore, frameshift efficiency can be reduced to half in the presence of the attenuation signal in vivo. Therefore, this in cis RNA attenuator represents a novel negative determinant of general importance for the regulation of -1 frameshift efficiency, and is thus a potential antiviral target.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Su</LastName>
<ForeName>Mei-Chi</ForeName>
<Initials>MC</Initials>
<AffiliationInfo>
<Affiliation>Graduate Institute of Biochemistry, National Chung-Hsing University 250 Kuo-Kung Road, Taichung, 402 Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chang</LastName>
<ForeName>Chung-Te</ForeName>
<Initials>CT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chu</LastName>
<ForeName>Chiu-Hui</ForeName>
<Initials>CH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tsai</LastName>
<ForeName>Ching-Hsiu</ForeName>
<Initials>CH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chang</LastName>
<ForeName>Kung-Yao</ForeName>
<Initials>KY</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>07</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nucleic Acids Res</MedlineTA>
<NlmUniqueID>0411011</NlmUniqueID>
<ISSNLinking>0305-1048</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012367">RNA, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D038621">Regulatory Sequences, Ribonucleic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015536" MajorTopicYN="N">Down-Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018965" MajorTopicYN="Y">Frameshifting, Ribosomal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015967" MajorTopicYN="Y">Gene Expression Regulation, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009690" MajorTopicYN="N">Nucleic Acid Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012367" MajorTopicYN="N">RNA, Viral</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038621" MajorTopicYN="Y">Regulatory Sequences, Ribonucleic Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>8</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>8</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>8</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16055920</ArticleId>
<ArticleId IdType="pii">33/13/4265</ArticleId>
<ArticleId IdType="doi">10.1093/nar/gki731</ArticleId>
<ArticleId IdType="pmc">PMC1182165</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14234-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10588689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Apr 28;298(2):167-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10764589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 Mar 1;29(5):1125-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11222762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2001 Dec;21(24):8657-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11713298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2002 Apr;27(4):178-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11943544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5331-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11959986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11133-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12149516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2002 Sep;27(9):448-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12217519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Dec 1;30(23):5094-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12466532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 1998 Apr;16(4):190-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9586242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 1998 Apr;4(4):479-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9630253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Jan;19(1):384-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9858562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 1999 Mar;6(3):285-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10074948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 May 7;288(3):305-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2005 Jan 7;17(1):61-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15629717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2005 Feb 20;332(2):498-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15680415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2003 Feb;9(2):168-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12554858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Feb 12;19(3):327-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12584117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 May 24;361(9371):1761-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12781533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2003 Sep;84(Pt 9):2305-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2004 Jan 30;13(2):157-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14759362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 May 11;101(19):7287-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2004 Dec;32(Pt 6):1081-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15506971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1989 May 19;57(4):537-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2720781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 1990 May;8(5):528-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2357375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):713-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1309954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1993 Feb 11;21(3):401-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7680118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1993 Dec 25;21(25):5838-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8290341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1995 Feb 1;206(2):817-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7856095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Feb 15;14(4):842-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7882986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1995 Apr 14;247(5):963-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7723043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6587-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7604038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1996 Jul 26;260(4):479-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8759314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1996;65:741-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8811194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1996 Mar;60(1):103-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8852897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 May 15;25(10):1943-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9115361</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002610 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 002610 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:16055920
   |texte=   An atypical RNA pseudoknot stimulator and an upstream attenuation signal for -1 ribosomal frameshifting of SARS coronavirus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:16055920" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021