Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of the lungs.

Identifieur interne : 002432 ( PubMed/Curation ); précédent : 002431; suivant : 002433

Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of the lungs.

Auteurs : Amy C. Sims [États-Unis] ; Ralph S. Baric ; Boyd Yount ; Susan E. Burkett ; Peter L. Collins ; Raymond J. Pickles

Source :

RBID : pubmed:16306622

Descripteurs français

English descriptors

Abstract

Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 as an important cause of severe lower respiratory tract infection in humans, and in vitro models of the lung are needed to elucidate cellular targets and the consequences of viral infection. The SARS-CoV receptor, human angiotensin 1-converting enzyme 2 (hACE2), was detected in ciliated airway epithelial cells of human airway tissues derived from nasal or tracheobronchial regions, suggesting that SARS-CoV may infect the proximal airways. To assess infectivity in an in vitro model of human ciliated airway epithelia (HAE) derived from nasal and tracheobronchial airway regions, we generated recombinant SARS-CoV by deletion of open reading frame 7a/7b (ORF7a/7b) and insertion of the green fluorescent protein (GFP), resulting in SARS-CoV GFP. SARS-CoV GFP replicated to titers similar to those of wild-type viruses in cell lines. SARS-CoV specifically infected HAE via the apical surface and replicated to titers of 10(7) PFU/ml by 48 h postinfection. Polyclonal antisera directed against hACE2 blocked virus infection and replication, suggesting that hACE2 is the primary receptor for SARS-CoV infection of HAE. SARS-CoV structural proteins and virions localized to ciliated epithelial cells. Infection was highly cytolytic, as infected ciliated cells were necrotic and shed over time onto the luminal surface of the epithelium. SARS-CoV GFP also replicated to a lesser extent in ciliated cell cultures derived from hamster or rhesus monkey airways. Efficient SARS-CoV infection of ciliated cells in HAE provides a useful in vitro model of human lung origin to study characteristics of SARS-CoV replication and pathogenesis.

DOI: 10.1128/JVI.79.24.15511-15524.2005
PubMed: 16306622

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:16306622

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of the lungs.</title>
<author>
<name sortKey="Sims, Amy C" sort="Sims, Amy C" uniqKey="Sims A" first="Amy C" last="Sims">Amy C. Sims</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, 2107 McGavran-Greenberg Hall, CB 7435, Chapel Hill, NC 27599-7435, USA. sims0018@email.unc.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina at Chapel Hill, 2107 McGavran-Greenberg Hall, CB 7435, Chapel Hill, NC 27599-7435</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
</author>
<author>
<name sortKey="Yount, Boyd" sort="Yount, Boyd" uniqKey="Yount B" first="Boyd" last="Yount">Boyd Yount</name>
</author>
<author>
<name sortKey="Burkett, Susan E" sort="Burkett, Susan E" uniqKey="Burkett S" first="Susan E" last="Burkett">Susan E. Burkett</name>
</author>
<author>
<name sortKey="Collins, Peter L" sort="Collins, Peter L" uniqKey="Collins P" first="Peter L" last="Collins">Peter L. Collins</name>
</author>
<author>
<name sortKey="Pickles, Raymond J" sort="Pickles, Raymond J" uniqKey="Pickles R" first="Raymond J" last="Pickles">Raymond J. Pickles</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:16306622</idno>
<idno type="pmid">16306622</idno>
<idno type="doi">10.1128/JVI.79.24.15511-15524.2005</idno>
<idno type="wicri:Area/PubMed/Corpus">002432</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002432</idno>
<idno type="wicri:Area/PubMed/Curation">002432</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002432</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of the lungs.</title>
<author>
<name sortKey="Sims, Amy C" sort="Sims, Amy C" uniqKey="Sims A" first="Amy C" last="Sims">Amy C. Sims</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, 2107 McGavran-Greenberg Hall, CB 7435, Chapel Hill, NC 27599-7435, USA. sims0018@email.unc.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina at Chapel Hill, 2107 McGavran-Greenberg Hall, CB 7435, Chapel Hill, NC 27599-7435</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
</author>
<author>
<name sortKey="Yount, Boyd" sort="Yount, Boyd" uniqKey="Yount B" first="Boyd" last="Yount">Boyd Yount</name>
</author>
<author>
<name sortKey="Burkett, Susan E" sort="Burkett, Susan E" uniqKey="Burkett S" first="Susan E" last="Burkett">Susan E. Burkett</name>
</author>
<author>
<name sortKey="Collins, Peter L" sort="Collins, Peter L" uniqKey="Collins P" first="Peter L" last="Collins">Peter L. Collins</name>
</author>
<author>
<name sortKey="Pickles, Raymond J" sort="Pickles, Raymond J" uniqKey="Pickles R" first="Raymond J" last="Pickles">Raymond J. Pickles</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="ISSN">0022-538X</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carboxypeptidases (analysis)</term>
<term>Coronavirus Infections (enzymology)</term>
<term>Coronavirus Infections (metabolism)</term>
<term>Epithelial Cells (virology)</term>
<term>Humans</term>
<term>Lung (virology)</term>
<term>Peptidyl-Dipeptidase A</term>
<term>SARS Virus (physiology)</term>
<term>Severe Acute Respiratory Syndrome (pathology)</term>
<term>Severe Acute Respiratory Syndrome (virology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Carboxypeptidases (analyse)</term>
<term>Cellules épithéliales (virologie)</term>
<term>Humains</term>
<term>Infections à coronavirus (enzymologie)</term>
<term>Infections à coronavirus (métabolisme)</term>
<term>Peptidyl-Dipeptidase A</term>
<term>Poumon (virologie)</term>
<term>Syndrome respiratoire aigu sévère (anatomopathologie)</term>
<term>Syndrome respiratoire aigu sévère (virologie)</term>
<term>Virus du SRAS (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Carboxypeptidases</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Carboxypeptidases</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Syndrome respiratoire aigu sévère</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Infections à coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Infections à coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Cellules épithéliales</term>
<term>Poumon</term>
<term>Syndrome respiratoire aigu sévère</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Epithelial Cells</term>
<term>Lung</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
<term>Peptidyl-Dipeptidase A</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
<term>Peptidyl-Dipeptidase A</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 as an important cause of severe lower respiratory tract infection in humans, and in vitro models of the lung are needed to elucidate cellular targets and the consequences of viral infection. The SARS-CoV receptor, human angiotensin 1-converting enzyme 2 (hACE2), was detected in ciliated airway epithelial cells of human airway tissues derived from nasal or tracheobronchial regions, suggesting that SARS-CoV may infect the proximal airways. To assess infectivity in an in vitro model of human ciliated airway epithelia (HAE) derived from nasal and tracheobronchial airway regions, we generated recombinant SARS-CoV by deletion of open reading frame 7a/7b (ORF7a/7b) and insertion of the green fluorescent protein (GFP), resulting in SARS-CoV GFP. SARS-CoV GFP replicated to titers similar to those of wild-type viruses in cell lines. SARS-CoV specifically infected HAE via the apical surface and replicated to titers of 10(7) PFU/ml by 48 h postinfection. Polyclonal antisera directed against hACE2 blocked virus infection and replication, suggesting that hACE2 is the primary receptor for SARS-CoV infection of HAE. SARS-CoV structural proteins and virions localized to ciliated epithelial cells. Infection was highly cytolytic, as infected ciliated cells were necrotic and shed over time onto the luminal surface of the epithelium. SARS-CoV GFP also replicated to a lesser extent in ciliated cell cultures derived from hamster or rhesus monkey airways. Efficient SARS-CoV infection of ciliated cells in HAE provides a useful in vitro model of human lung origin to study characteristics of SARS-CoV replication and pathogenesis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16306622</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>03</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0022-538X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>79</Volume>
<Issue>24</Issue>
<PubDate>
<Year>2005</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of the lungs.</ArticleTitle>
<Pagination>
<MedlinePgn>15511-24</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 as an important cause of severe lower respiratory tract infection in humans, and in vitro models of the lung are needed to elucidate cellular targets and the consequences of viral infection. The SARS-CoV receptor, human angiotensin 1-converting enzyme 2 (hACE2), was detected in ciliated airway epithelial cells of human airway tissues derived from nasal or tracheobronchial regions, suggesting that SARS-CoV may infect the proximal airways. To assess infectivity in an in vitro model of human ciliated airway epithelia (HAE) derived from nasal and tracheobronchial airway regions, we generated recombinant SARS-CoV by deletion of open reading frame 7a/7b (ORF7a/7b) and insertion of the green fluorescent protein (GFP), resulting in SARS-CoV GFP. SARS-CoV GFP replicated to titers similar to those of wild-type viruses in cell lines. SARS-CoV specifically infected HAE via the apical surface and replicated to titers of 10(7) PFU/ml by 48 h postinfection. Polyclonal antisera directed against hACE2 blocked virus infection and replication, suggesting that hACE2 is the primary receptor for SARS-CoV infection of HAE. SARS-CoV structural proteins and virions localized to ciliated epithelial cells. Infection was highly cytolytic, as infected ciliated cells were necrotic and shed over time onto the luminal surface of the epithelium. SARS-CoV GFP also replicated to a lesser extent in ciliated cell cultures derived from hamster or rhesus monkey airways. Efficient SARS-CoV infection of ciliated cells in HAE provides a useful in vitro model of human lung origin to study characteristics of SARS-CoV replication and pathogenesis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sims</LastName>
<ForeName>Amy C</ForeName>
<Initials>AC</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, 2107 McGavran-Greenberg Hall, CB 7435, Chapel Hill, NC 27599-7435, USA. sims0018@email.unc.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baric</LastName>
<ForeName>Ralph S</ForeName>
<Initials>RS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yount</LastName>
<ForeName>Boyd</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Burkett</LastName>
<ForeName>Susan E</ForeName>
<Initials>SE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Collins</LastName>
<ForeName>Peter L</ForeName>
<Initials>PL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pickles</LastName>
<ForeName>Raymond J</ForeName>
<Initials>RJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>5T32AI07151</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 AI007151</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 AI059443</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI059443</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI059136</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI059136</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI059443-01</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>EC 3.4.-</RegistryNumber>
<NameOfSubstance UI="D002268">Carboxypeptidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.15.1</RegistryNumber>
<NameOfSubstance UI="D007703">Peptidyl-Dipeptidase A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.17.-</RegistryNumber>
<NameOfSubstance UI="C413524">angiotensin converting enzyme 2</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002268" MajorTopicYN="N">Carboxypeptidases</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004847" MajorTopicYN="N">Epithelial Cells</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007703" MajorTopicYN="N">Peptidyl-Dipeptidase A</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>11</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>11</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16306622</ArticleId>
<ArticleId IdType="pii">79/24/15511</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.79.24.15511-15524.2005</ArticleId>
<ArticleId IdType="pmc">PMC1316022</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 Dec;78(24):13755-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15564484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2005;287:229-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15609514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2002 Apr 25;296(1):177-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12036329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Apr 20;24(8):1634-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15791205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2004 Jul;42(7):3196-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15243082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):5642-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Dec;78(24):14043-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15564512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2004 Oct 1;39(7):1071-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15472864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14040-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1991 Jun;65(6):3369-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1851885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Mar 12;303(5664):1666-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14752165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Mar;76(6):3023-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11861868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zhonghua Bing Li Xue Za Zhi. 2003 Dec;32(6):516-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14761595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1994 Dec;68(12):8169-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7966608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12995-3000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14569023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Jul 30;341(1):271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15312778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2003 Mar 30;308(1):13-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12706086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2004 Dec 5;330(1):8-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15527829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2004 Jun;203(2):631-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15141377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Jan;76(2):730-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Jan;79(2):884-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15613317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Apr;78(8):3863-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15047802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Histochem Cytochem. 2003 Jun;51(6):781-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12754289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 31;102(22):7988-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15897467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Histopathology. 2004 Aug;45(2):119-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15279629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1990 Mar;64(3):1050-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2154591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Jul 26;362(9380):263-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Feb;76(3):1422-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11773416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jul 7;436(7047):112-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16001071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Apr;77(7):4357-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12634392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Jul;72(7):6014-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9621064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 May;79(9):5833-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15827197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Jul;71(7):5148-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9188582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 30;425(6961):915</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14586458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2004 Jul 29;359(1447):1081-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15306393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Pathol. 2003 Aug;34(8):743-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14506633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Jun;76(11):5654-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11991994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Oct;78(20):11429-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15452268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Di Yi Jun Yi Da Xue Xue Bao. 2003 Nov;23(11):1125-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14625166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>In Vitro Cell Dev Biol Anim. 2004 Nov-Dec;40(10):303-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15780007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Med. 2005;107:183-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15492373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4620-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15070767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 May;74(9):4039-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10756015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 May 24;361(9371):1779-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12781537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):797-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15642942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2004 Feb;202(2):157-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14743497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AMA Arch Intern Med. 1959 Apr;103(4):515-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13636470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2005 Jan;13(1):75-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15642263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Nov;78(22):12672-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15507655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Nov;78(21):12090-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15479853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Clin Pathol. 2004 Apr;121(4):574-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15080310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2536-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14983044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Jan;79(2):1113-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15613339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Oct 10;302(5643):276-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12958366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2003 Oct 1;37(7):929-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13130404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Jan;79(1):503-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15596843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2004 Feb 15;38(4):585-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14765354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Apr;10(4):368-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Nov;76(21):11065-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2005 Aug;11(8):875-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16007097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2003 Sep;84(Pt 9):2305-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Oct;74(19):9234-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10982370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 May 24;361(9371):1773-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12781536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2005 Aug;167(2):455-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16049331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Dec;76(23):12335-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12414974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Aug;79(15):9470-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16014910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Gastroenterol. 2005 Jan;100(1):169-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15654797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2004 Feb 15;189(4):642-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14767817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Apr;78(7):3572-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15016880</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002432 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 002432 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:16306622
   |texte=   Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of the lungs.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:16306622" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021