Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Regulation of p90RSK phosphorylation by SARS-CoV infection in Vero E6 cells.

Identifieur interne : 002355 ( PubMed/Curation ); précédent : 002354; suivant : 002356

Regulation of p90RSK phosphorylation by SARS-CoV infection in Vero E6 cells.

Auteurs : Tetsuya Mizutani [Japon] ; Shuetsu Fukushi ; Masayuki Saijo ; Ichiro Kurane ; Shigeru Morikawa

Source :

RBID : pubmed:16458888

Descripteurs français

English descriptors

Abstract

The 90 kDa ribosomal S6 kinases (p90RSKs) are a family of broadly expressed serine/threonine kinases with two kinase domains activated by extracellular signal-regulated protein kinase in response to many growth factors. Our recent study demonstrated that severe acute respiratory syndrome (SARS)-coronavirus (CoV) infection of monkey kidney Vero E6 cells induces phosphorylation and dephosphorylation of signaling pathways, resulting in apoptosis. In the present study, we investigated the phosphorylation status of p90RSK, which is a well-known substrate of these signaling pathways, in SARS-CoV-infected cells. Vero E6 mainly expressed p90RSK1 and showed weak expression of p90RSK2. In the absence of viral infection, Ser221 in the N-terminal kinase domain was phosphorylated constitutively, whereas both Thr573 in the C-terminal kinase domain and Ser380 between the two kinase domains were not phosphorylated in confluent cells. Ser380, which has been reported to be involved in autophosphorylation by activation of the C-terminal kinase domain, was phosphorylated in confluent SARS-CoV-infected cells, and this phosphorylation was inhibited by , which is an inhibitor of p38 mitogen-activated protein kinases (MAPK). Phosphorylation of Thr573 was not upregulated in SARS-CoV-infected cells. Thus, in virus-infected cells, phosphorylation of Thr573 was not necessary to induce phosphorylation of Ser380. On the other hand, Both Thr573 and Ser380 were phosphorylated by treatment with epidermal growth factor (EGF) in the absence of p38 MAPK activation. Ser220 was constitutively phosphorylated despite infection. These results indicated that phosphorylation status of p90RSK by SARS-CoV infection is different from that by stimulation of EGF. This is the first detailed report regarding regulation of p90RSK phosphorylation by virus infection.

DOI: 10.1016/j.febslet.2006.01.066
PubMed: 16458888

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:16458888

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Regulation of p90RSK phosphorylation by SARS-CoV infection in Vero E6 cells.</title>
<author>
<name sortKey="Mizutani, Tetsuya" sort="Mizutani, Tetsuya" uniqKey="Mizutani T" first="Tetsuya" last="Mizutani">Tetsuya Mizutani</name>
<affiliation wicri:level="1">
<nlm:affiliation>Special Pathogens Laboratory, Department of Virology 1, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan. tmizutan@nih.go.jp</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Special Pathogens Laboratory, Department of Virology 1, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Fukushi, Shuetsu" sort="Fukushi, Shuetsu" uniqKey="Fukushi S" first="Shuetsu" last="Fukushi">Shuetsu Fukushi</name>
</author>
<author>
<name sortKey="Saijo, Masayuki" sort="Saijo, Masayuki" uniqKey="Saijo M" first="Masayuki" last="Saijo">Masayuki Saijo</name>
</author>
<author>
<name sortKey="Kurane, Ichiro" sort="Kurane, Ichiro" uniqKey="Kurane I" first="Ichiro" last="Kurane">Ichiro Kurane</name>
</author>
<author>
<name sortKey="Morikawa, Shigeru" sort="Morikawa, Shigeru" uniqKey="Morikawa S" first="Shigeru" last="Morikawa">Shigeru Morikawa</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16458888</idno>
<idno type="pmid">16458888</idno>
<idno type="doi">10.1016/j.febslet.2006.01.066</idno>
<idno type="wicri:Area/PubMed/Corpus">002355</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002355</idno>
<idno type="wicri:Area/PubMed/Curation">002355</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002355</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Regulation of p90RSK phosphorylation by SARS-CoV infection in Vero E6 cells.</title>
<author>
<name sortKey="Mizutani, Tetsuya" sort="Mizutani, Tetsuya" uniqKey="Mizutani T" first="Tetsuya" last="Mizutani">Tetsuya Mizutani</name>
<affiliation wicri:level="1">
<nlm:affiliation>Special Pathogens Laboratory, Department of Virology 1, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan. tmizutan@nih.go.jp</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Special Pathogens Laboratory, Department of Virology 1, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Fukushi, Shuetsu" sort="Fukushi, Shuetsu" uniqKey="Fukushi S" first="Shuetsu" last="Fukushi">Shuetsu Fukushi</name>
</author>
<author>
<name sortKey="Saijo, Masayuki" sort="Saijo, Masayuki" uniqKey="Saijo M" first="Masayuki" last="Saijo">Masayuki Saijo</name>
</author>
<author>
<name sortKey="Kurane, Ichiro" sort="Kurane, Ichiro" uniqKey="Kurane I" first="Ichiro" last="Kurane">Ichiro Kurane</name>
</author>
<author>
<name sortKey="Morikawa, Shigeru" sort="Morikawa, Shigeru" uniqKey="Morikawa S" first="Shigeru" last="Morikawa">Shigeru Morikawa</name>
</author>
</analytic>
<series>
<title level="j">FEBS letters</title>
<idno type="ISSN">0014-5793</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Chlorocebus aethiops</term>
<term>Epidermal Growth Factor (pharmacology)</term>
<term>Phosphorylation</term>
<term>Ribosomal Protein S6 Kinases, 90-kDa (metabolism)</term>
<term>SARS Virus</term>
<term>Serine (metabolism)</term>
<term>Severe Acute Respiratory Syndrome (metabolism)</term>
<term>Signal Transduction</term>
<term>Threonine (metabolism)</term>
<term>Vero Cells</term>
<term>p38 Mitogen-Activated Protein Kinases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Cellules Vero</term>
<term>Facteur de croissance épidermique (pharmacologie)</term>
<term>Phosphorylation</term>
<term>Ribosomal Protein S6 Kinases, 90-kDa (métabolisme)</term>
<term>Syndrome respiratoire aigu sévère (métabolisme)</term>
<term>Sérine (métabolisme)</term>
<term>Thréonine (métabolisme)</term>
<term>Transduction du signal</term>
<term>Virus du SRAS</term>
<term>p38 Mitogen-Activated Protein Kinases (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Ribosomal Protein S6 Kinases, 90-kDa</term>
<term>Serine</term>
<term>Threonine</term>
<term>p38 Mitogen-Activated Protein Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Epidermal Growth Factor</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Ribosomal Protein S6 Kinases, 90-kDa</term>
<term>Syndrome respiratoire aigu sévère</term>
<term>Sérine</term>
<term>Thréonine</term>
<term>p38 Mitogen-Activated Protein Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Facteur de croissance épidermique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Chlorocebus aethiops</term>
<term>Phosphorylation</term>
<term>SARS Virus</term>
<term>Signal Transduction</term>
<term>Vero Cells</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules Vero</term>
<term>Phosphorylation</term>
<term>Transduction du signal</term>
<term>Virus du SRAS</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The 90 kDa ribosomal S6 kinases (p90RSKs) are a family of broadly expressed serine/threonine kinases with two kinase domains activated by extracellular signal-regulated protein kinase in response to many growth factors. Our recent study demonstrated that severe acute respiratory syndrome (SARS)-coronavirus (CoV) infection of monkey kidney Vero E6 cells induces phosphorylation and dephosphorylation of signaling pathways, resulting in apoptosis. In the present study, we investigated the phosphorylation status of p90RSK, which is a well-known substrate of these signaling pathways, in SARS-CoV-infected cells. Vero E6 mainly expressed p90RSK1 and showed weak expression of p90RSK2. In the absence of viral infection, Ser221 in the N-terminal kinase domain was phosphorylated constitutively, whereas both Thr573 in the C-terminal kinase domain and Ser380 between the two kinase domains were not phosphorylated in confluent cells. Ser380, which has been reported to be involved in autophosphorylation by activation of the C-terminal kinase domain, was phosphorylated in confluent SARS-CoV-infected cells, and this phosphorylation was inhibited by , which is an inhibitor of p38 mitogen-activated protein kinases (MAPK). Phosphorylation of Thr573 was not upregulated in SARS-CoV-infected cells. Thus, in virus-infected cells, phosphorylation of Thr573 was not necessary to induce phosphorylation of Ser380. On the other hand, Both Thr573 and Ser380 were phosphorylated by treatment with epidermal growth factor (EGF) in the absence of p38 MAPK activation. Ser220 was constitutively phosphorylated despite infection. These results indicated that phosphorylation status of p90RSK by SARS-CoV infection is different from that by stimulation of EGF. This is the first detailed report regarding regulation of p90RSK phosphorylation by virus infection.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16458888</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>04</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0014-5793</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>580</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2006</Year>
<Month>Feb</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>FEBS letters</Title>
<ISOAbbreviation>FEBS Lett.</ISOAbbreviation>
</Journal>
<ArticleTitle>Regulation of p90RSK phosphorylation by SARS-CoV infection in Vero E6 cells.</ArticleTitle>
<Pagination>
<MedlinePgn>1417-24</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The 90 kDa ribosomal S6 kinases (p90RSKs) are a family of broadly expressed serine/threonine kinases with two kinase domains activated by extracellular signal-regulated protein kinase in response to many growth factors. Our recent study demonstrated that severe acute respiratory syndrome (SARS)-coronavirus (CoV) infection of monkey kidney Vero E6 cells induces phosphorylation and dephosphorylation of signaling pathways, resulting in apoptosis. In the present study, we investigated the phosphorylation status of p90RSK, which is a well-known substrate of these signaling pathways, in SARS-CoV-infected cells. Vero E6 mainly expressed p90RSK1 and showed weak expression of p90RSK2. In the absence of viral infection, Ser221 in the N-terminal kinase domain was phosphorylated constitutively, whereas both Thr573 in the C-terminal kinase domain and Ser380 between the two kinase domains were not phosphorylated in confluent cells. Ser380, which has been reported to be involved in autophosphorylation by activation of the C-terminal kinase domain, was phosphorylated in confluent SARS-CoV-infected cells, and this phosphorylation was inhibited by , which is an inhibitor of p38 mitogen-activated protein kinases (MAPK). Phosphorylation of Thr573 was not upregulated in SARS-CoV-infected cells. Thus, in virus-infected cells, phosphorylation of Thr573 was not necessary to induce phosphorylation of Ser380. On the other hand, Both Thr573 and Ser380 were phosphorylated by treatment with epidermal growth factor (EGF) in the absence of p38 MAPK activation. Ser220 was constitutively phosphorylated despite infection. These results indicated that phosphorylation status of p90RSK by SARS-CoV infection is different from that by stimulation of EGF. This is the first detailed report regarding regulation of p90RSK phosphorylation by virus infection.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mizutani</LastName>
<ForeName>Tetsuya</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Special Pathogens Laboratory, Department of Virology 1, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan. tmizutan@nih.go.jp</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fukushi</LastName>
<ForeName>Shuetsu</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Saijo</LastName>
<ForeName>Masayuki</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kurane</LastName>
<ForeName>Ichiro</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Morikawa</LastName>
<ForeName>Shigeru</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>01</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>FEBS Lett</MedlineTA>
<NlmUniqueID>0155157</NlmUniqueID>
<ISSNLinking>0014-5793</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>2ZD004190S</RegistryNumber>
<NameOfSubstance UI="D013912">Threonine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>452VLY9402</RegistryNumber>
<NameOfSubstance UI="D012694">Serine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>62229-50-9</RegistryNumber>
<NameOfSubstance UI="D004815">Epidermal Growth Factor</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D038744">Ribosomal Protein S6 Kinases, 90-kDa</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.24</RegistryNumber>
<NameOfSubstance UI="D048051">p38 Mitogen-Activated Protein Kinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004815" MajorTopicYN="N">Epidermal Growth Factor</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038744" MajorTopicYN="N">Ribosomal Protein S6 Kinases, 90-kDa</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="Y">SARS Virus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012694" MajorTopicYN="N">Serine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013912" MajorTopicYN="N">Threonine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048051" MajorTopicYN="N">p38 Mitogen-Activated Protein Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2005</Year>
<Month>12</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2006</Year>
<Month>01</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2006</Year>
<Month>01</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>2</Month>
<Day>7</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>4</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>2</Month>
<Day>7</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16458888</ArticleId>
<ArticleId IdType="pii">S0014-5793(06)00121-9</ArticleId>
<ArticleId IdType="doi">10.1016/j.febslet.2006.01.066</ArticleId>
<ArticleId IdType="pmc">PMC7094696</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Cell. 1992 Dec;3(12):1329-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1337288</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 2000 Jun 15;19(12):2924-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10856237</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Endocr Rev. 2001 Apr;22(2):153-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11294822</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2004 Oct 1;327(2):169-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15351204</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Biol. 2001 Jan;21(1):249-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11113199</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1998 Jan 16;273(3):1496-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9430688</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2001 Oct;281(4):C1266-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11546664</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 1993 Aug 3;32(30):7727-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7688567</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2002 Apr 26;277(17):14884-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11842088</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2005 Jun 24;280(25):24135-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15840586</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Cycle. 2005 Jan;4(1):148-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15539959</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Endocrinol. 1999 May 25;151(1-2):65-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10411321</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):15078-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9844018</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Hum Mol Genet. 2002 Nov 1;11(23):2929-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12393804</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEMS Immunol Med Microbiol. 2006 Mar;46(2):236-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16487305</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 Apr;87(7):2685-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2138782</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Biol. 1995 Aug;15(8):4353-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7623830</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Jul 9;319(4):1228-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15194498</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 2004 Nov 24;23(23):4649-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15526037</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 1998 Sep 1;17(17):5037-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9724639</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 2006 Feb 20;580(5):1417-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16458888</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Biol. 1999 Jul 29-Aug 12;9(15):810-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10469565</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2001 Apr 27;276(17):14466-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11278290</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 Dec;78(24):14043-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15564512</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1999 Sep 17;274(38):27168-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10480933</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 2004 Nov 5;577(1-2):187-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15527783</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Biol. 1999 Mar 11;9(5):281-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10074458</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Nov 28;311(4):870-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14623261</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Growth Differ. 1995 Mar;6(3):291-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7540859</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1995 Aug 11;270(32):18848-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7642538</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Jun 30;1741(1-2):4-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15916886</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Biol. 1996 Mar;16(3):1212-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8622665</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 1999 Nov 12;286(5443):1358-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10558990</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem J. 2004 Oct 1;383(Pt 1):13-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15294014</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 1997 Jun 18;235(2):398-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9199205</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genomics. 1999 Dec 15;62(3):332-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10644430</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell. 2001 Oct;8(4):807-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11684016</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1999 Jan 29;274(5):2893-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9915826</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2004 Dec 15;173(12):7602-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15585888</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Physiol. 1994 Feb;266(2 Pt 1):C351-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8141249</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002355 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 002355 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:16458888
   |texte=   Regulation of p90RSK phosphorylation by SARS-CoV infection in Vero E6 cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:16458888" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021