Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model.

Identifieur interne : 001F94 ( PubMed/Curation ); précédent : 001F93; suivant : 001F95

Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model.

Auteurs : Lanying Du [République populaire de Chine] ; Guangyu Zhao ; Yuxian He ; Yan Guo ; Bo-Jian Zheng ; Shibo Jiang ; Yusen Zhou

Source :

RBID : pubmed:17092615

Descripteurs français

English descriptors

Abstract

Development of effective vaccines against severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) is still a priority in prevention of re-emergence of SARS. Our previous studies have shown that the receptor-binding domain (RBD) of SARS-CoV spike (S) protein elicits highly potent neutralizing antibody responses in the immunized animals. But it is unknown whether RBD can also induce protective immunity in an animal model, a key aspect for vaccine development. In this study, BALB/c mice were vaccinated intramuscularly (i.m.) with 10microg of RBD-Fc (RBD fused with human IgG1 Fc) and boosted twice at 3-week intervals and one more time at 12th month. Humoral immune responses of vaccinated mice were investigated for up to 12 months at a 1-month interval and the neutralizing titers of produced antibodies were reported at months 0, 3, 6 and 12 post-vaccination. Mice were challenged with the homologous strain of SARS-CoV 5 days after the last boost, and sacrificed 5 days after the challenge. Mouse lung tissues were collected for detection of viral load, virus replication and histopathological effects. Our results showed that RBD-Fc vaccination induced high titer of S-specific antibodies with long-term and potent SARS-CoV neutralizing activity. Four of five vaccinated mice were protected from subsequent SARS-CoV challenge because no significant virus replication, and no obvious histopathological changes were found in the lung tissues of the vaccinated mice challenged with SARS-CoV. Only one vaccinated mouse had mild alveolar damage in the lung tissues. In contrast, high copies of SARS-CoV RNA and virus replication were detected, and pathological changes were observed in the lung tissues of the control mice. In conclusion, our findings suggest that RBD, which can induce protective antibodies to SARS-CoV, may be further developed as a safe and effective SARS subunit vaccine.

DOI: 10.1016/j.vaccine.2006.10.031
PubMed: 17092615

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:17092615

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model.</title>
<author>
<name sortKey="Du, Lanying" sort="Du, Lanying" uniqKey="Du L" first="Lanying" last="Du">Lanying Du</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Guangyu" sort="Zhao, Guangyu" uniqKey="Zhao G" first="Guangyu" last="Zhao">Guangyu Zhao</name>
</author>
<author>
<name sortKey="He, Yuxian" sort="He, Yuxian" uniqKey="He Y" first="Yuxian" last="He">Yuxian He</name>
</author>
<author>
<name sortKey="Guo, Yan" sort="Guo, Yan" uniqKey="Guo Y" first="Yan" last="Guo">Yan Guo</name>
</author>
<author>
<name sortKey="Zheng, Bo Jian" sort="Zheng, Bo Jian" uniqKey="Zheng B" first="Bo-Jian" last="Zheng">Bo-Jian Zheng</name>
</author>
<author>
<name sortKey="Jiang, Shibo" sort="Jiang, Shibo" uniqKey="Jiang S" first="Shibo" last="Jiang">Shibo Jiang</name>
</author>
<author>
<name sortKey="Zhou, Yusen" sort="Zhou, Yusen" uniqKey="Zhou Y" first="Yusen" last="Zhou">Yusen Zhou</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17092615</idno>
<idno type="pmid">17092615</idno>
<idno type="doi">10.1016/j.vaccine.2006.10.031</idno>
<idno type="wicri:Area/PubMed/Corpus">001F94</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001F94</idno>
<idno type="wicri:Area/PubMed/Curation">001F94</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001F94</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model.</title>
<author>
<name sortKey="Du, Lanying" sort="Du, Lanying" uniqKey="Du L" first="Lanying" last="Du">Lanying Du</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Guangyu" sort="Zhao, Guangyu" uniqKey="Zhao G" first="Guangyu" last="Zhao">Guangyu Zhao</name>
</author>
<author>
<name sortKey="He, Yuxian" sort="He, Yuxian" uniqKey="He Y" first="Yuxian" last="He">Yuxian He</name>
</author>
<author>
<name sortKey="Guo, Yan" sort="Guo, Yan" uniqKey="Guo Y" first="Yan" last="Guo">Yan Guo</name>
</author>
<author>
<name sortKey="Zheng, Bo Jian" sort="Zheng, Bo Jian" uniqKey="Zheng B" first="Bo-Jian" last="Zheng">Bo-Jian Zheng</name>
</author>
<author>
<name sortKey="Jiang, Shibo" sort="Jiang, Shibo" uniqKey="Jiang S" first="Shibo" last="Jiang">Shibo Jiang</name>
</author>
<author>
<name sortKey="Zhou, Yusen" sort="Zhou, Yusen" uniqKey="Zhou Y" first="Yusen" last="Zhou">Yusen Zhou</name>
</author>
</analytic>
<series>
<title level="j">Vaccine</title>
<idno type="ISSN">0264-410X</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Antibodies, Viral (biosynthesis)</term>
<term>Antibodies, Viral (immunology)</term>
<term>Antibody Formation (immunology)</term>
<term>Antibody Specificity</term>
<term>Chlorocebus aethiops</term>
<term>Female</term>
<term>Lung (pathology)</term>
<term>Membrane Glycoproteins (immunology)</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Peptide Fragments (immunology)</term>
<term>Protein Structure, Tertiary</term>
<term>SARS Virus (drug effects)</term>
<term>SARS Virus (immunology)</term>
<term>SARS Virus (physiology)</term>
<term>Severe Acute Respiratory Syndrome (immunology)</term>
<term>Severe Acute Respiratory Syndrome (prevention & control)</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Vaccines, Subunit (immunology)</term>
<term>Vaccines, Subunit (pharmacology)</term>
<term>Vero Cells</term>
<term>Viral Envelope Proteins (immunology)</term>
<term>Viral Vaccines (immunology)</term>
<term>Viral Vaccines (pharmacology)</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Anticorps antiviraux (biosynthèse)</term>
<term>Anticorps antiviraux (immunologie)</term>
<term>Cellules Vero</term>
<term>Femelle</term>
<term>Fragments peptidiques (immunologie)</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Glycoprotéines membranaires (immunologie)</term>
<term>Poumon (anatomopathologie)</term>
<term>Production d'anticorps (immunologie)</term>
<term>Protéines de l'enveloppe virale (immunologie)</term>
<term>Réplication virale</term>
<term>Souris</term>
<term>Souris de lignée BALB C</term>
<term>Spécificité des anticorps</term>
<term>Structure tertiaire des protéines</term>
<term>Syndrome respiratoire aigu sévère ()</term>
<term>Syndrome respiratoire aigu sévère (immunologie)</term>
<term>Vaccins antiviraux (immunologie)</term>
<term>Vaccins antiviraux (pharmacologie)</term>
<term>Vaccins sous-unitaires (immunologie)</term>
<term>Vaccins sous-unitaires (pharmacologie)</term>
<term>Virus du SRAS ()</term>
<term>Virus du SRAS (immunologie)</term>
<term>Virus du SRAS (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Antibodies, Viral</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Antibodies, Viral</term>
<term>Membrane Glycoproteins</term>
<term>Peptide Fragments</term>
<term>Vaccines, Subunit</term>
<term>Viral Envelope Proteins</term>
<term>Viral Vaccines</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Anticorps antiviraux</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Anticorps antiviraux</term>
<term>Fragments peptidiques</term>
<term>Glycoprotéines membranaires</term>
<term>Production d'anticorps</term>
<term>Protéines de l'enveloppe virale</term>
<term>Syndrome respiratoire aigu sévère</term>
<term>Vaccins antiviraux</term>
<term>Vaccins sous-unitaires</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Antibody Formation</term>
<term>SARS Virus</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Lung</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Vaccins antiviraux</term>
<term>Vaccins sous-unitaires</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Vaccines, Subunit</term>
<term>Viral Vaccines</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Antibody Specificity</term>
<term>Chlorocebus aethiops</term>
<term>Female</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Protein Structure, Tertiary</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Vero Cells</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules Vero</term>
<term>Femelle</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Réplication virale</term>
<term>Souris</term>
<term>Souris de lignée BALB C</term>
<term>Spécificité des anticorps</term>
<term>Structure tertiaire des protéines</term>
<term>Syndrome respiratoire aigu sévère</term>
<term>Virus du SRAS</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Development of effective vaccines against severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) is still a priority in prevention of re-emergence of SARS. Our previous studies have shown that the receptor-binding domain (RBD) of SARS-CoV spike (S) protein elicits highly potent neutralizing antibody responses in the immunized animals. But it is unknown whether RBD can also induce protective immunity in an animal model, a key aspect for vaccine development. In this study, BALB/c mice were vaccinated intramuscularly (i.m.) with 10microg of RBD-Fc (RBD fused with human IgG1 Fc) and boosted twice at 3-week intervals and one more time at 12th month. Humoral immune responses of vaccinated mice were investigated for up to 12 months at a 1-month interval and the neutralizing titers of produced antibodies were reported at months 0, 3, 6 and 12 post-vaccination. Mice were challenged with the homologous strain of SARS-CoV 5 days after the last boost, and sacrificed 5 days after the challenge. Mouse lung tissues were collected for detection of viral load, virus replication and histopathological effects. Our results showed that RBD-Fc vaccination induced high titer of S-specific antibodies with long-term and potent SARS-CoV neutralizing activity. Four of five vaccinated mice were protected from subsequent SARS-CoV challenge because no significant virus replication, and no obvious histopathological changes were found in the lung tissues of the vaccinated mice challenged with SARS-CoV. Only one vaccinated mouse had mild alveolar damage in the lung tissues. In contrast, high copies of SARS-CoV RNA and virus replication were detected, and pathological changes were observed in the lung tissues of the control mice. In conclusion, our findings suggest that RBD, which can induce protective antibodies to SARS-CoV, may be further developed as a safe and effective SARS subunit vaccine.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17092615</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>09</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0264-410X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>25</Volume>
<Issue>15</Issue>
<PubDate>
<Year>2007</Year>
<Month>Apr</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>Vaccine</Title>
<ISOAbbreviation>Vaccine</ISOAbbreviation>
</Journal>
<ArticleTitle>Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model.</ArticleTitle>
<Pagination>
<MedlinePgn>2832-8</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Development of effective vaccines against severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) is still a priority in prevention of re-emergence of SARS. Our previous studies have shown that the receptor-binding domain (RBD) of SARS-CoV spike (S) protein elicits highly potent neutralizing antibody responses in the immunized animals. But it is unknown whether RBD can also induce protective immunity in an animal model, a key aspect for vaccine development. In this study, BALB/c mice were vaccinated intramuscularly (i.m.) with 10microg of RBD-Fc (RBD fused with human IgG1 Fc) and boosted twice at 3-week intervals and one more time at 12th month. Humoral immune responses of vaccinated mice were investigated for up to 12 months at a 1-month interval and the neutralizing titers of produced antibodies were reported at months 0, 3, 6 and 12 post-vaccination. Mice were challenged with the homologous strain of SARS-CoV 5 days after the last boost, and sacrificed 5 days after the challenge. Mouse lung tissues were collected for detection of viral load, virus replication and histopathological effects. Our results showed that RBD-Fc vaccination induced high titer of S-specific antibodies with long-term and potent SARS-CoV neutralizing activity. Four of five vaccinated mice were protected from subsequent SARS-CoV challenge because no significant virus replication, and no obvious histopathological changes were found in the lung tissues of the vaccinated mice challenged with SARS-CoV. Only one vaccinated mouse had mild alveolar damage in the lung tissues. In contrast, high copies of SARS-CoV RNA and virus replication were detected, and pathological changes were observed in the lung tissues of the control mice. In conclusion, our findings suggest that RBD, which can induce protective antibodies to SARS-CoV, may be further developed as a safe and effective SARS subunit vaccine.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Du</LastName>
<ForeName>Lanying</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Guangyu</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Yuxian</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Yan</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>Bo-Jian</ForeName>
<Initials>BJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Shibo</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Yusen</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>10</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Vaccine</MedlineTA>
<NlmUniqueID>8406899</NlmUniqueID>
<ISSNLinking>0264-410X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000914">Antibodies, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578553">MHV surface projection glycoprotein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010446">Peptide Fragments</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D022223">Vaccines, Subunit</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014765">Viral Vaccines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000914" MajorTopicYN="N">Antibodies, Viral</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000917" MajorTopicYN="N">Antibody Formation</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000918" MajorTopicYN="N">Antibody Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008807" MajorTopicYN="N">Mice, Inbred BALB C</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010446" MajorTopicYN="N">Peptide Fragments</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022223" MajorTopicYN="N">Vaccines, Subunit</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014765" MajorTopicYN="N">Viral Vaccines</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2006</Year>
<Month>06</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2006</Year>
<Month>09</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2006</Year>
<Month>10</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>11</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>11</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17092615</ArticleId>
<ArticleId IdType="pii">S0264-410X(06)01153-4</ArticleId>
<ArticleId IdType="doi">10.1016/j.vaccine.2006.10.031</ArticleId>
<ArticleId IdType="pmc">PMC7115660</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Vaccine. 2006 Apr 24;24(17):3624-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16497416</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2004 Jun 26;363(9427):2122-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15220033</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 Mar;79(5):2678-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15708987</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 Oct 10;302(5643):276-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12958366</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Viral Immunol. 2005;18(2):327-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16035944</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2006 Sep 15;353(1):6-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16793110</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2004 Feb;10(2):300-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15030701</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):797-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15642942</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2004 Apr 30;304(5671):659-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15118129</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vaccine. 2005 Jan 4;23(7):924-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15603894</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4240-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15010527</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Nov 12;324(2):773-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15474494</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 Nov;79(22):13915-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16254327</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vaccine. 2006 Feb 13;24(7):1028-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16388880</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Dec 10;325(2):445-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15530413</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2005 Jul;11(7):1016-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16022774</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 Sep;78(17):9007-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15308697</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2004 Mar 12;303(5664):1666-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14752165</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2005 Mar 30;334(1):74-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749124</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vaccine. 2006 Jan 30;24(5):652-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16214268</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 2005 Apr 20;24(8):1634-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15791205</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2005 May;86(Pt 5):1435-1440</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15831955</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2006 Jun;80(12):5757-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731915</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 Nov;78(22):12672-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15507655</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vaccine. 2005 Mar 18;23(17-18):2273-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15755610</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2006 May 15;176(10):6085-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16670317</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2004 Sep 15;173(6):4050-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15356154</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2004 Oct;85(Pt 10):3109-3113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15448374</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2005 Sep 30;340(2):174-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16043204</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14040-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169905</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2004 Oct;10(10):1774-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15504263</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6641-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15096611</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2005 Apr 10;334(2):160-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15780866</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Hum Gene Ther. 2006 May;17(5):500-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16716107</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2004 Apr 1;428(6982):561-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15024391</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2005 Apr 15;174(8):4908-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15814718</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2430-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15695582</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2005 Oct 28;310(5748):676-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16195424</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F94 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001F94 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:17092615
   |texte=   Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:17092615" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021