Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The coronavirus spike protein induces endoplasmic reticulum stress and upregulation of intracellular chemokine mRNA concentrations.

Identifieur interne : 001D54 ( PubMed/Curation ); précédent : 001D53; suivant : 001D55

The coronavirus spike protein induces endoplasmic reticulum stress and upregulation of intracellular chemokine mRNA concentrations.

Auteurs : Gijs A. Versteeg [Pays-Bas] ; Paula S. Van De Nes ; Peter J. Bredenbeek ; Willy J M. Spaan

Source :

RBID : pubmed:17670839

Descripteurs français

English descriptors

Abstract

Murine hepatitis virus (MHV) and severe acute respiratory syndrome (SARS) coronavirus (CoV) are two of the best-studied representatives of the family Coronaviridae. During CoV infection, numerous cytokines and chemokines are induced in vitro and in vivo. Human interleukin 8 and its mouse functional counterpart, CXCL2, are early-expressed chemokines. Here we show that SARS-CoV and MHV induce endoplasmic reticulum (ER) stress and Cxcl2 mRNA transcription during infection in vitro. Expression of the viral spike protein significantly induced ER stress and Cxcl2 mRNA upregulation, while expression of the other structural genes did not. Additional experiments with UV-inactivated virus, cell-cell fusion-blocking antibodies, and an MHV mutant with a defect in spike protein maturation demonstrated that spike-host interactions in the ER are responsible for the induction of ER stress and subsequent Cxcl2 mRNA transcription. Despite significant increases in levels of Cxcl2 mRNA and functional nucleus-to-cytoplasm RNA transport, no CXCL2 protein was released into the medium from MHV-infected cells. Yet Sendai virus-infected cells showed substantial Cxcl2 mRNA induction and a simultaneous increase in levels of secreted CXCL2 protein. Our results demonstrate that expression of CoV spike proteins induces ER stress, which could subsequently trigger innate immune responses. However, at that point in infection, translation of host mRNA is already severely reduced in infected cells, preventing the synthesis of CXCL2 and ER stress proteins despite their increased mRNA concentrations.

DOI: 10.1128/JVI.01033-07
PubMed: 17670839

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:17670839

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The coronavirus spike protein induces endoplasmic reticulum stress and upregulation of intracellular chemokine mRNA concentrations.</title>
<author>
<name sortKey="Versteeg, Gijs A" sort="Versteeg, Gijs A" uniqKey="Versteeg G" first="Gijs A" last="Versteeg">Gijs A. Versteeg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, LUMC E4-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, LUMC E4-P, P.O. Box 9600, 2300 RC Leiden</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Van De Nes, Paula S" sort="Van De Nes, Paula S" uniqKey="Van De Nes P" first="Paula S" last="Van De Nes">Paula S. Van De Nes</name>
</author>
<author>
<name sortKey="Bredenbeek, Peter J" sort="Bredenbeek, Peter J" uniqKey="Bredenbeek P" first="Peter J" last="Bredenbeek">Peter J. Bredenbeek</name>
</author>
<author>
<name sortKey="Spaan, Willy J M" sort="Spaan, Willy J M" uniqKey="Spaan W" first="Willy J M" last="Spaan">Willy J M. Spaan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17670839</idno>
<idno type="pmid">17670839</idno>
<idno type="doi">10.1128/JVI.01033-07</idno>
<idno type="wicri:Area/PubMed/Corpus">001D54</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001D54</idno>
<idno type="wicri:Area/PubMed/Curation">001D54</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001D54</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The coronavirus spike protein induces endoplasmic reticulum stress and upregulation of intracellular chemokine mRNA concentrations.</title>
<author>
<name sortKey="Versteeg, Gijs A" sort="Versteeg, Gijs A" uniqKey="Versteeg G" first="Gijs A" last="Versteeg">Gijs A. Versteeg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, LUMC E4-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, LUMC E4-P, P.O. Box 9600, 2300 RC Leiden</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Van De Nes, Paula S" sort="Van De Nes, Paula S" uniqKey="Van De Nes P" first="Paula S" last="Van De Nes">Paula S. Van De Nes</name>
</author>
<author>
<name sortKey="Bredenbeek, Peter J" sort="Bredenbeek, Peter J" uniqKey="Bredenbeek P" first="Peter J" last="Bredenbeek">Peter J. Bredenbeek</name>
</author>
<author>
<name sortKey="Spaan, Willy J M" sort="Spaan, Willy J M" uniqKey="Spaan W" first="Willy J M" last="Spaan">Willy J M. Spaan</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="ISSN">0022-538X</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Chemokine CXCL2 (genetics)</term>
<term>Chemokines (genetics)</term>
<term>Endoplasmic Reticulum (pathology)</term>
<term>Endoplasmic Reticulum (virology)</term>
<term>Membrane Glycoproteins (physiology)</term>
<term>Mice</term>
<term>Murine hepatitis virus (pathogenicity)</term>
<term>RNA, Messenger (analysis)</term>
<term>SARS Virus (pathogenicity)</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Up-Regulation</term>
<term>Viral Envelope Proteins (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (analyse)</term>
<term>Animaux</term>
<term>Chimiokine CXCL2 (génétique)</term>
<term>Chimiokines (génétique)</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Glycoprotéines membranaires (physiologie)</term>
<term>Lignée cellulaire</term>
<term>Protéines de l'enveloppe virale (physiologie)</term>
<term>Régulation positive</term>
<term>Réticulum endoplasmique (anatomopathologie)</term>
<term>Réticulum endoplasmique (virologie)</term>
<term>Souris</term>
<term>Virus de l'hépatite murine (pathogénicité)</term>
<term>Virus du SRAS (pathogénicité)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Chemokine CXCL2</term>
<term>Chemokines</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>ARN messager</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Réticulum endoplasmique</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Chimiokine CXCL2</term>
<term>Chimiokines</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Murine hepatitis virus</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Virus de l'hépatite murine</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Endoplasmic Reticulum</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Glycoprotéines membranaires</term>
<term>Protéines de l'enveloppe virale</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Réticulum endoplasmique</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Endoplasmic Reticulum</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Mice</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Up-Regulation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Lignée cellulaire</term>
<term>Régulation positive</term>
<term>Souris</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Murine hepatitis virus (MHV) and severe acute respiratory syndrome (SARS) coronavirus (CoV) are two of the best-studied representatives of the family Coronaviridae. During CoV infection, numerous cytokines and chemokines are induced in vitro and in vivo. Human interleukin 8 and its mouse functional counterpart, CXCL2, are early-expressed chemokines. Here we show that SARS-CoV and MHV induce endoplasmic reticulum (ER) stress and Cxcl2 mRNA transcription during infection in vitro. Expression of the viral spike protein significantly induced ER stress and Cxcl2 mRNA upregulation, while expression of the other structural genes did not. Additional experiments with UV-inactivated virus, cell-cell fusion-blocking antibodies, and an MHV mutant with a defect in spike protein maturation demonstrated that spike-host interactions in the ER are responsible for the induction of ER stress and subsequent Cxcl2 mRNA transcription. Despite significant increases in levels of Cxcl2 mRNA and functional nucleus-to-cytoplasm RNA transport, no CXCL2 protein was released into the medium from MHV-infected cells. Yet Sendai virus-infected cells showed substantial Cxcl2 mRNA induction and a simultaneous increase in levels of secreted CXCL2 protein. Our results demonstrate that expression of CoV spike proteins induces ER stress, which could subsequently trigger innate immune responses. However, at that point in infection, translation of host mRNA is already severely reduced in infected cells, preventing the synthesis of CXCL2 and ER stress proteins despite their increased mRNA concentrations.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17670839</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>01</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0022-538X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>81</Volume>
<Issue>20</Issue>
<PubDate>
<Year>2007</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>The coronavirus spike protein induces endoplasmic reticulum stress and upregulation of intracellular chemokine mRNA concentrations.</ArticleTitle>
<Pagination>
<MedlinePgn>10981-90</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Murine hepatitis virus (MHV) and severe acute respiratory syndrome (SARS) coronavirus (CoV) are two of the best-studied representatives of the family Coronaviridae. During CoV infection, numerous cytokines and chemokines are induced in vitro and in vivo. Human interleukin 8 and its mouse functional counterpart, CXCL2, are early-expressed chemokines. Here we show that SARS-CoV and MHV induce endoplasmic reticulum (ER) stress and Cxcl2 mRNA transcription during infection in vitro. Expression of the viral spike protein significantly induced ER stress and Cxcl2 mRNA upregulation, while expression of the other structural genes did not. Additional experiments with UV-inactivated virus, cell-cell fusion-blocking antibodies, and an MHV mutant with a defect in spike protein maturation demonstrated that spike-host interactions in the ER are responsible for the induction of ER stress and subsequent Cxcl2 mRNA transcription. Despite significant increases in levels of Cxcl2 mRNA and functional nucleus-to-cytoplasm RNA transport, no CXCL2 protein was released into the medium from MHV-infected cells. Yet Sendai virus-infected cells showed substantial Cxcl2 mRNA induction and a simultaneous increase in levels of secreted CXCL2 protein. Our results demonstrate that expression of CoV spike proteins induces ER stress, which could subsequently trigger innate immune responses. However, at that point in infection, translation of host mRNA is already severely reduced in infected cells, preventing the synthesis of CXCL2 and ER stress proteins despite their increased mRNA concentrations.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Versteeg</LastName>
<ForeName>Gijs A</ForeName>
<Initials>GA</Initials>
<AffiliationInfo>
<Affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, LUMC E4-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>van de Nes</LastName>
<ForeName>Paula S</ForeName>
<Initials>PS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bredenbeek</LastName>
<ForeName>Peter J</ForeName>
<Initials>PJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Spaan</LastName>
<ForeName>Willy J M</ForeName>
<Initials>WJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>08</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054426">Chemokine CXCL2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018925">Chemokines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C404915">Cxcl2 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054426" MajorTopicYN="N">Chemokine CXCL2</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018925" MajorTopicYN="N">Chemokines</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004721" MajorTopicYN="N">Endoplasmic Reticulum</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006517" MajorTopicYN="N">Murine hepatitis virus</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015854" MajorTopicYN="N">Up-Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>8</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>1</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>8</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17670839</ArticleId>
<ArticleId IdType="pii">JVI.01033-07</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.01033-07</ArticleId>
<ArticleId IdType="pmc">PMC2045536</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1999 Dec;73(12):9891-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10559301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2001 Dec 28;107(7):881-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11779464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jan 3;415(6867):92-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11780124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Apr;76(8):3697-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11907209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 May;76(9):4162-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11932381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Jun;76(12):5937-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12021326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 31;277(22):19727-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11912215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 May 15;423(6937):240</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12748632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Nov;77(22):11952-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14581532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2004 Jan 5;318(1):45-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14972534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2004 Jan 5;318(1):381-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14972563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2004 Feb;10(2):311-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15030703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2004 Apr;85(Pt 4):1029-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15039545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2005;74:739-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15952902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Sep 16;309(5742):1864-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16166518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2005 Dec 16;354(5):1021-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16289116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2006 Jan 1;393(Pt 1):201-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16124869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol. 2005 Dec;43(6):529-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16410770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2006 Nov;26(11):2490-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16931790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Apr 25;361(1):18-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17316733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):587-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2006 Mar;13(3):393-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16397582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Apr;80(8):4147-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16571830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jun;80(12):5927-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2006 Jul;87(Pt 7):1961-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16760398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12417-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16888036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Sep;80(18):9279-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16940539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 2;279(14):13792-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14742429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):6048-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15141003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2004 May;9(5):457-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15147274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Jul 9;319(4):1228-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15194498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jul 2;279(27):28733-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15102845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Aug 6;279(32):33782-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15178688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1981 Apr;38(1):20-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6264100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1981 Aug;39(2):401-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6268831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 1981;142:287-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6278887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1982 Jun;60(Pt 2):327-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6286855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1983 Mar;125(2):393-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6301146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1984 Jun;44(3):716-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6327531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1985 Dec;56(3):912-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2999444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1986 May;67 ( Pt 5):923-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3009691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1986 Nov;83(21):8122-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3095828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1990 Jan;64(1):339-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2403441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1990 Sep 1;172(3):911-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2201751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1990 Nov;64(11):5367-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2170676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 Oct;87(19):7732-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2217207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1991 Jul;65(7):3590-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2041085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1991 Dec 15;108(2):201-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1660838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1992 Aug;11(8):2991-3001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1639069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1993 Jan;67(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8380065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1993 Dec;67(12):7394-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8230460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1995 Mar;69(3):1480-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7853480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1995 Mar;95(3):1009-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7883948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1995 Dec 20;214(2):453-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8553547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1996 Feb;132(4):511-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8647884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1996 Apr 1;218(1):52-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8615041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1996 Aug;70(8):5067-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8764014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Feb;71(2):949-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8995612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Dec;71(12):9427-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9371603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2004 Dec 15;173(12):7602-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15585888</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D54 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001D54 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:17670839
   |texte=   The coronavirus spike protein induces endoplasmic reticulum stress and upregulation of intracellular chemokine mRNA concentrations.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:17670839" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021