Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Designing spatially heterogeneous strategies for control of virus spread.

Identifieur interne : 001A91 ( PubMed/Curation ); précédent : 001A90; suivant : 001A92

Designing spatially heterogeneous strategies for control of virus spread.

Auteurs : Y. Wan [États-Unis] ; S. Roy ; A. Saberi

Source :

RBID : pubmed:18681748

Descripteurs français

English descriptors

Abstract

The spread of a virus--whether in a human population, computer network or cell-to-cell--is closely tied to the spatial (graph) topology of the interactions among the possible infectives. The authors study the problem of allocating limited control resources (e.g. quarantine or recovery resources) in these networks in a way that exploits the topological structure, so as to maximise the speed at which the virus is eliminated. For both multi-group and contact-network models for spread, these problems can be abstracted to a particular decentralised control problem for which the goal is to minimise the dominant eigenvalue of a system matrix. Explicit solutions to these problems are provided, using eigenvalue sensitivity ideas together with constrained optimisation methods employing Lagrange multipliers. The proposed design method shows that the optimal strategy is to allocate resources so as to equalise the propagation impact of each network component, as best as possible within the constraints on the resource. Finally, we show that this decentralised control approach can provide significant advantage over a homogeneous control strategy, in the context of a model for SARS transmission in Hong Kong.

DOI: 10.1049/iet-syb:20070040
PubMed: 18681748

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:18681748

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Designing spatially heterogeneous strategies for control of virus spread.</title>
<author>
<name sortKey="Wan, Y" sort="Wan, Y" uniqKey="Wan Y" first="Y" last="Wan">Y. Wan</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Electrical Engineering and Computer Science, Washington State University, USA. ywan@eecs.wsu.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Electrical Engineering and Computer Science, Washington State University</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Roy, S" sort="Roy, S" uniqKey="Roy S" first="S" last="Roy">S. Roy</name>
</author>
<author>
<name sortKey="Saberi, A" sort="Saberi, A" uniqKey="Saberi A" first="A" last="Saberi">A. Saberi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18681748</idno>
<idno type="pmid">18681748</idno>
<idno type="doi">10.1049/iet-syb:20070040</idno>
<idno type="wicri:Area/PubMed/Corpus">001A91</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001A91</idno>
<idno type="wicri:Area/PubMed/Curation">001A91</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001A91</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Designing spatially heterogeneous strategies for control of virus spread.</title>
<author>
<name sortKey="Wan, Y" sort="Wan, Y" uniqKey="Wan Y" first="Y" last="Wan">Y. Wan</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Electrical Engineering and Computer Science, Washington State University, USA. ywan@eecs.wsu.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Electrical Engineering and Computer Science, Washington State University</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Roy, S" sort="Roy, S" uniqKey="Roy S" first="S" last="Roy">S. Roy</name>
</author>
<author>
<name sortKey="Saberi, A" sort="Saberi, A" uniqKey="Saberi A" first="A" last="Saberi">A. Saberi</name>
</author>
</analytic>
<series>
<title level="j">IET systems biology</title>
<idno type="ISSN">1751-8849</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computer Simulation</term>
<term>Disease Outbreaks (prevention & control)</term>
<term>Disease Outbreaks (statistics & numerical data)</term>
<term>Humans</term>
<term>Models, Biological</term>
<term>Population Dynamics</term>
<term>Population Surveillance (methods)</term>
<term>Quarantine (methods)</term>
<term>Virus Diseases (epidemiology)</term>
<term>Virus Diseases (prevention & control)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Dynamique des populations</term>
<term>Flambées de maladies ()</term>
<term>Humains</term>
<term>Maladies virales ()</term>
<term>Maladies virales (épidémiologie)</term>
<term>Modèles biologiques</term>
<term>Quarantaine ()</term>
<term>Simulation numérique</term>
<term>Surveillance de la population ()</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Virus Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Population Surveillance</term>
<term>Quarantine</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Disease Outbreaks</term>
<term>Virus Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="statistics & numerical data" xml:lang="en">
<term>Disease Outbreaks</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Maladies virales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computer Simulation</term>
<term>Humans</term>
<term>Models, Biological</term>
<term>Population Dynamics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Dynamique des populations</term>
<term>Flambées de maladies</term>
<term>Humains</term>
<term>Maladies virales</term>
<term>Modèles biologiques</term>
<term>Quarantaine</term>
<term>Simulation numérique</term>
<term>Surveillance de la population</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The spread of a virus--whether in a human population, computer network or cell-to-cell--is closely tied to the spatial (graph) topology of the interactions among the possible infectives. The authors study the problem of allocating limited control resources (e.g. quarantine or recovery resources) in these networks in a way that exploits the topological structure, so as to maximise the speed at which the virus is eliminated. For both multi-group and contact-network models for spread, these problems can be abstracted to a particular decentralised control problem for which the goal is to minimise the dominant eigenvalue of a system matrix. Explicit solutions to these problems are provided, using eigenvalue sensitivity ideas together with constrained optimisation methods employing Lagrange multipliers. The proposed design method shows that the optimal strategy is to allocate resources so as to equalise the propagation impact of each network component, as best as possible within the constraints on the resource. Finally, we show that this decentralised control approach can provide significant advantage over a homogeneous control strategy, in the context of a model for SARS transmission in Hong Kong.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18681748</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>10</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2008</Year>
<Month>08</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1751-8849</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>2</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2008</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>IET systems biology</Title>
<ISOAbbreviation>IET Syst Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Designing spatially heterogeneous strategies for control of virus spread.</ArticleTitle>
<Pagination>
<MedlinePgn>184-201</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1049/iet-syb:20070040</ELocationID>
<Abstract>
<AbstractText>The spread of a virus--whether in a human population, computer network or cell-to-cell--is closely tied to the spatial (graph) topology of the interactions among the possible infectives. The authors study the problem of allocating limited control resources (e.g. quarantine or recovery resources) in these networks in a way that exploits the topological structure, so as to maximise the speed at which the virus is eliminated. For both multi-group and contact-network models for spread, these problems can be abstracted to a particular decentralised control problem for which the goal is to minimise the dominant eigenvalue of a system matrix. Explicit solutions to these problems are provided, using eigenvalue sensitivity ideas together with constrained optimisation methods employing Lagrange multipliers. The proposed design method shows that the optimal strategy is to allocate resources so as to equalise the propagation impact of each network component, as best as possible within the constraints on the resource. Finally, we show that this decentralised control approach can provide significant advantage over a homogeneous control strategy, in the context of a model for SARS transmission in Hong Kong.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wan</LastName>
<ForeName>Y</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>School of Electrical Engineering and Computer Science, Washington State University, USA. ywan@eecs.wsu.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Roy</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Saberi</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>IET Syst Biol</MedlineTA>
<NlmUniqueID>101301198</NlmUniqueID>
<ISSNLinking>1751-8849</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004196" MajorTopicYN="N">Disease Outbreaks</DescriptorName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
<QualifierName UI="Q000706" MajorTopicYN="Y">statistics & numerical data</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="Y">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011157" MajorTopicYN="Y">Population Dynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011159" MajorTopicYN="N">Population Surveillance</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011790" MajorTopicYN="N">Quarantine</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014777" MajorTopicYN="N">Virus Diseases</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>8</Month>
<Day>7</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>10</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>8</Month>
<Day>7</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18681748</ArticleId>
<ArticleId IdType="doi">10.1049/iet-syb:20070040</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A91 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001A91 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:18681748
   |texte=   Designing spatially heterogeneous strategies for control of virus spread.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:18681748" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021