Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Variable oligomerization modes in coronavirus non-structural protein 9.

Identifieur interne : 001A87 ( PubMed/Curation ); précédent : 001A86; suivant : 001A88

Variable oligomerization modes in coronavirus non-structural protein 9.

Auteurs : Rajesh Ponnusamy [Allemagne] ; Ralf Moll ; Thomas Weimar ; Jeroen R. Mesters ; Rolf Hilgenfeld

Source :

RBID : pubmed:18694760

Descripteurs français

English descriptors

Abstract

Non-structural protein 9 (Nsp9) of coronaviruses is believed to bind single-stranded RNA in the viral replication complex. The crystal structure of Nsp9 of human coronavirus (HCoV) 229E reveals a novel disulfide-linked homodimer, which is very different from the previously reported Nsp9 dimer of SARS coronavirus. In contrast, the structure of the Cys69Ala mutant of HCoV-229E Nsp9 shows the same dimer organization as the SARS-CoV protein. In the crystal, the wild-type HCoV-229E protein forms a trimer of dimers, whereas the mutant and SARS-CoV Nsp9 are organized in rod-like polymers. Chemical cross-linking suggests similar modes of aggregation in solution. In zone-interference gel electrophoresis assays and surface plasmon resonance experiments, the HCoV-229E wild-type protein is found to bind oligonucleotides with relatively high affinity, whereas binding by the Cys69Ala and Cys69Ser mutants is observed only for the longest oligonucleotides. The corresponding mutations in SARS-CoV Nsp9 do not hamper nucleic acid binding. From the crystal structures, a model for single-stranded RNA binding by Nsp9 is deduced. We propose that both forms of the Nsp9 dimer are biologically relevant; the occurrence of the disulfide-bonded form may be correlated with oxidative stress induced in the host cell by the viral infection.

DOI: 10.1016/j.jmb.2008.07.071
PubMed: 18694760

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:18694760

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Variable oligomerization modes in coronavirus non-structural protein 9.</title>
<author>
<name sortKey="Ponnusamy, Rajesh" sort="Ponnusamy, Rajesh" uniqKey="Ponnusamy R" first="Rajesh" last="Ponnusamy">Rajesh Ponnusamy</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Moll, Ralf" sort="Moll, Ralf" uniqKey="Moll R" first="Ralf" last="Moll">Ralf Moll</name>
</author>
<author>
<name sortKey="Weimar, Thomas" sort="Weimar, Thomas" uniqKey="Weimar T" first="Thomas" last="Weimar">Thomas Weimar</name>
</author>
<author>
<name sortKey="Mesters, Jeroen R" sort="Mesters, Jeroen R" uniqKey="Mesters J" first="Jeroen R" last="Mesters">Jeroen R. Mesters</name>
</author>
<author>
<name sortKey="Hilgenfeld, Rolf" sort="Hilgenfeld, Rolf" uniqKey="Hilgenfeld R" first="Rolf" last="Hilgenfeld">Rolf Hilgenfeld</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18694760</idno>
<idno type="pmid">18694760</idno>
<idno type="doi">10.1016/j.jmb.2008.07.071</idno>
<idno type="wicri:Area/PubMed/Corpus">001A87</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001A87</idno>
<idno type="wicri:Area/PubMed/Curation">001A87</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001A87</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Variable oligomerization modes in coronavirus non-structural protein 9.</title>
<author>
<name sortKey="Ponnusamy, Rajesh" sort="Ponnusamy, Rajesh" uniqKey="Ponnusamy R" first="Rajesh" last="Ponnusamy">Rajesh Ponnusamy</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Moll, Ralf" sort="Moll, Ralf" uniqKey="Moll R" first="Ralf" last="Moll">Ralf Moll</name>
</author>
<author>
<name sortKey="Weimar, Thomas" sort="Weimar, Thomas" uniqKey="Weimar T" first="Thomas" last="Weimar">Thomas Weimar</name>
</author>
<author>
<name sortKey="Mesters, Jeroen R" sort="Mesters, Jeroen R" uniqKey="Mesters J" first="Jeroen R" last="Mesters">Jeroen R. Mesters</name>
</author>
<author>
<name sortKey="Hilgenfeld, Rolf" sort="Hilgenfeld, Rolf" uniqKey="Hilgenfeld R" first="Rolf" last="Hilgenfeld">Rolf Hilgenfeld</name>
</author>
</analytic>
<series>
<title level="j">Journal of molecular biology</title>
<idno type="eISSN">1089-8638</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Substitution (drug effects)</term>
<term>Coronavirus (chemistry)</term>
<term>Cross-Linking Reagents (pharmacology)</term>
<term>Crystallography, X-Ray</term>
<term>Cysteine (metabolism)</term>
<term>DNA (metabolism)</term>
<term>Dimerization</term>
<term>Electrophoretic Mobility Shift Assay</term>
<term>Glutaral (pharmacology)</term>
<term>Models, Molecular</term>
<term>Mutant Proteins (chemistry)</term>
<term>Nucleic Acids (metabolism)</term>
<term>Oxidation-Reduction (drug effects)</term>
<term>Polymers</term>
<term>Protein Structure, Quaternary</term>
<term>Protein Structure, Secondary</term>
<term>RNA-Binding Proteins (chemistry)</term>
<term>Solutions</term>
<term>Surface Plasmon Resonance</term>
<term>Viral Nonstructural Proteins (chemistry)</term>
<term>Viral Nonstructural Proteins (metabolism)</term>
<term>Viral Proteins (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN (métabolisme)</term>
<term>Acides nucléiques (métabolisme)</term>
<term>Coronavirus ()</term>
<term>Cristallographie aux rayons X</term>
<term>Cystéine (métabolisme)</term>
<term>Dimérisation</term>
<term>Glutaraldéhyde (pharmacologie)</term>
<term>Modèles moléculaires</term>
<term>Oxydoréduction ()</term>
<term>Polymères</term>
<term>Protéines de liaison à l'ARN ()</term>
<term>Protéines mutantes ()</term>
<term>Protéines virales ()</term>
<term>Protéines virales non structurales ()</term>
<term>Protéines virales non structurales (métabolisme)</term>
<term>Réactifs réticulants (pharmacologie)</term>
<term>Résonance plasmonique de surface</term>
<term>Solutions</term>
<term>Structure quaternaire des protéines</term>
<term>Structure secondaire des protéines</term>
<term>Substitution d'acide aminé ()</term>
<term>Test de retard de migration électrophorétique</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Mutant Proteins</term>
<term>RNA-Binding Proteins</term>
<term>Viral Nonstructural Proteins</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cysteine</term>
<term>DNA</term>
<term>Nucleic Acids</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Cross-Linking Reagents</term>
<term>Glutaral</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Amino Acid Substitution</term>
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ADN</term>
<term>Acides nucléiques</term>
<term>Cystéine</term>
<term>Protéines virales non structurales</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Glutaraldéhyde</term>
<term>Réactifs réticulants</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Crystallography, X-Ray</term>
<term>Dimerization</term>
<term>Electrophoretic Mobility Shift Assay</term>
<term>Models, Molecular</term>
<term>Polymers</term>
<term>Protein Structure, Quaternary</term>
<term>Protein Structure, Secondary</term>
<term>Solutions</term>
<term>Surface Plasmon Resonance</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Coronavirus</term>
<term>Cristallographie aux rayons X</term>
<term>Dimérisation</term>
<term>Modèles moléculaires</term>
<term>Oxydoréduction</term>
<term>Polymères</term>
<term>Protéines de liaison à l'ARN</term>
<term>Protéines mutantes</term>
<term>Protéines virales</term>
<term>Protéines virales non structurales</term>
<term>Résonance plasmonique de surface</term>
<term>Solutions</term>
<term>Structure quaternaire des protéines</term>
<term>Structure secondaire des protéines</term>
<term>Substitution d'acide aminé</term>
<term>Test de retard de migration électrophorétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Non-structural protein 9 (Nsp9) of coronaviruses is believed to bind single-stranded RNA in the viral replication complex. The crystal structure of Nsp9 of human coronavirus (HCoV) 229E reveals a novel disulfide-linked homodimer, which is very different from the previously reported Nsp9 dimer of SARS coronavirus. In contrast, the structure of the Cys69Ala mutant of HCoV-229E Nsp9 shows the same dimer organization as the SARS-CoV protein. In the crystal, the wild-type HCoV-229E protein forms a trimer of dimers, whereas the mutant and SARS-CoV Nsp9 are organized in rod-like polymers. Chemical cross-linking suggests similar modes of aggregation in solution. In zone-interference gel electrophoresis assays and surface plasmon resonance experiments, the HCoV-229E wild-type protein is found to bind oligonucleotides with relatively high affinity, whereas binding by the Cys69Ala and Cys69Ser mutants is observed only for the longest oligonucleotides. The corresponding mutations in SARS-CoV Nsp9 do not hamper nucleic acid binding. From the crystal structures, a model for single-stranded RNA binding by Nsp9 is deduced. We propose that both forms of the Nsp9 dimer are biologically relevant; the occurrence of the disulfide-bonded form may be correlated with oxidative stress induced in the host cell by the viral infection.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18694760</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>11</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>31</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1089-8638</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>383</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2008</Year>
<Month>Nov</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>Journal of molecular biology</Title>
<ISOAbbreviation>J. Mol. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Variable oligomerization modes in coronavirus non-structural protein 9.</ArticleTitle>
<Pagination>
<MedlinePgn>1081-96</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jmb.2008.07.071</ELocationID>
<Abstract>
<AbstractText>Non-structural protein 9 (Nsp9) of coronaviruses is believed to bind single-stranded RNA in the viral replication complex. The crystal structure of Nsp9 of human coronavirus (HCoV) 229E reveals a novel disulfide-linked homodimer, which is very different from the previously reported Nsp9 dimer of SARS coronavirus. In contrast, the structure of the Cys69Ala mutant of HCoV-229E Nsp9 shows the same dimer organization as the SARS-CoV protein. In the crystal, the wild-type HCoV-229E protein forms a trimer of dimers, whereas the mutant and SARS-CoV Nsp9 are organized in rod-like polymers. Chemical cross-linking suggests similar modes of aggregation in solution. In zone-interference gel electrophoresis assays and surface plasmon resonance experiments, the HCoV-229E wild-type protein is found to bind oligonucleotides with relatively high affinity, whereas binding by the Cys69Ala and Cys69Ser mutants is observed only for the longest oligonucleotides. The corresponding mutations in SARS-CoV Nsp9 do not hamper nucleic acid binding. From the crystal structures, a model for single-stranded RNA binding by Nsp9 is deduced. We propose that both forms of the Nsp9 dimer are biologically relevant; the occurrence of the disulfide-bonded form may be correlated with oxidative stress induced in the host cell by the viral infection.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ponnusamy</LastName>
<ForeName>Rajesh</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moll</LastName>
<ForeName>Ralf</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Weimar</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mesters</LastName>
<ForeName>Jeroen R</ForeName>
<Initials>JR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hilgenfeld</LastName>
<ForeName>Rolf</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>07</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Mol Biol</MedlineTA>
<NlmUniqueID>2985088R</NlmUniqueID>
<ISSNLinking>0022-2836</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003432">Cross-Linking Reagents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050505">Mutant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009696">Nucleic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011108">Polymers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016601">RNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012996">Solutions</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017361">Viral Nonstructural Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C087633">nonstructural protein, coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C483945">nsp9 protein, SARS virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>T3C89M417N</RegistryNumber>
<NameOfSubstance UI="D005976">Glutaral</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019943" MajorTopicYN="N">Amino Acid Substitution</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="N">Coronavirus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003432" MajorTopicYN="N">Cross-Linking Reagents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="N">DNA</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019281" MajorTopicYN="N">Dimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024202" MajorTopicYN="N">Electrophoretic Mobility Shift Assay</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005976" MajorTopicYN="N">Glutaral</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050505" MajorTopicYN="N">Mutant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009696" MajorTopicYN="N">Nucleic Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011108" MajorTopicYN="N">Polymers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020836" MajorTopicYN="N">Protein Structure, Quaternary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016601" MajorTopicYN="N">RNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012996" MajorTopicYN="N">Solutions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020349" MajorTopicYN="N">Surface Plasmon Resonance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017361" MajorTopicYN="N">Viral Nonstructural Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>04</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2008</Year>
<Month>07</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2008</Year>
<Month>07</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>8</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>11</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>8</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18694760</ArticleId>
<ArticleId IdType="pii">S0022-2836(08)00940-6</ArticleId>
<ArticleId IdType="doi">10.1016/j.jmb.2008.07.071</ArticleId>
<ArticleId IdType="pmc">PMC7094590</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Adv Exp Med Biol. 2006;581:49-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17037503</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13703-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10570136</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2000 Jan 28;275(4):2931-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10644762</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1998 Feb;72(2):910-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9444982</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 1997 Jan 9;385(6612):176-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8990123</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2006 Jun;80(12):5927-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731931</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Biol. 2005 Jan;3(1):e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15630477</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2005 Apr;61(Pt 4):458-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15805601</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1971 Feb 14;55(3):379-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5551392</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2003 Jul 26;362(9380):263-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892955</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299374</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 1997 Jul 14;411(2-3):313-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9271227</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Microbiol. 1999;53:495-523</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10547699</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1999 Jan;73(1):177-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847320</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 2008 Apr 18;133(2):235-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18423196</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1993 Aug;195(2):680-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8337838</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Virus Res. 1997;48:1-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9233431</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1998 Jun;72(6):4918-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9573259</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2000 Oct 24;39(42):12953-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11041860</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3792-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15007178</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Biochem Biophys. 1959 May;82(1):70-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13650640</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299926</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2003 May 24;361(9371):1767-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12781535</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7531-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1323841</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Free Radic Biol Med. 2001 Dec 1;31(11):1448-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11728817</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods Enzymol. 1997;276:307-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27754618</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2005 Nov;12(11):980-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16228002</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2002 Oct;58(Pt 10 Pt 1):1722-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12351894</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 Aug;78(15):7863-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15254158</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 2006 Oct 18;25(20):4933-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17024178</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2002 Apr;76(8):3697-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11907209</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2000 Feb 25;296(3):911-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10677291</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2005 Aug 19;280(33):29444-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944160</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Structure. 2004 Feb;12(2):341-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14962394</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 2005 Dec;34(6):439-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16537157</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2000 Feb 25;296(3):921-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10677292</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Eng. 2000 Jan;13(1):67-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10679532</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 Jun 13;300(5626):1763-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746549</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 2006 Jul 24;580(17):4143-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16828088</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13190-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14585926</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1993 Dec 20;234(4):946-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8263940</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Respir Res. 2005 Jan 20;6:8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15661082</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2007 May 11;368(4):1075-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17379242</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1981 Jan 5;145(1):215-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7265198</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2005 Jan 28;280(4):2990-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15507432</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 2002 Jul 1;21(13):3213-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12093723</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572765</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2005 Nov 18;354(1):25-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16242152</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Biophys Biomol Struct. 2003;32:115-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12598368</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Dis. 2008 Mar 15;197(6):812-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18269318</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 2004 Apr;10(4):368-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034574</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 Jan;79(2):884-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15613317</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2004 Mar 12;279(11):10136-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14699140</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2000 Apr;74(7):3379-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10708455</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 2000 Aug;17(8):1232-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10908643</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Eng. 1999 Jul;12(7):535-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10436079</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2008 May 02;4(5):e1000054</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18451981</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 1997 Mar 15;25(6):1289-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9092641</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 1988 Nov 11;16(21):10099-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3194195</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1998 Jan;72(1):257-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9420222</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Dis. 2000 Jun;181(6):1885-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10837166</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1982 Nov;44(2):736-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6292530</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A87 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001A87 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:18694760
   |texte=   Variable oligomerization modes in coronavirus non-structural protein 9.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:18694760" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021