Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Benefits of random-priming: exhaustive survey of a cDNA library from lung tissue of a SARS patient.

Identifieur interne : 001547 ( PubMed/Curation ); précédent : 001546; suivant : 001548

Benefits of random-priming: exhaustive survey of a cDNA library from lung tissue of a SARS patient.

Auteurs : Hongkai Wu [République populaire de Chine] ; Jinwen Wang ; Riqiang Deng ; Ke Xing ; Yuanyan Xiong ; Junfeng Huang ; Xionglei He ; Xunzhang Wang

Source :

RBID : pubmed:21328370

Descripteurs français

English descriptors

Abstract

The severe acute respiratory syndrome (SARS) leads to severe injury in the lungs with multiple factors, though the pathogenesis is still largely unclear. This paper describes the particular analyses of the transcriptome of human lung tissue that was infected by SARS-associated coronavirus (SARS-CoV). Random primers were used to produce ESTs from total RNA samples of the lung tissue. The result showed a high diversity of the transcripts, covering much of the human genome, including loci which do not contain protein coding sequences. 10,801 ESTs were generated and assembled into 267 contigs plus 7,659 singletons. Sequences matching to SARS-CoV RNAs and other pneumonia-related microbes were found. The transcripts were well classified by functional annotation. Among the 7,872 assembled sequences that were identified as from human genome, 578 non-coding genes were revealed by BLAST search. The transcripts were mapped to the human genome with the restriction of identity=100%, which found a candidate pool of 448 novel transcriptional loci where EST transcriptional signal was never found before. Among these, 13 loci were never reported to be transcriptional by other detection methods such as gene chips, tiling arrays, and paired-end ditags (PETs). The result showed that random-priming cDNA library is valid for the investigation of transcript diversity in the virus-infected tissue. The EST data could be a useful supplemental source for SARS pathology researches.

DOI: 10.1002/jmv.22012
PubMed: 21328370

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21328370

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Benefits of random-priming: exhaustive survey of a cDNA library from lung tissue of a SARS patient.</title>
<author>
<name sortKey="Wu, Hongkai" sort="Wu, Hongkai" uniqKey="Wu H" first="Hongkai" last="Wu">Hongkai Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Biocontrol, Sun Yat-sen University, Xingangxi Road, Guangzhou, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Biocontrol, Sun Yat-sen University, Xingangxi Road, Guangzhou</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jinwen" sort="Wang, Jinwen" uniqKey="Wang J" first="Jinwen" last="Wang">Jinwen Wang</name>
</author>
<author>
<name sortKey="Deng, Riqiang" sort="Deng, Riqiang" uniqKey="Deng R" first="Riqiang" last="Deng">Riqiang Deng</name>
</author>
<author>
<name sortKey="Xing, Ke" sort="Xing, Ke" uniqKey="Xing K" first="Ke" last="Xing">Ke Xing</name>
</author>
<author>
<name sortKey="Xiong, Yuanyan" sort="Xiong, Yuanyan" uniqKey="Xiong Y" first="Yuanyan" last="Xiong">Yuanyan Xiong</name>
</author>
<author>
<name sortKey="Huang, Junfeng" sort="Huang, Junfeng" uniqKey="Huang J" first="Junfeng" last="Huang">Junfeng Huang</name>
</author>
<author>
<name sortKey="He, Xionglei" sort="He, Xionglei" uniqKey="He X" first="Xionglei" last="He">Xionglei He</name>
</author>
<author>
<name sortKey="Wang, Xunzhang" sort="Wang, Xunzhang" uniqKey="Wang X" first="Xunzhang" last="Wang">Xunzhang Wang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21328370</idno>
<idno type="pmid">21328370</idno>
<idno type="doi">10.1002/jmv.22012</idno>
<idno type="wicri:Area/PubMed/Corpus">001547</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001547</idno>
<idno type="wicri:Area/PubMed/Curation">001547</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001547</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Benefits of random-priming: exhaustive survey of a cDNA library from lung tissue of a SARS patient.</title>
<author>
<name sortKey="Wu, Hongkai" sort="Wu, Hongkai" uniqKey="Wu H" first="Hongkai" last="Wu">Hongkai Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Biocontrol, Sun Yat-sen University, Xingangxi Road, Guangzhou, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Biocontrol, Sun Yat-sen University, Xingangxi Road, Guangzhou</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jinwen" sort="Wang, Jinwen" uniqKey="Wang J" first="Jinwen" last="Wang">Jinwen Wang</name>
</author>
<author>
<name sortKey="Deng, Riqiang" sort="Deng, Riqiang" uniqKey="Deng R" first="Riqiang" last="Deng">Riqiang Deng</name>
</author>
<author>
<name sortKey="Xing, Ke" sort="Xing, Ke" uniqKey="Xing K" first="Ke" last="Xing">Ke Xing</name>
</author>
<author>
<name sortKey="Xiong, Yuanyan" sort="Xiong, Yuanyan" uniqKey="Xiong Y" first="Yuanyan" last="Xiong">Yuanyan Xiong</name>
</author>
<author>
<name sortKey="Huang, Junfeng" sort="Huang, Junfeng" uniqKey="Huang J" first="Junfeng" last="Huang">Junfeng Huang</name>
</author>
<author>
<name sortKey="He, Xionglei" sort="He, Xionglei" uniqKey="He X" first="Xionglei" last="He">Xionglei He</name>
</author>
<author>
<name sortKey="Wang, Xunzhang" sort="Wang, Xunzhang" uniqKey="Wang X" first="Xunzhang" last="Wang">Xunzhang Wang</name>
</author>
</analytic>
<series>
<title level="j">Journal of medical virology</title>
<idno type="eISSN">1096-9071</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Aged</term>
<term>DNA Primers (genetics)</term>
<term>Gene Expression Profiling</term>
<term>Gene Library</term>
<term>Humans</term>
<term>Lung (pathology)</term>
<term>Lung (virology)</term>
<term>Male</term>
<term>Pathology, Molecular (methods)</term>
<term>SARS Virus (pathogenicity)</term>
<term>Severe Acute Respiratory Syndrome (pathology)</term>
<term>Severe Acute Respiratory Syndrome (virology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adulte</term>
<term>Amorces ADN (génétique)</term>
<term>Analyse de profil d'expression de gènes</term>
<term>Anatomopathologie moléculaire ()</term>
<term>Banque de gènes</term>
<term>Humains</term>
<term>Mâle</term>
<term>Poumon (anatomopathologie)</term>
<term>Poumon (virologie)</term>
<term>Sujet âgé</term>
<term>Syndrome respiratoire aigu sévère (anatomopathologie)</term>
<term>Syndrome respiratoire aigu sévère (virologie)</term>
<term>Virus du SRAS (pathogénicité)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA Primers</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Poumon</term>
<term>Syndrome respiratoire aigu sévère</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Amorces ADN</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Pathology, Molecular</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Lung</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Poumon</term>
<term>Syndrome respiratoire aigu sévère</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Lung</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Aged</term>
<term>Gene Expression Profiling</term>
<term>Gene Library</term>
<term>Humans</term>
<term>Male</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adulte</term>
<term>Analyse de profil d'expression de gènes</term>
<term>Anatomopathologie moléculaire</term>
<term>Banque de gènes</term>
<term>Humains</term>
<term>Mâle</term>
<term>Sujet âgé</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The severe acute respiratory syndrome (SARS) leads to severe injury in the lungs with multiple factors, though the pathogenesis is still largely unclear. This paper describes the particular analyses of the transcriptome of human lung tissue that was infected by SARS-associated coronavirus (SARS-CoV). Random primers were used to produce ESTs from total RNA samples of the lung tissue. The result showed a high diversity of the transcripts, covering much of the human genome, including loci which do not contain protein coding sequences. 10,801 ESTs were generated and assembled into 267 contigs plus 7,659 singletons. Sequences matching to SARS-CoV RNAs and other pneumonia-related microbes were found. The transcripts were well classified by functional annotation. Among the 7,872 assembled sequences that were identified as from human genome, 578 non-coding genes were revealed by BLAST search. The transcripts were mapped to the human genome with the restriction of identity=100%, which found a candidate pool of 448 novel transcriptional loci where EST transcriptional signal was never found before. Among these, 13 loci were never reported to be transcriptional by other detection methods such as gene chips, tiling arrays, and paired-end ditags (PETs). The result showed that random-priming cDNA library is valid for the investigation of transcript diversity in the virus-infected tissue. The EST data could be a useful supplemental source for SARS pathology researches.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21328370</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>05</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1096-9071</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>83</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2011</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Journal of medical virology</Title>
<ISOAbbreviation>J. Med. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Benefits of random-priming: exhaustive survey of a cDNA library from lung tissue of a SARS patient.</ArticleTitle>
<Pagination>
<MedlinePgn>574-86</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/jmv.22012</ELocationID>
<Abstract>
<AbstractText>The severe acute respiratory syndrome (SARS) leads to severe injury in the lungs with multiple factors, though the pathogenesis is still largely unclear. This paper describes the particular analyses of the transcriptome of human lung tissue that was infected by SARS-associated coronavirus (SARS-CoV). Random primers were used to produce ESTs from total RNA samples of the lung tissue. The result showed a high diversity of the transcripts, covering much of the human genome, including loci which do not contain protein coding sequences. 10,801 ESTs were generated and assembled into 267 contigs plus 7,659 singletons. Sequences matching to SARS-CoV RNAs and other pneumonia-related microbes were found. The transcripts were well classified by functional annotation. Among the 7,872 assembled sequences that were identified as from human genome, 578 non-coding genes were revealed by BLAST search. The transcripts were mapped to the human genome with the restriction of identity=100%, which found a candidate pool of 448 novel transcriptional loci where EST transcriptional signal was never found before. Among these, 13 loci were never reported to be transcriptional by other detection methods such as gene chips, tiling arrays, and paired-end ditags (PETs). The result showed that random-priming cDNA library is valid for the investigation of transcript diversity in the virus-infected tissue. The EST data could be a useful supplemental source for SARS pathology researches.</AbstractText>
<CopyrightInformation>Copyright © 2011 Wiley-Liss, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Hongkai</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Biocontrol, Sun Yat-sen University, Xingangxi Road, Guangzhou, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Jinwen</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Deng</LastName>
<ForeName>Riqiang</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xing</LastName>
<ForeName>Ke</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xiong</LastName>
<ForeName>Yuanyan</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Junfeng</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Xionglei</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Xunzhang</ForeName>
<Initials>X</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D023361">Validation Study</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Med Virol</MedlineTA>
<NlmUniqueID>7705876</NlmUniqueID>
<ISSNLinking>0146-6615</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017931">DNA Primers</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017931" MajorTopicYN="N">DNA Primers</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015723" MajorTopicYN="Y">Gene Library</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057089" MajorTopicYN="N">Pathology, Molecular</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>2</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>2</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>5</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21328370</ArticleId>
<ArticleId IdType="doi">10.1002/jmv.22012</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001547 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001547 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:21328370
   |texte=   Benefits of random-priming: exhaustive survey of a cDNA library from lung tissue of a SARS patient.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:21328370" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021