Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease.

Identifieur interne : 001462 ( PubMed/Curation ); précédent : 001461; suivant : 001463

Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease.

Auteurs : Stephanie Bertram [Allemagne] ; Ilona Glowacka ; Marcel A. Müller ; Hayley Lavender ; Kerstin Gnirss ; Inga Nehlmeier ; Daniela Niemeyer ; Yuxian He ; Graham Simmons ; Christian Drosten ; Elizabeth J. Soilleux ; Olaf Jahn ; Imke Steffen ; Stefan Pöhlmann

Source :

RBID : pubmed:21994442

Descripteurs français

English descriptors

Abstract

The highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) poses a constant threat to human health. The viral spike protein (SARS-S) mediates host cell entry and is a potential target for antiviral intervention. Activation of SARS-S by host cell proteases is essential for SARS-CoV infectivity but remains incompletely understood. Here, we analyzed the role of the type II transmembrane serine proteases (TTSPs) human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2), in SARS-S activation. We found that HAT activates SARS-S in the context of surrogate systems and authentic SARS-CoV infection and is coexpressed with the viral receptor angiotensin-converting enzyme 2 (ACE2) in bronchial epithelial cells and pneumocytes. HAT cleaved SARS-S at R667, as determined by mutagenesis and mass spectrometry, and activated SARS-S for cell-cell fusion in cis and trans, while the related pulmonary protease TMPRSS2 cleaved SARS-S at multiple sites and activated SARS-S only in trans. However, TMPRSS2 but not HAT expression rendered SARS-S-driven virus-cell fusion independent of cathepsin activity, indicating that HAT and TMPRSS2 activate SARS-S differentially. Collectively, our results show that HAT cleaves and activates SARS-S and might support viral spread in patients.

DOI: 10.1128/JVI.05300-11
PubMed: 21994442

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21994442

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease.</title>
<author>
<name sortKey="Bertram, Stephanie" sort="Bertram, Stephanie" uniqKey="Bertram S" first="Stephanie" last="Bertram">Stephanie Bertram</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Virology, Hannover Medical School, Hannover, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Virology, Hannover Medical School, Hannover</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Glowacka, Ilona" sort="Glowacka, Ilona" uniqKey="Glowacka I" first="Ilona" last="Glowacka">Ilona Glowacka</name>
</author>
<author>
<name sortKey="Muller, Marcel A" sort="Muller, Marcel A" uniqKey="Muller M" first="Marcel A" last="Müller">Marcel A. Müller</name>
</author>
<author>
<name sortKey="Lavender, Hayley" sort="Lavender, Hayley" uniqKey="Lavender H" first="Hayley" last="Lavender">Hayley Lavender</name>
</author>
<author>
<name sortKey="Gnirss, Kerstin" sort="Gnirss, Kerstin" uniqKey="Gnirss K" first="Kerstin" last="Gnirss">Kerstin Gnirss</name>
</author>
<author>
<name sortKey="Nehlmeier, Inga" sort="Nehlmeier, Inga" uniqKey="Nehlmeier I" first="Inga" last="Nehlmeier">Inga Nehlmeier</name>
</author>
<author>
<name sortKey="Niemeyer, Daniela" sort="Niemeyer, Daniela" uniqKey="Niemeyer D" first="Daniela" last="Niemeyer">Daniela Niemeyer</name>
</author>
<author>
<name sortKey="He, Yuxian" sort="He, Yuxian" uniqKey="He Y" first="Yuxian" last="He">Yuxian He</name>
</author>
<author>
<name sortKey="Simmons, Graham" sort="Simmons, Graham" uniqKey="Simmons G" first="Graham" last="Simmons">Graham Simmons</name>
</author>
<author>
<name sortKey="Drosten, Christian" sort="Drosten, Christian" uniqKey="Drosten C" first="Christian" last="Drosten">Christian Drosten</name>
</author>
<author>
<name sortKey="Soilleux, Elizabeth J" sort="Soilleux, Elizabeth J" uniqKey="Soilleux E" first="Elizabeth J" last="Soilleux">Elizabeth J. Soilleux</name>
</author>
<author>
<name sortKey="Jahn, Olaf" sort="Jahn, Olaf" uniqKey="Jahn O" first="Olaf" last="Jahn">Olaf Jahn</name>
</author>
<author>
<name sortKey="Steffen, Imke" sort="Steffen, Imke" uniqKey="Steffen I" first="Imke" last="Steffen">Imke Steffen</name>
</author>
<author>
<name sortKey="Pohlmann, Stefan" sort="Pohlmann, Stefan" uniqKey="Pohlmann S" first="Stefan" last="Pöhlmann">Stefan Pöhlmann</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21994442</idno>
<idno type="pmid">21994442</idno>
<idno type="doi">10.1128/JVI.05300-11</idno>
<idno type="wicri:Area/PubMed/Corpus">001462</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001462</idno>
<idno type="wicri:Area/PubMed/Curation">001462</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001462</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease.</title>
<author>
<name sortKey="Bertram, Stephanie" sort="Bertram, Stephanie" uniqKey="Bertram S" first="Stephanie" last="Bertram">Stephanie Bertram</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Virology, Hannover Medical School, Hannover, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Virology, Hannover Medical School, Hannover</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Glowacka, Ilona" sort="Glowacka, Ilona" uniqKey="Glowacka I" first="Ilona" last="Glowacka">Ilona Glowacka</name>
</author>
<author>
<name sortKey="Muller, Marcel A" sort="Muller, Marcel A" uniqKey="Muller M" first="Marcel A" last="Müller">Marcel A. Müller</name>
</author>
<author>
<name sortKey="Lavender, Hayley" sort="Lavender, Hayley" uniqKey="Lavender H" first="Hayley" last="Lavender">Hayley Lavender</name>
</author>
<author>
<name sortKey="Gnirss, Kerstin" sort="Gnirss, Kerstin" uniqKey="Gnirss K" first="Kerstin" last="Gnirss">Kerstin Gnirss</name>
</author>
<author>
<name sortKey="Nehlmeier, Inga" sort="Nehlmeier, Inga" uniqKey="Nehlmeier I" first="Inga" last="Nehlmeier">Inga Nehlmeier</name>
</author>
<author>
<name sortKey="Niemeyer, Daniela" sort="Niemeyer, Daniela" uniqKey="Niemeyer D" first="Daniela" last="Niemeyer">Daniela Niemeyer</name>
</author>
<author>
<name sortKey="He, Yuxian" sort="He, Yuxian" uniqKey="He Y" first="Yuxian" last="He">Yuxian He</name>
</author>
<author>
<name sortKey="Simmons, Graham" sort="Simmons, Graham" uniqKey="Simmons G" first="Graham" last="Simmons">Graham Simmons</name>
</author>
<author>
<name sortKey="Drosten, Christian" sort="Drosten, Christian" uniqKey="Drosten C" first="Christian" last="Drosten">Christian Drosten</name>
</author>
<author>
<name sortKey="Soilleux, Elizabeth J" sort="Soilleux, Elizabeth J" uniqKey="Soilleux E" first="Elizabeth J" last="Soilleux">Elizabeth J. Soilleux</name>
</author>
<author>
<name sortKey="Jahn, Olaf" sort="Jahn, Olaf" uniqKey="Jahn O" first="Olaf" last="Jahn">Olaf Jahn</name>
</author>
<author>
<name sortKey="Steffen, Imke" sort="Steffen, Imke" uniqKey="Steffen I" first="Imke" last="Steffen">Imke Steffen</name>
</author>
<author>
<name sortKey="Pohlmann, Stefan" sort="Pohlmann, Stefan" uniqKey="Pohlmann S" first="Stefan" last="Pöhlmann">Stefan Pöhlmann</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Line</term>
<term>Gene Expression</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
<term>Membrane Glycoproteins (metabolism)</term>
<term>Peptidyl-Dipeptidase A (biosynthesis)</term>
<term>Proteolysis</term>
<term>Receptors, Virus (biosynthesis)</term>
<term>SARS Virus (pathogenicity)</term>
<term>Serine Endopeptidases (metabolism)</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Viral Envelope Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Expression des gènes</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Glycoprotéines membranaires (métabolisme)</term>
<term>Humains</term>
<term>Interactions hôte-pathogène</term>
<term>Lignée cellulaire</term>
<term>Peptidyl-Dipeptidase A (biosynthèse)</term>
<term>Protéines de l'enveloppe virale (métabolisme)</term>
<term>Protéolyse</term>
<term>Récepteurs viraux (biosynthèse)</term>
<term>Serine endopeptidases (métabolisme)</term>
<term>Virus du SRAS (pathogénicité)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Peptidyl-Dipeptidase A</term>
<term>Receptors, Virus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Serine Endopeptidases</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Peptidyl-Dipeptidase A</term>
<term>Récepteurs viraux</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glycoprotéines membranaires</term>
<term>Protéines de l'enveloppe virale</term>
<term>Serine endopeptidases</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Line</term>
<term>Gene Expression</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
<term>Proteolysis</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Expression des gènes</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Humains</term>
<term>Interactions hôte-pathogène</term>
<term>Lignée cellulaire</term>
<term>Protéolyse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) poses a constant threat to human health. The viral spike protein (SARS-S) mediates host cell entry and is a potential target for antiviral intervention. Activation of SARS-S by host cell proteases is essential for SARS-CoV infectivity but remains incompletely understood. Here, we analyzed the role of the type II transmembrane serine proteases (TTSPs) human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2), in SARS-S activation. We found that HAT activates SARS-S in the context of surrogate systems and authentic SARS-CoV infection and is coexpressed with the viral receptor angiotensin-converting enzyme 2 (ACE2) in bronchial epithelial cells and pneumocytes. HAT cleaved SARS-S at R667, as determined by mutagenesis and mass spectrometry, and activated SARS-S for cell-cell fusion in cis and trans, while the related pulmonary protease TMPRSS2 cleaved SARS-S at multiple sites and activated SARS-S only in trans. However, TMPRSS2 but not HAT expression rendered SARS-S-driven virus-cell fusion independent of cathepsin activity, indicating that HAT and TMPRSS2 activate SARS-S differentially. Collectively, our results show that HAT cleaves and activates SARS-S and might support viral spread in patients.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21994442</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>01</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>85</Volume>
<Issue>24</Issue>
<PubDate>
<Year>2011</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease.</ArticleTitle>
<Pagination>
<MedlinePgn>13363-72</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.05300-11</ELocationID>
<Abstract>
<AbstractText>The highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) poses a constant threat to human health. The viral spike protein (SARS-S) mediates host cell entry and is a potential target for antiviral intervention. Activation of SARS-S by host cell proteases is essential for SARS-CoV infectivity but remains incompletely understood. Here, we analyzed the role of the type II transmembrane serine proteases (TTSPs) human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2), in SARS-S activation. We found that HAT activates SARS-S in the context of surrogate systems and authentic SARS-CoV infection and is coexpressed with the viral receptor angiotensin-converting enzyme 2 (ACE2) in bronchial epithelial cells and pneumocytes. HAT cleaved SARS-S at R667, as determined by mutagenesis and mass spectrometry, and activated SARS-S for cell-cell fusion in cis and trans, while the related pulmonary protease TMPRSS2 cleaved SARS-S at multiple sites and activated SARS-S only in trans. However, TMPRSS2 but not HAT expression rendered SARS-S-driven virus-cell fusion independent of cathepsin activity, indicating that HAT and TMPRSS2 activate SARS-S differentially. Collectively, our results show that HAT cleaves and activates SARS-S and might support viral spread in patients.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bertram</LastName>
<ForeName>Stephanie</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Institute of Virology, Hannover Medical School, Hannover, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Glowacka</LastName>
<ForeName>Ilona</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Müller</LastName>
<ForeName>Marcel A</ForeName>
<Initials>MA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lavender</LastName>
<ForeName>Hayley</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gnirss</LastName>
<ForeName>Kerstin</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nehlmeier</LastName>
<ForeName>Inga</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Niemeyer</LastName>
<ForeName>Daniela</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Yuxian</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Simmons</LastName>
<ForeName>Graham</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Drosten</LastName>
<ForeName>Christian</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Soilleux</LastName>
<ForeName>Elizabeth J</ForeName>
<Initials>EJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jahn</LastName>
<ForeName>Olaf</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Steffen</LastName>
<ForeName>Imke</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pöhlmann</LastName>
<ForeName>Stefan</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI074986</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01AI074986</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>10</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011991">Receptors, Virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.15.1</RegistryNumber>
<NameOfSubstance UI="D007703">Peptidyl-Dipeptidase A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.17.-</RegistryNumber>
<NameOfSubstance UI="C413524">angiotensin converting enzyme 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.-</RegistryNumber>
<NameOfSubstance UI="D012697">Serine Endopeptidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.-</RegistryNumber>
<NameOfSubstance UI="C112256">human airway trypsin-like protease</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="Y">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007703" MajorTopicYN="N">Peptidyl-Dipeptidase A</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059748" MajorTopicYN="N">Proteolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011991" MajorTopicYN="N">Receptors, Virus</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012697" MajorTopicYN="N">Serine Endopeptidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>10</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>10</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21994442</ArticleId>
<ArticleId IdType="pii">JVI.05300-11</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.05300-11</ArticleId>
<ArticleId IdType="pmc">PMC3233180</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14040-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(12):6134-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15163706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2006 Aug;209(4):454-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16739114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Sep;80(17):8639-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16912312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Bioanal Chem. 2006 Sep;386(1):92-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16821028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Oct;80(19):9896-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2007 May;292(5):L1263-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17237151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2008 Feb;18(2):290-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18227861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2008 Mar 1;372(1):127-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18022664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2008 Apr 17;27(18):2635-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17968309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Sep;82(17):8887-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18562523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Jul 9;319(4):1216-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15194496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2004 Jul;203(3):740-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15221932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2004 Sep 15;173(6):4050-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15356154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2004 Oct;12(10):466-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15381196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1995 Feb 1;206(2):935-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7531918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 1997 Feb 15;89(4):1394-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9028963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Dec;10(12 Suppl):S88-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15577937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Jan 21;326(3):554-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15596135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jul 7;436(7047):112-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16001071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2005 Aug;11(8):875-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16007097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11876-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Sep;82(17):8942-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18562527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Apr;83(7):3200-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19158246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5871-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19321428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Mol Med. 2009 Jul;15(7):303-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19581128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Jan;84(2):1198-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19864379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharmacol. 2010 Aug;78(2):319-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20466822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem. 2010 Aug 1;18(15):5504-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20620066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Med Virol. 2010 Sep;20(5):298-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20629046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Oct;84(19):10016-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20631123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Dec;84(24):12658-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20926566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Jan;85(2):873-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21068237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Feb;85(4):1554-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21123387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 May;85(9):4122-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21325420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2011 May 10;413(2):265-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21435673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2001 Jan;27(1):59-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11137999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Histochem Cell Biol. 2001 Mar;115(3):181-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11326745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2003 Jan 5;305(1):115-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12504546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Jul 26;362(9380):263-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Oct 10;302(5643):276-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12958366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AIDS Res Hum Retroviruses. 2003 Sep;19(9):817-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14585212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 Dec 18;349(25):2431-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2004 Feb;202(2):157-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14743497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2003 Dec;1(3):209-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15035025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4240-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15010527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2004 Jun;203(2):631-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15141377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Oct 28;310(5748):676-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16195424</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001462 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001462 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:21994442
   |texte=   Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:21994442" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021