Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Origin, diversity, and maturation of human antiviral antibodies analyzed by high-throughput sequencing.

Identifieur interne : 001325 ( PubMed/Curation ); précédent : 001324; suivant : 001326

Origin, diversity, and maturation of human antiviral antibodies analyzed by high-throughput sequencing.

Auteurs : Ponraj Prabakaran [États-Unis] ; Zhongyu Zhu ; Weizao Chen ; Rui Gong ; Yang Feng ; Emily Streaker ; Dimiter S. Dimitrov

Source :

RBID : pubmed:22876240

Abstract

Our understanding of how antibodies are generated and function could help develop effective vaccines and antibody-based therapeutics against viruses such as HIV-1, SARS coronavirus (SARS CoV), and Hendra and Nipah viruses (henipaviruses). Although broadly neutralizing antibodies (bnAbs) against the HIV-1 were observed in patients, elicitation of such bnAbs remains a major challenge when compared to other viral targets. We previously hypothesized that HIV-1 could have evolved a strategy to evade the immune system due to absent or very weak binding of germline antibodies to the conserved epitopes that may not be sufficient to initiate and/or maintain an effective immune response. To further explore our hypothesis, we used the 454 sequence analysis of a large naïve library of human IgM antibodies which had been used for selecting antibodies against SARS CoV receptor-binding domain (RBD), and soluble G proteins (sG) of henipaviruses. We found that the human IgM repertoires from the 454 sequencing have diverse germline usages, recombination patterns, junction diversity, and a lower extent of somatic mutation. In this study, we identified antibody maturation intermediates that are related to bnAbs against the HIV-1 and other viruses as observed in normal individuals, and compared their genetic diversity and somatic mutation level along with available structural and functional data. Further computational analysis will provide framework for understanding the underlying genetic and molecular determinants related to maturation pathways of antiviral bnAbs that could be useful for applying novel approaches to the design of effective vaccine immunogens and antibody-based therapeutics.

DOI: 10.3389/fmicb.2012.00277
PubMed: 22876240

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:22876240

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Origin, diversity, and maturation of human antiviral antibodies analyzed by high-throughput sequencing.</title>
<author>
<name sortKey="Prabakaran, Ponraj" sort="Prabakaran, Ponraj" uniqKey="Prabakaran P" first="Ponraj" last="Prabakaran">Ponraj Prabakaran</name>
<affiliation wicri:level="1">
<nlm:affiliation>CCR Nanobiology Program, Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Institutes of Health (NIH), Frederick MD, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>CCR Nanobiology Program, Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Institutes of Health (NIH), Frederick MD</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Zhongyu" sort="Zhu, Zhongyu" uniqKey="Zhu Z" first="Zhongyu" last="Zhu">Zhongyu Zhu</name>
</author>
<author>
<name sortKey="Chen, Weizao" sort="Chen, Weizao" uniqKey="Chen W" first="Weizao" last="Chen">Weizao Chen</name>
</author>
<author>
<name sortKey="Gong, Rui" sort="Gong, Rui" uniqKey="Gong R" first="Rui" last="Gong">Rui Gong</name>
</author>
<author>
<name sortKey="Feng, Yang" sort="Feng, Yang" uniqKey="Feng Y" first="Yang" last="Feng">Yang Feng</name>
</author>
<author>
<name sortKey="Streaker, Emily" sort="Streaker, Emily" uniqKey="Streaker E" first="Emily" last="Streaker">Emily Streaker</name>
</author>
<author>
<name sortKey="Dimitrov, Dimiter S" sort="Dimitrov, Dimiter S" uniqKey="Dimitrov D" first="Dimiter S" last="Dimitrov">Dimiter S. Dimitrov</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22876240</idno>
<idno type="pmid">22876240</idno>
<idno type="doi">10.3389/fmicb.2012.00277</idno>
<idno type="wicri:Area/PubMed/Corpus">001325</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001325</idno>
<idno type="wicri:Area/PubMed/Curation">001325</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001325</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Origin, diversity, and maturation of human antiviral antibodies analyzed by high-throughput sequencing.</title>
<author>
<name sortKey="Prabakaran, Ponraj" sort="Prabakaran, Ponraj" uniqKey="Prabakaran P" first="Ponraj" last="Prabakaran">Ponraj Prabakaran</name>
<affiliation wicri:level="1">
<nlm:affiliation>CCR Nanobiology Program, Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Institutes of Health (NIH), Frederick MD, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>CCR Nanobiology Program, Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Institutes of Health (NIH), Frederick MD</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Zhongyu" sort="Zhu, Zhongyu" uniqKey="Zhu Z" first="Zhongyu" last="Zhu">Zhongyu Zhu</name>
</author>
<author>
<name sortKey="Chen, Weizao" sort="Chen, Weizao" uniqKey="Chen W" first="Weizao" last="Chen">Weizao Chen</name>
</author>
<author>
<name sortKey="Gong, Rui" sort="Gong, Rui" uniqKey="Gong R" first="Rui" last="Gong">Rui Gong</name>
</author>
<author>
<name sortKey="Feng, Yang" sort="Feng, Yang" uniqKey="Feng Y" first="Yang" last="Feng">Yang Feng</name>
</author>
<author>
<name sortKey="Streaker, Emily" sort="Streaker, Emily" uniqKey="Streaker E" first="Emily" last="Streaker">Emily Streaker</name>
</author>
<author>
<name sortKey="Dimitrov, Dimiter S" sort="Dimitrov, Dimiter S" uniqKey="Dimitrov D" first="Dimiter S" last="Dimitrov">Dimiter S. Dimitrov</name>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="eISSN">1664-302X</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Our understanding of how antibodies are generated and function could help develop effective vaccines and antibody-based therapeutics against viruses such as HIV-1, SARS coronavirus (SARS CoV), and Hendra and Nipah viruses (henipaviruses). Although broadly neutralizing antibodies (bnAbs) against the HIV-1 were observed in patients, elicitation of such bnAbs remains a major challenge when compared to other viral targets. We previously hypothesized that HIV-1 could have evolved a strategy to evade the immune system due to absent or very weak binding of germline antibodies to the conserved epitopes that may not be sufficient to initiate and/or maintain an effective immune response. To further explore our hypothesis, we used the 454 sequence analysis of a large naïve library of human IgM antibodies which had been used for selecting antibodies against SARS CoV receptor-binding domain (RBD), and soluble G proteins (sG) of henipaviruses. We found that the human IgM repertoires from the 454 sequencing have diverse germline usages, recombination patterns, junction diversity, and a lower extent of somatic mutation. In this study, we identified antibody maturation intermediates that are related to bnAbs against the HIV-1 and other viruses as observed in normal individuals, and compared their genetic diversity and somatic mutation level along with available structural and functional data. Further computational analysis will provide framework for understanding the underlying genetic and molecular determinants related to maturation pathways of antiviral bnAbs that could be useful for applying novel approaches to the design of effective vaccine immunogens and antibody-based therapeutics.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">22876240</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>10</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1664-302X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>3</Volume>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Origin, diversity, and maturation of human antiviral antibodies analyzed by high-throughput sequencing.</ArticleTitle>
<Pagination>
<MedlinePgn>277</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2012.00277</ELocationID>
<Abstract>
<AbstractText>Our understanding of how antibodies are generated and function could help develop effective vaccines and antibody-based therapeutics against viruses such as HIV-1, SARS coronavirus (SARS CoV), and Hendra and Nipah viruses (henipaviruses). Although broadly neutralizing antibodies (bnAbs) against the HIV-1 were observed in patients, elicitation of such bnAbs remains a major challenge when compared to other viral targets. We previously hypothesized that HIV-1 could have evolved a strategy to evade the immune system due to absent or very weak binding of germline antibodies to the conserved epitopes that may not be sufficient to initiate and/or maintain an effective immune response. To further explore our hypothesis, we used the 454 sequence analysis of a large naïve library of human IgM antibodies which had been used for selecting antibodies against SARS CoV receptor-binding domain (RBD), and soluble G proteins (sG) of henipaviruses. We found that the human IgM repertoires from the 454 sequencing have diverse germline usages, recombination patterns, junction diversity, and a lower extent of somatic mutation. In this study, we identified antibody maturation intermediates that are related to bnAbs against the HIV-1 and other viruses as observed in normal individuals, and compared their genetic diversity and somatic mutation level along with available structural and functional data. Further computational analysis will provide framework for understanding the underlying genetic and molecular determinants related to maturation pathways of antiviral bnAbs that could be useful for applying novel approaches to the design of effective vaccine immunogens and antibody-based therapeutics.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Prabakaran</LastName>
<ForeName>Ponraj</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>CCR Nanobiology Program, Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Institutes of Health (NIH), Frederick MD, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Zhongyu</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Weizao</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gong</LastName>
<ForeName>Rui</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Feng</LastName>
<ForeName>Yang</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Streaker</LastName>
<ForeName>Emily</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dimitrov</LastName>
<ForeName>Dimiter S</ForeName>
<Initials>DS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>N01CO12400</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>08</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">454 sequencing</Keyword>
<Keyword MajorTopicYN="N">HIV-1</Keyword>
<Keyword MajorTopicYN="N">IgM</Keyword>
<Keyword MajorTopicYN="N">immunogen</Keyword>
<Keyword MajorTopicYN="N">monoclonal antibody</Keyword>
<Keyword MajorTopicYN="N">vaccine</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>05</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>07</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>8</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>8</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>8</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22876240</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2012.00277</ArticleId>
<ArticleId IdType="pmc">PMC3410596</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2006 Jun 9;281(23):15829-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16597622</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2006 Jan;80(2):891-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16378991</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Med. 2002;53:499-518</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11818487</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2007 Feb 15;445(7129):732-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17301785</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods Mol Biol. 2009;525:129-42, xv</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19252833</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20216-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19875695</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Pharmacol. 2007;55:33-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586312</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Immunity. 1995 Dec;3(6):747-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8777720</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Immunol. 2002 Sep;2(9):706-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12209139</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2009 Dec 18;390(3):404-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748484</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2009 Mar;16(3):265-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19234466</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Expert Rev Vaccines. 2006 Aug;5(4):579-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16989638</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Res Notes. 2011 Oct 12;4:404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21992227</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2012 Jan 27;417(4):1164-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22226962</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Bioinformatics. 2009 Oct 27;10:356</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19860910</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Immunogenetics. 2012 May;64(5):337-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22200891</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2011 Mar 30;6(3):e16857</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21479208</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001325 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001325 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:22876240
   |texte=   Origin, diversity, and maturation of human antiviral antibodies analyzed by high-throughput sequencing.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:22876240" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021