Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease.

Identifieur interne : 001288 ( PubMed/Curation ); précédent : 001287; suivant : 001289

A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease.

Auteurs : Rachel L. Graham [États-Unis] ; Michelle M. Becker ; Lance D. Eckerle ; Meagan Bolles ; Mark R. Denison ; Ralph S. Baric

Source :

RBID : pubmed:23142821

Descripteurs français

English descriptors

Abstract

Live, attenuated RNA virus vaccines are efficacious but subject to reversion to virulence. Among RNA viruses, replication fidelity is recognized as a key determinant of virulence and escape from antiviral therapy; increased fidelity is attenuating for some viruses. Coronavirus (CoV) replication fidelity is approximately 20-fold greater than that of other RNA viruses and is mediated by a 3'→5' exonuclease (ExoN) activity that probably functions in RNA proofreading. In this study we demonstrate that engineered inactivation of severe acute respiratory syndrome (SARS)-CoV ExoN activity results in a stable mutator phenotype with profoundly decreased fidelity in vivo and attenuation of pathogenesis in young, aged and immunocompromised mice. The ExoN inactivation genotype and mutator phenotype are stable and do not revert to virulence, even after serial passage or long-term persistent infection in vivo. ExoN inactivation has potential for broad applications in the stable attenuation of CoVs and, perhaps, other RNA viruses.

DOI: 10.1038/nm.2972
PubMed: 23142821

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23142821

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease.</title>
<author>
<name sortKey="Graham, Rachel L" sort="Graham, Rachel L" uniqKey="Graham R" first="Rachel L" last="Graham">Rachel L. Graham</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Becker, Michelle M" sort="Becker, Michelle M" uniqKey="Becker M" first="Michelle M" last="Becker">Michelle M. Becker</name>
</author>
<author>
<name sortKey="Eckerle, Lance D" sort="Eckerle, Lance D" uniqKey="Eckerle L" first="Lance D" last="Eckerle">Lance D. Eckerle</name>
</author>
<author>
<name sortKey="Bolles, Meagan" sort="Bolles, Meagan" uniqKey="Bolles M" first="Meagan" last="Bolles">Meagan Bolles</name>
</author>
<author>
<name sortKey="Denison, Mark R" sort="Denison, Mark R" uniqKey="Denison M" first="Mark R" last="Denison">Mark R. Denison</name>
</author>
<author>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23142821</idno>
<idno type="pmid">23142821</idno>
<idno type="doi">10.1038/nm.2972</idno>
<idno type="wicri:Area/PubMed/Corpus">001288</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001288</idno>
<idno type="wicri:Area/PubMed/Curation">001288</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001288</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease.</title>
<author>
<name sortKey="Graham, Rachel L" sort="Graham, Rachel L" uniqKey="Graham R" first="Rachel L" last="Graham">Rachel L. Graham</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Becker, Michelle M" sort="Becker, Michelle M" uniqKey="Becker M" first="Michelle M" last="Becker">Michelle M. Becker</name>
</author>
<author>
<name sortKey="Eckerle, Lance D" sort="Eckerle, Lance D" uniqKey="Eckerle L" first="Lance D" last="Eckerle">Lance D. Eckerle</name>
</author>
<author>
<name sortKey="Bolles, Meagan" sort="Bolles, Meagan" uniqKey="Bolles M" first="Meagan" last="Bolles">Meagan Bolles</name>
</author>
<author>
<name sortKey="Denison, Mark R" sort="Denison, Mark R" uniqKey="Denison M" first="Mark R" last="Denison">Mark R. Denison</name>
</author>
<author>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
</author>
</analytic>
<series>
<title level="j">Nature medicine</title>
<idno type="eISSN">1546-170X</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Age Factors</term>
<term>Animals</term>
<term>Base Sequence</term>
<term>DNA Primers (genetics)</term>
<term>Drug Design</term>
<term>Exoribonucleases (antagonists & inhibitors)</term>
<term>Exoribonucleases (genetics)</term>
<term>Exoribonucleases (metabolism)</term>
<term>Exoribonucleases (physiology)</term>
<term>Female</term>
<term>Immunocompromised Host (immunology)</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Molecular Sequence Data</term>
<term>Plasmids (genetics)</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>SARS Virus (enzymology)</term>
<term>SARS Virus (genetics)</term>
<term>SARS Virus (pathogenicity)</term>
<term>Sequence Analysis, DNA</term>
<term>Severe Acute Respiratory Syndrome (drug therapy)</term>
<term>Severe Acute Respiratory Syndrome (immunology)</term>
<term>Severe Acute Respiratory Syndrome (virology)</term>
<term>Statistics, Nonparametric</term>
<term>Viral Vaccines (pharmacology)</term>
<term>Virus Replication (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Amorces ADN (génétique)</term>
<term>Analyse de séquence d'ADN</term>
<term>Animaux</term>
<term>Conception de médicament</term>
<term>Données de séquences moléculaires</term>
<term>Exoribonucleases (antagonistes et inhibiteurs)</term>
<term>Exoribonucleases (génétique)</term>
<term>Exoribonucleases (métabolisme)</term>
<term>Exoribonucleases (physiologie)</term>
<term>Facteurs de l'âge</term>
<term>Femelle</term>
<term>Plasmides (génétique)</term>
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Réplication virale (physiologie)</term>
<term>Souris</term>
<term>Souris de lignée BALB C</term>
<term>Statistique non paramétrique</term>
<term>Sujet immunodéprimé (immunologie)</term>
<term>Syndrome respiratoire aigu sévère (immunologie)</term>
<term>Syndrome respiratoire aigu sévère (traitement médicamenteux)</term>
<term>Syndrome respiratoire aigu sévère (virologie)</term>
<term>Séquence nucléotidique</term>
<term>Vaccins antiviraux (pharmacologie)</term>
<term>Virus du SRAS (enzymologie)</term>
<term>Virus du SRAS (génétique)</term>
<term>Virus du SRAS (pathogénicité)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Exoribonucleases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA Primers</term>
<term>Exoribonucleases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Exoribonucleases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Viral Vaccines</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Exoribonucleases</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Exoribonucleases</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plasmids</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Amorces ADN</term>
<term>Exoribonucleases</term>
<term>Plasmides</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Sujet immunodéprimé</term>
<term>Syndrome respiratoire aigu sévère</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Immunocompromised Host</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Exoribonucleases</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Vaccins antiviraux</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Exoribonucleases</term>
<term>Réplication virale</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" qualifier="traitement médicamenteux" xml:lang="fr">
<term>Syndrome respiratoire aigu sévère</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Syndrome respiratoire aigu sévère</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Age Factors</term>
<term>Animals</term>
<term>Base Sequence</term>
<term>Drug Design</term>
<term>Female</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Molecular Sequence Data</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>Sequence Analysis, DNA</term>
<term>Statistics, Nonparametric</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
<term>Animaux</term>
<term>Conception de médicament</term>
<term>Données de séquences moléculaires</term>
<term>Facteurs de l'âge</term>
<term>Femelle</term>
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Souris</term>
<term>Souris de lignée BALB C</term>
<term>Statistique non paramétrique</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Live, attenuated RNA virus vaccines are efficacious but subject to reversion to virulence. Among RNA viruses, replication fidelity is recognized as a key determinant of virulence and escape from antiviral therapy; increased fidelity is attenuating for some viruses. Coronavirus (CoV) replication fidelity is approximately 20-fold greater than that of other RNA viruses and is mediated by a 3'→5' exonuclease (ExoN) activity that probably functions in RNA proofreading. In this study we demonstrate that engineered inactivation of severe acute respiratory syndrome (SARS)-CoV ExoN activity results in a stable mutator phenotype with profoundly decreased fidelity in vivo and attenuation of pathogenesis in young, aged and immunocompromised mice. The ExoN inactivation genotype and mutator phenotype are stable and do not revert to virulence, even after serial passage or long-term persistent infection in vivo. ExoN inactivation has potential for broad applications in the stable attenuation of CoVs and, perhaps, other RNA viruses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23142821</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>02</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1546-170X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2012</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Nature medicine</Title>
<ISOAbbreviation>Nat. Med.</ISOAbbreviation>
</Journal>
<ArticleTitle>A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease.</ArticleTitle>
<Pagination>
<MedlinePgn>1820-6</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/nm.2972</ELocationID>
<Abstract>
<AbstractText>Live, attenuated RNA virus vaccines are efficacious but subject to reversion to virulence. Among RNA viruses, replication fidelity is recognized as a key determinant of virulence and escape from antiviral therapy; increased fidelity is attenuating for some viruses. Coronavirus (CoV) replication fidelity is approximately 20-fold greater than that of other RNA viruses and is mediated by a 3'→5' exonuclease (ExoN) activity that probably functions in RNA proofreading. In this study we demonstrate that engineered inactivation of severe acute respiratory syndrome (SARS)-CoV ExoN activity results in a stable mutator phenotype with profoundly decreased fidelity in vivo and attenuation of pathogenesis in young, aged and immunocompromised mice. The ExoN inactivation genotype and mutator phenotype are stable and do not revert to virulence, even after serial passage or long-term persistent infection in vivo. ExoN inactivation has potential for broad applications in the stable attenuation of CoVs and, perhaps, other RNA viruses.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Graham</LastName>
<ForeName>Rachel L</ForeName>
<Initials>RL</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Becker</LastName>
<ForeName>Michelle M</ForeName>
<Initials>MM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Eckerle</LastName>
<ForeName>Lance D</ForeName>
<Initials>LD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bolles</LastName>
<ForeName>Meagan</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Denison</LastName>
<ForeName>Mark R</ForeName>
<Initials>MR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Baric</LastName>
<ForeName>Ralph S</ForeName>
<Initials>RS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>FJ882942</AccessionNumber>
<AccessionNumber>FJ882943</AccessionNumber>
<AccessionNumber>FJ882945</AccessionNumber>
<AccessionNumber>FJ882948</AccessionNumber>
<AccessionNumber>FJ882951</AccessionNumber>
<AccessionNumber>FJ882952</AccessionNumber>
<AccessionNumber>FJ882953</AccessionNumber>
<AccessionNumber>FJ882957</AccessionNumber>
<AccessionNumber>FJ882958</AccessionNumber>
<AccessionNumber>FJ882959</AccessionNumber>
<AccessionNumber>FJ882961</AccessionNumber>
<AccessionNumber>FJ882962</AccessionNumber>
<AccessionNumber>HQ890526</AccessionNumber>
<AccessionNumber>HQ890527</AccessionNumber>
<AccessionNumber>HQ890528</AccessionNumber>
<AccessionNumber>HQ890529</AccessionNumber>
<AccessionNumber>HQ890530</AccessionNumber>
<AccessionNumber>HQ890531</AccessionNumber>
<AccessionNumber>HQ890532</AccessionNumber>
<AccessionNumber>HQ890533</AccessionNumber>
<AccessionNumber>HQ890534</AccessionNumber>
<AccessionNumber>HQ890535</AccessionNumber>
<AccessionNumber>HQ890536</AccessionNumber>
<AccessionNumber>HQ890537</AccessionNumber>
<AccessionNumber>HQ890538</AccessionNumber>
<AccessionNumber>HQ890539</AccessionNumber>
<AccessionNumber>HQ890540</AccessionNumber>
<AccessionNumber>HQ890541</AccessionNumber>
<AccessionNumber>HQ890542</AccessionNumber>
<AccessionNumber>HQ890543</AccessionNumber>
<AccessionNumber>HQ890544</AccessionNumber>
<AccessionNumber>HQ890545</AccessionNumber>
<AccessionNumber>HQ890546</AccessionNumber>
<AccessionNumber>JF292902</AccessionNumber>
<AccessionNumber>JF292903</AccessionNumber>
<AccessionNumber>JF292904</AccessionNumber>
<AccessionNumber>JF292905</AccessionNumber>
<AccessionNumber>JF292906</AccessionNumber>
<AccessionNumber>JF292907</AccessionNumber>
<AccessionNumber>JF292908</AccessionNumber>
<AccessionNumber>JF292909</AccessionNumber>
<AccessionNumber>JF292910</AccessionNumber>
<AccessionNumber>JF292911</AccessionNumber>
<AccessionNumber>JF292912</AccessionNumber>
<AccessionNumber>JF292913</AccessionNumber>
<AccessionNumber>JF292914</AccessionNumber>
<AccessionNumber>JF292915</AccessionNumber>
<AccessionNumber>JF292916</AccessionNumber>
<AccessionNumber>JF292917</AccessionNumber>
<AccessionNumber>JF292918</AccessionNumber>
<AccessionNumber>JF292919</AccessionNumber>
<AccessionNumber>JF292920</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI075297</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HHSN272200900007C</GrantID>
<Agency>PHS HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HHSN272200900007C</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>F32 AI080148</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U54-AI057157</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI075297</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>5F32AI080148</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U54 AI057157</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>11</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Nat Med</MedlineTA>
<NlmUniqueID>9502015</NlmUniqueID>
<ISSNLinking>1078-8956</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017931">DNA Primers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014765">Viral Vaccines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="D005095">Exoribonucleases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000367" MajorTopicYN="N">Age Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017931" MajorTopicYN="N">DNA Primers</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015195" MajorTopicYN="N">Drug Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005095" MajorTopicYN="N">Exoribonucleases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016867" MajorTopicYN="N">Immunocompromised Host</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008807" MajorTopicYN="N">Mice, Inbred BALB C</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010957" MajorTopicYN="N">Plasmids</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018709" MajorTopicYN="N">Statistics, Nonparametric</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014765" MajorTopicYN="N">Viral Vaccines</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>08</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>09</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>11</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>11</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23142821</ArticleId>
<ArticleId IdType="pii">nm.2972</ArticleId>
<ArticleId IdType="doi">10.1038/nm.2972</ArticleId>
<ArticleId IdType="pmc">PMC3518599</ArticleId>
<ArticleId IdType="mid">NIHMS408115</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13910-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10570172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Feb;6(2):e1000756</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20140198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Oct 12;276(41):38097-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11477094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 12;296(5566):356-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11896235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12995-3000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14569023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Nov;79(21):13399-411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16227261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Jan 19;439(7074):344-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16327776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5108-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16549795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12546-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16891412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2006 Dec;3(12):e525</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17194199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2007 Apr 1;195(7):1018-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17330793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2007 Jan;3(1):e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17222058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15787-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17901212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 2007 Oct;20(4):660-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17934078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Nov;81(22):12135-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17804504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Apr;84(7):3134-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19906932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Apr;6(4):e1000849</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20386712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biochem. 2010 May;110(1):118-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20217898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 May;6(5):e1000896</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20463816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2010 Jun;28(6):573-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20531338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010;6(7):e1001005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20661479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Jan;85(1):217-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20980507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA Biol. 2011 Mar-Apr;8(2):270-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21593585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Sep;7(9):e1002215</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21931546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):16038-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21896755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Dec;85(23):12201-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21937658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Jan;86(2):884-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22072787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Apr;78(7):3572-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15016880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1990 Aug;64(8):3960-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1695258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 Jan 15;30(2):511-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1846298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 Jan 15;30(2):526-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1846299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 Jan 15;30(2):538-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1988042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Panminerva Med. 1999 Mar;41(1):78-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10230264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Feb;79(3):1595-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15650185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2008 Feb;14(2):154-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18246077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Feb 21;451(7181):990-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18288193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 Dec;4(12):e1000240</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19079579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19944-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19036930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2009 Sep;15(9):1377-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19788804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 Oct;5(10):e1000636</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19851468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Oct 12;276(41):38090-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11477093</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001288 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001288 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:23142821
   |texte=   A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:23142821" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021