Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of the guanine-N7 methyltransferase activity of coronavirus nsp14 on nucleotide GTP.

Identifieur interne : 001191 ( PubMed/Curation ); précédent : 001190; suivant : 001192

Characterization of the guanine-N7 methyltransferase activity of coronavirus nsp14 on nucleotide GTP.

Auteurs : Xu Jin [République populaire de Chine] ; Yu Chen ; Ying Sun ; Cong Zeng ; Yi Wang ; Jiali Tao ; Andong Wu ; Xiao Yu ; Zhou Zhang ; Jie Tian ; Deyin Guo

Source :

RBID : pubmed:23702198

Descripteurs français

English descriptors

Abstract

Most eukaryotic viruses that replicate in the cytoplasm, including coronaviruses, have evolved strategies to cap their RNAs. In our previous work, the nonstructural protein (nsp) 14 of severe acute respiratory syndrome coronavirus (SARS-CoV) was identified as a cap (guanine-N7)-methyltransferase (N7-MTase). In this study, we found that GTP, dGTP as well as cap analogs GpppG, GpppA and m7GpppG could be methylated by SARS-CoV nsp14. In contrast, the nsp14 could not modify ATP, CTP, UTP, dATP, dCTP, dUTP or cap analog m7GpppA. Critical residues of nsp14 essential for the methyltransferase activity on GTP were identified, which include F73, R84, W86, R310, D331, G333, P335, Y368, C414, and C416. We further showed that the methyltransferase activity of GTP was universal for nsp14 of other coronaviruses. Moreover, the accumulation of m7GTP or presence of protein nsp14 could interfere with protein translation of cellular mRNAs. Altogether, the results revealed a new enzymatic activity of coronavirus nsp14.

DOI: 10.1016/j.virusres.2013.05.001
PubMed: 23702198

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23702198

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterization of the guanine-N7 methyltransferase activity of coronavirus nsp14 on nucleotide GTP.</title>
<author>
<name sortKey="Jin, Xu" sort="Jin, Xu" uniqKey="Jin X" first="Xu" last="Jin">Xu Jin</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chen, Yu" sort="Chen, Yu" uniqKey="Chen Y" first="Yu" last="Chen">Yu Chen</name>
</author>
<author>
<name sortKey="Sun, Ying" sort="Sun, Ying" uniqKey="Sun Y" first="Ying" last="Sun">Ying Sun</name>
</author>
<author>
<name sortKey="Zeng, Cong" sort="Zeng, Cong" uniqKey="Zeng C" first="Cong" last="Zeng">Cong Zeng</name>
</author>
<author>
<name sortKey="Wang, Yi" sort="Wang, Yi" uniqKey="Wang Y" first="Yi" last="Wang">Yi Wang</name>
</author>
<author>
<name sortKey="Tao, Jiali" sort="Tao, Jiali" uniqKey="Tao J" first="Jiali" last="Tao">Jiali Tao</name>
</author>
<author>
<name sortKey="Wu, Andong" sort="Wu, Andong" uniqKey="Wu A" first="Andong" last="Wu">Andong Wu</name>
</author>
<author>
<name sortKey="Yu, Xiao" sort="Yu, Xiao" uniqKey="Yu X" first="Xiao" last="Yu">Xiao Yu</name>
</author>
<author>
<name sortKey="Zhang, Zhou" sort="Zhang, Zhou" uniqKey="Zhang Z" first="Zhou" last="Zhang">Zhou Zhang</name>
</author>
<author>
<name sortKey="Tian, Jie" sort="Tian, Jie" uniqKey="Tian J" first="Jie" last="Tian">Jie Tian</name>
</author>
<author>
<name sortKey="Guo, Deyin" sort="Guo, Deyin" uniqKey="Guo D" first="Deyin" last="Guo">Deyin Guo</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23702198</idno>
<idno type="pmid">23702198</idno>
<idno type="doi">10.1016/j.virusres.2013.05.001</idno>
<idno type="wicri:Area/PubMed/Corpus">001191</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001191</idno>
<idno type="wicri:Area/PubMed/Curation">001191</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001191</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterization of the guanine-N7 methyltransferase activity of coronavirus nsp14 on nucleotide GTP.</title>
<author>
<name sortKey="Jin, Xu" sort="Jin, Xu" uniqKey="Jin X" first="Xu" last="Jin">Xu Jin</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chen, Yu" sort="Chen, Yu" uniqKey="Chen Y" first="Yu" last="Chen">Yu Chen</name>
</author>
<author>
<name sortKey="Sun, Ying" sort="Sun, Ying" uniqKey="Sun Y" first="Ying" last="Sun">Ying Sun</name>
</author>
<author>
<name sortKey="Zeng, Cong" sort="Zeng, Cong" uniqKey="Zeng C" first="Cong" last="Zeng">Cong Zeng</name>
</author>
<author>
<name sortKey="Wang, Yi" sort="Wang, Yi" uniqKey="Wang Y" first="Yi" last="Wang">Yi Wang</name>
</author>
<author>
<name sortKey="Tao, Jiali" sort="Tao, Jiali" uniqKey="Tao J" first="Jiali" last="Tao">Jiali Tao</name>
</author>
<author>
<name sortKey="Wu, Andong" sort="Wu, Andong" uniqKey="Wu A" first="Andong" last="Wu">Andong Wu</name>
</author>
<author>
<name sortKey="Yu, Xiao" sort="Yu, Xiao" uniqKey="Yu X" first="Xiao" last="Yu">Xiao Yu</name>
</author>
<author>
<name sortKey="Zhang, Zhou" sort="Zhang, Zhou" uniqKey="Zhang Z" first="Zhou" last="Zhang">Zhou Zhang</name>
</author>
<author>
<name sortKey="Tian, Jie" sort="Tian, Jie" uniqKey="Tian J" first="Jie" last="Tian">Jie Tian</name>
</author>
<author>
<name sortKey="Guo, Deyin" sort="Guo, Deyin" uniqKey="Guo D" first="Deyin" last="Guo">Deyin Guo</name>
</author>
</analytic>
<series>
<title level="j">Virus research</title>
<idno type="eISSN">1872-7492</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>DNA Mutational Analysis</term>
<term>Exoribonucleases (metabolism)</term>
<term>Guanosine Triphosphate (metabolism)</term>
<term>Methyltransferases (metabolism)</term>
<term>Substrate Specificity</term>
<term>Viral Nonstructural Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de mutations d'ADN</term>
<term>Exoribonucleases (métabolisme)</term>
<term>Guanosine triphosphate (métabolisme)</term>
<term>Methyltransferases (métabolisme)</term>
<term>Protéines virales non structurales (métabolisme)</term>
<term>Spécificité du substrat</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Exoribonucleases</term>
<term>Guanosine Triphosphate</term>
<term>Methyltransferases</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Exoribonucleases</term>
<term>Guanosine triphosphate</term>
<term>Methyltransferases</term>
<term>Protéines virales non structurales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>DNA Mutational Analysis</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de mutations d'ADN</term>
<term>Spécificité du substrat</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Most eukaryotic viruses that replicate in the cytoplasm, including coronaviruses, have evolved strategies to cap their RNAs. In our previous work, the nonstructural protein (nsp) 14 of severe acute respiratory syndrome coronavirus (SARS-CoV) was identified as a cap (guanine-N7)-methyltransferase (N7-MTase). In this study, we found that GTP, dGTP as well as cap analogs GpppG, GpppA and m7GpppG could be methylated by SARS-CoV nsp14. In contrast, the nsp14 could not modify ATP, CTP, UTP, dATP, dCTP, dUTP or cap analog m7GpppA. Critical residues of nsp14 essential for the methyltransferase activity on GTP were identified, which include F73, R84, W86, R310, D331, G333, P335, Y368, C414, and C416. We further showed that the methyltransferase activity of GTP was universal for nsp14 of other coronaviruses. Moreover, the accumulation of m7GTP or presence of protein nsp14 could interfere with protein translation of cellular mRNAs. Altogether, the results revealed a new enzymatic activity of coronavirus nsp14.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23702198</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>02</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1872-7492</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>176</Volume>
<Issue>1-2</Issue>
<PubDate>
<Year>2013</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Virus research</Title>
<ISOAbbreviation>Virus Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>Characterization of the guanine-N7 methyltransferase activity of coronavirus nsp14 on nucleotide GTP.</ArticleTitle>
<Pagination>
<MedlinePgn>45-52</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.virusres.2013.05.001</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0168-1702(13)00148-2</ELocationID>
<Abstract>
<AbstractText>Most eukaryotic viruses that replicate in the cytoplasm, including coronaviruses, have evolved strategies to cap their RNAs. In our previous work, the nonstructural protein (nsp) 14 of severe acute respiratory syndrome coronavirus (SARS-CoV) was identified as a cap (guanine-N7)-methyltransferase (N7-MTase). In this study, we found that GTP, dGTP as well as cap analogs GpppG, GpppA and m7GpppG could be methylated by SARS-CoV nsp14. In contrast, the nsp14 could not modify ATP, CTP, UTP, dATP, dCTP, dUTP or cap analog m7GpppA. Critical residues of nsp14 essential for the methyltransferase activity on GTP were identified, which include F73, R84, W86, R310, D331, G333, P335, Y368, C414, and C416. We further showed that the methyltransferase activity of GTP was universal for nsp14 of other coronaviruses. Moreover, the accumulation of m7GTP or presence of protein nsp14 could interfere with protein translation of cellular mRNAs. Altogether, the results revealed a new enzymatic activity of coronavirus nsp14.</AbstractText>
<CopyrightInformation>Copyright © 2013 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jin</LastName>
<ForeName>Xu</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Yu</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Ying</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zeng</LastName>
<ForeName>Cong</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Yi</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tao</LastName>
<ForeName>Jiali</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Andong</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Xiao</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Zhou</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tian</LastName>
<ForeName>Jie</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Deyin</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>05</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Virus Res</MedlineTA>
<NlmUniqueID>8410979</NlmUniqueID>
<ISSNLinking>0168-1702</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017361">Viral Nonstructural Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>86-01-1</RegistryNumber>
<NameOfSubstance UI="D006160">Guanosine Triphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.1.1.-</RegistryNumber>
<NameOfSubstance UI="D008780">Methyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.1.1.56</RegistryNumber>
<NameOfSubstance UI="C525596">nsp14 protein, SARS coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="D005095">Exoribonucleases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D004252" MajorTopicYN="N">DNA Mutational Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005095" MajorTopicYN="N">Exoribonucleases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006160" MajorTopicYN="N">Guanosine Triphosphate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008780" MajorTopicYN="N">Methyltransferases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017361" MajorTopicYN="N">Viral Nonstructural Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">AdoMet</Keyword>
<Keyword MajorTopicYN="N">Coronavirus</Keyword>
<Keyword MajorTopicYN="N">GTP methylation</Keyword>
<Keyword MajorTopicYN="N">MTase</Keyword>
<Keyword MajorTopicYN="N">RTC</Keyword>
<Keyword MajorTopicYN="N">S-adenosyl-l-methionine</Keyword>
<Keyword MajorTopicYN="N">SARS</Keyword>
<Keyword MajorTopicYN="N">SARS-CoV</Keyword>
<Keyword MajorTopicYN="N">Translation</Keyword>
<Keyword MajorTopicYN="N">methyltransferase</Keyword>
<Keyword MajorTopicYN="N">nonstructural protein</Keyword>
<Keyword MajorTopicYN="N">nsp</Keyword>
<Keyword MajorTopicYN="N">nsp14</Keyword>
<Keyword MajorTopicYN="N">replication and transcription complex</Keyword>
<Keyword MajorTopicYN="N">severe acute respiratory syndrome coronavirus</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>03</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>05</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>05</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>5</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>5</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>3</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23702198</ArticleId>
<ArticleId IdType="pii">S0168-1702(13)00148-2</ArticleId>
<ArticleId IdType="doi">10.1016/j.virusres.2013.05.001</ArticleId>
<ArticleId IdType="pmc">PMC7114466</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 1999 Jun 29;38(26):8538-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10387101</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1989 Dec;173(2):408-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2596021</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):507-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7831320</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1986 May;151(1):146-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2421482</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1994 Nov;68(11):7418-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7933125</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2004 Jun;11(6):503-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15164008</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Virus Res. 2000;55:135-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11050942</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2003 Oct 10;278(41):39578-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917423</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2007 May;81(9):4412-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17301144</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2011 Oct;7(10):e1002294</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22022266</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Biochem Sci. 2004 Aug;29(8):436-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15362228</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1975 Dec 25;250(24):9322-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1194286</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1976 Dec 10;251(23):7313-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1002690</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(1):203-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19875418</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):5619-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140959</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 1998 May 1;26(9):2050-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9547258</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2008 May;82(9):4471-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18305050</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Cycle. 2007 Jan 1;6(1):65-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17245113</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5108-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16549795</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1982 Feb;41(2):557-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6281467</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2005 Apr 1;280(13):13153-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15677480</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Microbiol. 1983 Aug;135(1):63-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6354131</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12885-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16912115</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Biochem. 1999;68:913-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10872469</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virus Res. 2006 Apr;117(1):17-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16503362</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1999 Dec;73(12):10061-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10559320</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1997 Jan;71(1):392-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8985362</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1980 Dec 10;255(23):11588-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6254974</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2008 Aug;82(16):8071-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18417574</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3484-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19208801</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Prog Nucleic Acid Res Mol Biol. 1995;50:101-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7754031</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Virol. 2012 Aug;157(8):1623-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22527862</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2013 Jun;87(11):6296-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23536667</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biochem Mol Biol. 2007 Sep 30;40(5):649-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17927896</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001191 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001191 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:23702198
   |texte=   Characterization of the guanine-N7 methyltransferase activity of coronavirus nsp14 on nucleotide GTP.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:23702198" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021