Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics.

Identifieur interne : 001145 ( PubMed/Curation ); précédent : 001144; suivant : 001146

Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics.

Auteurs : Everett Clinton Smith [États-Unis] ; Hervé Blanc ; Matthew C. Surdel ; Marco Vignuzzi ; Mark R. Denison

Source :

RBID : pubmed:23966862

Descripteurs français

English descriptors

Abstract

No therapeutics or vaccines currently exist for human coronaviruses (HCoVs). The Severe Acute Respiratory Syndrome-associated coronavirus (SARS-CoV) epidemic in 2002-2003, and the recent emergence of Middle East Respiratory Syndrome coronavirus (MERS-CoV) in April 2012, emphasize the high probability of future zoonotic HCoV emergence causing severe and lethal human disease. Additionally, the resistance of SARS-CoV to ribavirin (RBV) demonstrates the need to define new targets for inhibition of CoV replication. CoVs express a 3'-to-5' exoribonuclease in nonstructural protein 14 (nsp14-ExoN) that is required for high-fidelity replication and is conserved across the CoV family. All genetic and biochemical data support the hypothesis that nsp14-ExoN has an RNA proofreading function. Thus, we hypothesized that ExoN is responsible for CoV resistance to RNA mutagens. We demonstrate that while wild-type (ExoN+) CoVs were resistant to RBV and 5-fluorouracil (5-FU), CoVs lacking ExoN activity (ExoN-) were up to 300-fold more sensitive. While the primary antiviral activity of RBV against CoVs was not mutagenesis, ExoN- CoVs treated with 5-FU demonstrated both enhanced sensitivity during multi-cycle replication, as well as decreased specific infectivity, consistent with 5-FU functioning as a mutagen. Comparison of full-genome next-generation sequencing of 5-FU treated SARS-CoV populations revealed a 16-fold increase in the number of mutations within the ExoN- population as compared to ExoN+. Ninety percent of these mutations represented A:G and U:C transitions, consistent with 5-FU incorporation during RNA synthesis. Together our results constitute direct evidence that CoV ExoN activity provides a critical proofreading function during virus replication. Furthermore, these studies identify ExoN as the first viral protein distinct from the RdRp that determines the sensitivity of RNA viruses to mutagens. Finally, our results show the importance of ExoN as a target for inhibition, and suggest that small-molecule inhibitors of ExoN activity could be potential pan-CoV therapeutics in combination with RBV or RNA mutagens.

DOI: 10.1371/journal.ppat.1003565
PubMed: 23966862

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23966862

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics.</title>
<author>
<name sortKey="Smith, Everett Clinton" sort="Smith, Everett Clinton" uniqKey="Smith E" first="Everett Clinton" last="Smith">Everett Clinton Smith</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Blanc, Herve" sort="Blanc, Herve" uniqKey="Blanc H" first="Hervé" last="Blanc">Hervé Blanc</name>
</author>
<author>
<name sortKey="Surdel, Matthew C" sort="Surdel, Matthew C" uniqKey="Surdel M" first="Matthew C" last="Surdel">Matthew C. Surdel</name>
</author>
<author>
<name sortKey="Vignuzzi, Marco" sort="Vignuzzi, Marco" uniqKey="Vignuzzi M" first="Marco" last="Vignuzzi">Marco Vignuzzi</name>
</author>
<author>
<name sortKey="Denison, Mark R" sort="Denison, Mark R" uniqKey="Denison M" first="Mark R" last="Denison">Mark R. Denison</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23966862</idno>
<idno type="pmid">23966862</idno>
<idno type="doi">10.1371/journal.ppat.1003565</idno>
<idno type="wicri:Area/PubMed/Corpus">001145</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001145</idno>
<idno type="wicri:Area/PubMed/Curation">001145</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001145</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics.</title>
<author>
<name sortKey="Smith, Everett Clinton" sort="Smith, Everett Clinton" uniqKey="Smith E" first="Everett Clinton" last="Smith">Everett Clinton Smith</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Blanc, Herve" sort="Blanc, Herve" uniqKey="Blanc H" first="Hervé" last="Blanc">Hervé Blanc</name>
</author>
<author>
<name sortKey="Surdel, Matthew C" sort="Surdel, Matthew C" uniqKey="Surdel M" first="Matthew C" last="Surdel">Matthew C. Surdel</name>
</author>
<author>
<name sortKey="Vignuzzi, Marco" sort="Vignuzzi, Marco" uniqKey="Vignuzzi M" first="Marco" last="Vignuzzi">Marco Vignuzzi</name>
</author>
<author>
<name sortKey="Denison, Mark R" sort="Denison, Mark R" uniqKey="Denison M" first="Mark R" last="Denison">Mark R. Denison</name>
</author>
</analytic>
<series>
<title level="j">PLoS pathogens</title>
<idno type="eISSN">1553-7374</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Antiviral Agents (pharmacology)</term>
<term>Apoptosis (drug effects)</term>
<term>Astrocytoma (drug therapy)</term>
<term>Astrocytoma (metabolism)</term>
<term>Astrocytoma (virology)</term>
<term>Brain Neoplasms (drug therapy)</term>
<term>Brain Neoplasms (metabolism)</term>
<term>Brain Neoplasms (virology)</term>
<term>Cell Proliferation (drug effects)</term>
<term>Coronavirus (drug effects)</term>
<term>Coronavirus (enzymology)</term>
<term>Coronavirus (genetics)</term>
<term>Coronavirus Infections (drug therapy)</term>
<term>Coronavirus Infections (genetics)</term>
<term>Coronavirus Infections (virology)</term>
<term>Exoribonucleases (genetics)</term>
<term>Exoribonucleases (metabolism)</term>
<term>Genome, Viral</term>
<term>Humans</term>
<term>Mice</term>
<term>Mutagenesis (genetics)</term>
<term>Mutagens (pharmacology)</term>
<term>Mutation (genetics)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Viral (genetics)</term>
<term>RNA, Viral (metabolism)</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
<term>Tumor Cells, Cultured</term>
<term>Viral Proteins (genetics)</term>
<term>Viral Proteins (metabolism)</term>
<term>Virus Replication (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>ARN viral (génétique)</term>
<term>ARN viral (métabolisme)</term>
<term>Animaux</term>
<term>Antiviraux (pharmacologie)</term>
<term>Apoptose ()</term>
<term>Astrocytome (métabolisme)</term>
<term>Astrocytome (traitement médicamenteux)</term>
<term>Astrocytome (virologie)</term>
<term>Cellules cancéreuses en culture</term>
<term>Coronavirus ()</term>
<term>Coronavirus (enzymologie)</term>
<term>Coronavirus (génétique)</term>
<term>Exoribonucleases (génétique)</term>
<term>Exoribonucleases (métabolisme)</term>
<term>Génome viral</term>
<term>Humains</term>
<term>Infections à coronavirus (génétique)</term>
<term>Infections à coronavirus (traitement médicamenteux)</term>
<term>Infections à coronavirus (virologie)</term>
<term>Mutagenèse (génétique)</term>
<term>Mutagènes (pharmacologie)</term>
<term>Mutation (génétique)</term>
<term>Prolifération cellulaire ()</term>
<term>Protéines virales (génétique)</term>
<term>Protéines virales (métabolisme)</term>
<term>RT-PCR</term>
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Réplication virale ()</term>
<term>Souris</term>
<term>Tumeurs du cerveau (métabolisme)</term>
<term>Tumeurs du cerveau (traitement médicamenteux)</term>
<term>Tumeurs du cerveau (virologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Exoribonucleases</term>
<term>RNA, Messenger</term>
<term>RNA, Viral</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Exoribonucleases</term>
<term>RNA, Viral</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antiviral Agents</term>
<term>Mutagens</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Apoptosis</term>
<term>Cell Proliferation</term>
<term>Coronavirus</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Astrocytoma</term>
<term>Brain Neoplasms</term>
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Coronavirus</term>
<term>Coronavirus Infections</term>
<term>Mutagenesis</term>
<term>Mutation</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>ARN viral</term>
<term>Coronavirus</term>
<term>Exoribonucleases</term>
<term>Infections à coronavirus</term>
<term>Mutagenèse</term>
<term>Mutation</term>
<term>Protéines virales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Astrocytoma</term>
<term>Brain Neoplasms</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN viral</term>
<term>Astrocytome</term>
<term>Exoribonucleases</term>
<term>Protéines virales</term>
<term>Tumeurs du cerveau</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antiviraux</term>
<term>Mutagènes</term>
</keywords>
<keywords scheme="MESH" qualifier="traitement médicamenteux" xml:lang="fr">
<term>Astrocytome</term>
<term>Infections à coronavirus</term>
<term>Tumeurs du cerveau</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Astrocytome</term>
<term>Infections à coronavirus</term>
<term>Tumeurs du cerveau</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Astrocytoma</term>
<term>Brain Neoplasms</term>
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Genome, Viral</term>
<term>Humans</term>
<term>Mice</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
<term>Tumor Cells, Cultured</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Apoptose</term>
<term>Cellules cancéreuses en culture</term>
<term>Coronavirus</term>
<term>Génome viral</term>
<term>Humains</term>
<term>Prolifération cellulaire</term>
<term>RT-PCR</term>
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Réplication virale</term>
<term>Souris</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">No therapeutics or vaccines currently exist for human coronaviruses (HCoVs). The Severe Acute Respiratory Syndrome-associated coronavirus (SARS-CoV) epidemic in 2002-2003, and the recent emergence of Middle East Respiratory Syndrome coronavirus (MERS-CoV) in April 2012, emphasize the high probability of future zoonotic HCoV emergence causing severe and lethal human disease. Additionally, the resistance of SARS-CoV to ribavirin (RBV) demonstrates the need to define new targets for inhibition of CoV replication. CoVs express a 3'-to-5' exoribonuclease in nonstructural protein 14 (nsp14-ExoN) that is required for high-fidelity replication and is conserved across the CoV family. All genetic and biochemical data support the hypothesis that nsp14-ExoN has an RNA proofreading function. Thus, we hypothesized that ExoN is responsible for CoV resistance to RNA mutagens. We demonstrate that while wild-type (ExoN+) CoVs were resistant to RBV and 5-fluorouracil (5-FU), CoVs lacking ExoN activity (ExoN-) were up to 300-fold more sensitive. While the primary antiviral activity of RBV against CoVs was not mutagenesis, ExoN- CoVs treated with 5-FU demonstrated both enhanced sensitivity during multi-cycle replication, as well as decreased specific infectivity, consistent with 5-FU functioning as a mutagen. Comparison of full-genome next-generation sequencing of 5-FU treated SARS-CoV populations revealed a 16-fold increase in the number of mutations within the ExoN- population as compared to ExoN+. Ninety percent of these mutations represented A:G and U:C transitions, consistent with 5-FU incorporation during RNA synthesis. Together our results constitute direct evidence that CoV ExoN activity provides a critical proofreading function during virus replication. Furthermore, these studies identify ExoN as the first viral protein distinct from the RdRp that determines the sensitivity of RNA viruses to mutagens. Finally, our results show the importance of ExoN as a target for inhibition, and suggest that small-molecule inhibitors of ExoN activity could be potential pan-CoV therapeutics in combination with RBV or RNA mutagens.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23966862</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>05</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1553-7374</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2013</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>PLoS pathogens</Title>
<ISOAbbreviation>PLoS Pathog.</ISOAbbreviation>
</Journal>
<ArticleTitle>Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics.</ArticleTitle>
<Pagination>
<MedlinePgn>e1003565</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.ppat.1003565</ELocationID>
<Abstract>
<AbstractText>No therapeutics or vaccines currently exist for human coronaviruses (HCoVs). The Severe Acute Respiratory Syndrome-associated coronavirus (SARS-CoV) epidemic in 2002-2003, and the recent emergence of Middle East Respiratory Syndrome coronavirus (MERS-CoV) in April 2012, emphasize the high probability of future zoonotic HCoV emergence causing severe and lethal human disease. Additionally, the resistance of SARS-CoV to ribavirin (RBV) demonstrates the need to define new targets for inhibition of CoV replication. CoVs express a 3'-to-5' exoribonuclease in nonstructural protein 14 (nsp14-ExoN) that is required for high-fidelity replication and is conserved across the CoV family. All genetic and biochemical data support the hypothesis that nsp14-ExoN has an RNA proofreading function. Thus, we hypothesized that ExoN is responsible for CoV resistance to RNA mutagens. We demonstrate that while wild-type (ExoN+) CoVs were resistant to RBV and 5-fluorouracil (5-FU), CoVs lacking ExoN activity (ExoN-) were up to 300-fold more sensitive. While the primary antiviral activity of RBV against CoVs was not mutagenesis, ExoN- CoVs treated with 5-FU demonstrated both enhanced sensitivity during multi-cycle replication, as well as decreased specific infectivity, consistent with 5-FU functioning as a mutagen. Comparison of full-genome next-generation sequencing of 5-FU treated SARS-CoV populations revealed a 16-fold increase in the number of mutations within the ExoN- population as compared to ExoN+. Ninety percent of these mutations represented A:G and U:C transitions, consistent with 5-FU incorporation during RNA synthesis. Together our results constitute direct evidence that CoV ExoN activity provides a critical proofreading function during virus replication. Furthermore, these studies identify ExoN as the first viral protein distinct from the RdRp that determines the sensitivity of RNA viruses to mutagens. Finally, our results show the importance of ExoN as a target for inhibition, and suggest that small-molecule inhibitors of ExoN activity could be potential pan-CoV therapeutics in combination with RBV or RNA mutagens.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>Everett Clinton</ForeName>
<Initials>EC</Initials>
<AffiliationInfo>
<Affiliation>Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Blanc</LastName>
<ForeName>Hervé</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Surdel</LastName>
<ForeName>Matthew C</ForeName>
<Initials>MC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vignuzzi</LastName>
<ForeName>Marco</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Denison</LastName>
<ForeName>Mark R</ForeName>
<Initials>MR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01-AI108197</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 AI095202</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32-AI095202</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI108197</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM007347</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U54-AI057157</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>08</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Pathog</MedlineTA>
<NlmUniqueID>101238921</NlmUniqueID>
<ISSNLinking>1553-7366</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009153">Mutagens</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012367">RNA, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="D005095">Exoribonucleases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>PLoS Pathog. 2014 Jul;10(7):e1004342</RefSource>
<Note>Surdel, Matthew C [added]</Note>
</CommentsCorrections>
<CommentsCorrections RefType="CommentIn">
<RefSource>Nat Rev Microbiol. 2013 Oct;11(10):662-3</RefSource>
<PMID Version="1">24018385</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017209" MajorTopicYN="N">Apoptosis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001254" MajorTopicYN="N">Astrocytoma</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001932" MajorTopicYN="N">Brain Neoplasms</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049109" MajorTopicYN="N">Cell Proliferation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="N">Coronavirus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005095" MajorTopicYN="N">Exoribonucleases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016679" MajorTopicYN="N">Genome, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016296" MajorTopicYN="N">Mutagenesis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009153" MajorTopicYN="N">Mutagens</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012367" MajorTopicYN="N">RNA, Viral</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014407" MajorTopicYN="N">Tumor Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>05</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>07</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>8</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>8</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>5</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23966862</ArticleId>
<ArticleId IdType="doi">10.1371/journal.ppat.1003565</ArticleId>
<ArticleId IdType="pii">PPATHOGENS-D-13-01270</ArticleId>
<ArticleId IdType="pmc">PMC3744431</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9372-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22635272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):E2294-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22853955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Virol. 2012 Oct;2(5):519-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22857992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2012;17(40):20290</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23078800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Dec;86(23):12816-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22993147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(11):e1003030</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23166498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2012;3(6). pii: e00473-12. doi: 10.1128/mBio.00473-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23170002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2012 Dec;18(12):1820-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23142821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Feb 22;288(8):5572-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23283971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Apr;87(7):3741-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23325689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Mar 14;495(7440):251-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23486063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jun;87(11):6296-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23536667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Jun 2;299(2):405-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10860748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2000 Dec;6(12):1375-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11100123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2001 Jan 10;285(2):193-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11176813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 Mar 1;29(5):1017-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11222749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6895-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11371613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jun 29;276(26):23616-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11319228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Nov 2;276(44):40847-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11526116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Dec 7;276(49):46094-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11602568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2002 Apr;46(4):977-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11897578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Med (Berl). 2002 Feb;80(2):86-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11907645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12938-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12215495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Nov;76(21):11065-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Apr 19;361(9366):1319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7289-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12754380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Jun 14;361(9374):2045-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12814717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Oct 31;278(44):43770-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12882968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12995-3000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14569023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2003 Dec 23;42(50):14711-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14674745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1969 Aug 23;223(5208):848-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5799033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1969 Jul;113(3):515-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5807210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1972 Aug 25;177(4050):705-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4340949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1973 Apr;70(4):1174-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4197928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 1983 May 20;249(19):2666-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6341640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 1986 Jan 2;314(1):20-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3940312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1989 Jun;170(2):385-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2728344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2417-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2006180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1991 Apr;181(2):490-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1826574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Dec 25;268(36):27286-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7903306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1994 Feb;242(3):289-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8107676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Aug 9;271(32):19428-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8702631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 1998 Aug;39(2):63-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9806484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 1998 Nov 19;339(21):1493-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9819447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2005 Feb;107(2):207-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15649566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 8;280(27):25706-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15878882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chest. 2005 Jul;128(1):263-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16002945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Aug 19;280(33):29980-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15964835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Jan 19;439(7074):344-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16327776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2006 Apr;117(1):17-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16503362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5108-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16549795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2005 Oct;1(2):e11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16220146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2006 Jul;87(Pt 7):1947-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16760396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2006 Aug;71(1):53-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16621037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2006;581:61-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17037505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2006 Sep;3(9):e343</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16968120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Feb;81(4):2012-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17151116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Mar 9;366(5):1459-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17223130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacotherapy. 2007 Apr;27(4):494-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17381375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Apr;81(8):4012-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17267506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jun;81(12):6356-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17392363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Nov;81(22):12135-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17804504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2007 Dec;6(12):991-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18049473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2008 Feb;14(2):154-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18246077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2008 Apr;14(4):626-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18400147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2008 Oct 10;382(3):652-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18662697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Dec;82(24):12346-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18829745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3484-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19208801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 May;83(9):4538-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19244331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Jun;7(6):439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19430490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jul 15;25(14):1754-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19451168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2009 Sep;15(9):1377-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19788804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Apr;6(4):e1000863</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20421945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 May;6(5):e1000896</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20463816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(6):e11265</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20582319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010;6(8):e1001072</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20865120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Dec 28;107(52):22505-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Future Med Chem. 2009 Jun;1(3):529-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21426129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA Biol. 2011 Mar-Apr;8(2):270-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21593585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):16038-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21896755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Mar;86(5):2869-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22190724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Virol. 2011 Nov;1(5):419-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22440845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(3):e32550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22442668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2012 Jun;76(2):159-216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22688811</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001145 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001145 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:23966862
   |texte=   Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:23966862" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021