Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Coronaviruses induce entry-independent, continuous macropinocytosis.

Identifieur interne : 000F51 ( PubMed/Curation ); précédent : 000F50; suivant : 000F52

Coronaviruses induce entry-independent, continuous macropinocytosis.

Auteurs : Megan Culler Freeman ; Christopher T. Peek ; Michelle M. Becker ; Everett Clinton Smith ; Mark R. Denison [États-Unis]

Source :

RBID : pubmed:25096879

Descripteurs français

English descriptors

Abstract

Macropinocytosis is exploited by many pathogens for entry into cells. Coronaviruses (CoVs) such as severe acute respiratory syndrome (SARS) CoV and Middle East respiratory syndrome CoV are important human pathogens; however, macropinocytosis during CoV infection has not been investigated. We demonstrate that the CoVs SARS CoV and murine hepatitis virus (MHV) induce macropinocytosis, which occurs late during infection, is continuous, and is not associated with virus entry. MHV-induced macropinocytosis results in vesicle internalization, as well as extended filopodia capable of fusing with distant cells. MHV-induced macropinocytosis requires fusogenic spike protein on the cell surface and is dependent on epidermal growth factor receptor activation. Inhibition of macropinocytosis reduces supernatant viral titers and syncytia but not intracellular virus titers. These results indicate that macropinocytosis likely facilitates CoV infection through enhanced cell-to-cell spreading. Our studies are the first to demonstrate virus use of macropinocytosis for a role other than entry and suggest a much broader potential exploitation of macropinocytosis in virus replication and host interactions. Importance: Coronaviruses (CoVs), including severe acute respiratory syndrome (SARS) CoV and Middle East respiratory syndrome CoV, are critical emerging human pathogens. Macropinocytosis is induced by many pathogens to enter host cells, but other functions for macropinocytosis in virus replication are unknown. In this work, we show that CoVs induce a macropinocytosis late in infection that is continuous, independent from cell entry, and associated with increased virus titers and cell fusion. Murine hepatitis virus macropinocytosis requires a fusogenic virus spike protein and signals through the epidermal growth factor receptor and the classical macropinocytosis pathway. These studies demonstrate CoV induction of macropinocytosis for a purpose other than entry and indicate that viruses likely exploit macropinocytosis at multiple steps in replication and pathogenesis.

DOI: 10.1128/mBio.01340-14
PubMed: 25096879

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25096879

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Coronaviruses induce entry-independent, continuous macropinocytosis.</title>
<author>
<name sortKey="Freeman, Megan Culler" sort="Freeman, Megan Culler" uniqKey="Freeman M" first="Megan Culler" last="Freeman">Megan Culler Freeman</name>
</author>
<author>
<name sortKey="Peek, Christopher T" sort="Peek, Christopher T" uniqKey="Peek C" first="Christopher T" last="Peek">Christopher T. Peek</name>
</author>
<author>
<name sortKey="Becker, Michelle M" sort="Becker, Michelle M" uniqKey="Becker M" first="Michelle M" last="Becker">Michelle M. Becker</name>
</author>
<author>
<name sortKey="Smith, Everett Clinton" sort="Smith, Everett Clinton" uniqKey="Smith E" first="Everett Clinton" last="Smith">Everett Clinton Smith</name>
</author>
<author>
<name sortKey="Denison, Mark R" sort="Denison, Mark R" uniqKey="Denison M" first="Mark R" last="Denison">Mark R. Denison</name>
<affiliation wicri:level="1">
<nlm:affiliation>mark.denison@vanderbilt.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25096879</idno>
<idno type="pmid">25096879</idno>
<idno type="doi">10.1128/mBio.01340-14</idno>
<idno type="wicri:Area/PubMed/Corpus">000F51</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000F51</idno>
<idno type="wicri:Area/PubMed/Curation">000F51</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000F51</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Coronaviruses induce entry-independent, continuous macropinocytosis.</title>
<author>
<name sortKey="Freeman, Megan Culler" sort="Freeman, Megan Culler" uniqKey="Freeman M" first="Megan Culler" last="Freeman">Megan Culler Freeman</name>
</author>
<author>
<name sortKey="Peek, Christopher T" sort="Peek, Christopher T" uniqKey="Peek C" first="Christopher T" last="Peek">Christopher T. Peek</name>
</author>
<author>
<name sortKey="Becker, Michelle M" sort="Becker, Michelle M" uniqKey="Becker M" first="Michelle M" last="Becker">Michelle M. Becker</name>
</author>
<author>
<name sortKey="Smith, Everett Clinton" sort="Smith, Everett Clinton" uniqKey="Smith E" first="Everett Clinton" last="Smith">Everett Clinton Smith</name>
</author>
<author>
<name sortKey="Denison, Mark R" sort="Denison, Mark R" uniqKey="Denison M" first="Mark R" last="Denison">Mark R. Denison</name>
<affiliation wicri:level="1">
<nlm:affiliation>mark.denison@vanderbilt.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mBio</title>
<idno type="eISSN">2150-7511</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Cell Line, Tumor</term>
<term>Coronavirus (physiology)</term>
<term>Mice</term>
<term>Pinocytosis (physiology)</term>
<term>Pseudopodia (physiology)</term>
<term>SARS Virus (physiology)</term>
<term>Virus Replication (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Coronavirus (physiologie)</term>
<term>Lignée cellulaire tumorale</term>
<term>Pinocytose (physiologie)</term>
<term>Pseudopodes (physiologie)</term>
<term>Réplication virale (physiologie)</term>
<term>Souris</term>
<term>Virus du SRAS (physiologie)</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Coronavirus</term>
<term>Pinocytose</term>
<term>Pseudopodes</term>
<term>Réplication virale</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Coronavirus</term>
<term>Pinocytosis</term>
<term>Pseudopodia</term>
<term>SARS Virus</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line, Tumor</term>
<term>Mice</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Lignée cellulaire tumorale</term>
<term>Souris</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Macropinocytosis is exploited by many pathogens for entry into cells. Coronaviruses (CoVs) such as severe acute respiratory syndrome (SARS) CoV and Middle East respiratory syndrome CoV are important human pathogens; however, macropinocytosis during CoV infection has not been investigated. We demonstrate that the CoVs SARS CoV and murine hepatitis virus (MHV) induce macropinocytosis, which occurs late during infection, is continuous, and is not associated with virus entry. MHV-induced macropinocytosis results in vesicle internalization, as well as extended filopodia capable of fusing with distant cells. MHV-induced macropinocytosis requires fusogenic spike protein on the cell surface and is dependent on epidermal growth factor receptor activation. Inhibition of macropinocytosis reduces supernatant viral titers and syncytia but not intracellular virus titers. These results indicate that macropinocytosis likely facilitates CoV infection through enhanced cell-to-cell spreading. Our studies are the first to demonstrate virus use of macropinocytosis for a role other than entry and suggest a much broader potential exploitation of macropinocytosis in virus replication and host interactions. Importance: Coronaviruses (CoVs), including severe acute respiratory syndrome (SARS) CoV and Middle East respiratory syndrome CoV, are critical emerging human pathogens. Macropinocytosis is induced by many pathogens to enter host cells, but other functions for macropinocytosis in virus replication are unknown. In this work, we show that CoVs induce a macropinocytosis late in infection that is continuous, independent from cell entry, and associated with increased virus titers and cell fusion. Murine hepatitis virus macropinocytosis requires a fusogenic virus spike protein and signals through the epidermal growth factor receptor and the classical macropinocytosis pathway. These studies demonstrate CoV induction of macropinocytosis for a purpose other than entry and indicate that viruses likely exploit macropinocytosis at multiple steps in replication and pathogenesis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25096879</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>05</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>04</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2150-7511</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2014</Year>
<Month>Aug</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>mBio</Title>
<ISOAbbreviation>mBio</ISOAbbreviation>
</Journal>
<ArticleTitle>Coronaviruses induce entry-independent, continuous macropinocytosis.</ArticleTitle>
<Pagination>
<MedlinePgn>e01340-14</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mBio.01340-14</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">e01340-14</ELocationID>
<Abstract>
<AbstractText>Macropinocytosis is exploited by many pathogens for entry into cells. Coronaviruses (CoVs) such as severe acute respiratory syndrome (SARS) CoV and Middle East respiratory syndrome CoV are important human pathogens; however, macropinocytosis during CoV infection has not been investigated. We demonstrate that the CoVs SARS CoV and murine hepatitis virus (MHV) induce macropinocytosis, which occurs late during infection, is continuous, and is not associated with virus entry. MHV-induced macropinocytosis results in vesicle internalization, as well as extended filopodia capable of fusing with distant cells. MHV-induced macropinocytosis requires fusogenic spike protein on the cell surface and is dependent on epidermal growth factor receptor activation. Inhibition of macropinocytosis reduces supernatant viral titers and syncytia but not intracellular virus titers. These results indicate that macropinocytosis likely facilitates CoV infection through enhanced cell-to-cell spreading. Our studies are the first to demonstrate virus use of macropinocytosis for a role other than entry and suggest a much broader potential exploitation of macropinocytosis in virus replication and host interactions. Importance: Coronaviruses (CoVs), including severe acute respiratory syndrome (SARS) CoV and Middle East respiratory syndrome CoV, are critical emerging human pathogens. Macropinocytosis is induced by many pathogens to enter host cells, but other functions for macropinocytosis in virus replication are unknown. In this work, we show that CoVs induce a macropinocytosis late in infection that is continuous, independent from cell entry, and associated with increased virus titers and cell fusion. Murine hepatitis virus macropinocytosis requires a fusogenic virus spike protein and signals through the epidermal growth factor receptor and the classical macropinocytosis pathway. These studies demonstrate CoV induction of macropinocytosis for a purpose other than entry and indicate that viruses likely exploit macropinocytosis at multiple steps in replication and pathogenesis.</AbstractText>
<CopyrightInformation>Copyright © 2014 Freeman et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Freeman</LastName>
<ForeName>Megan Culler</ForeName>
<Initials>MC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Peek</LastName>
<ForeName>Christopher T</ForeName>
<Initials>CT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Becker</LastName>
<ForeName>Michelle M</ForeName>
<Initials>MM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>Everett Clinton</ForeName>
<Initials>EC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Denison</LastName>
<ForeName>Mark R</ForeName>
<Initials>MR</Initials>
<AffiliationInfo>
<Affiliation>mark.denison@vanderbilt.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>AI108197</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 AI095202</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI108197</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI050083</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI50083</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>DK20593</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM007347</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 DK020593</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>08</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mBio</MedlineTA>
<NlmUniqueID>101519231</NlmUniqueID>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045744" MajorTopicYN="N">Cell Line, Tumor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="N">Coronavirus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010873" MajorTopicYN="N">Pinocytosis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011554" MajorTopicYN="N">Pseudopodia</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>5</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25096879</ArticleId>
<ArticleId IdType="pii">mBio.01340-14</ArticleId>
<ArticleId IdType="doi">10.1128/mBio.01340-14</ArticleId>
<ArticleId IdType="pmc">PMC4128357</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Neurology. 1984 May;34(5):597-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6324031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2012 Jun;4(6):1011-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22816037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2006 Dec 1;66(23):11094-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17145849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Med Microbiol. 2002 Feb;291(6-7):487-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11890548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 May;88(10):5319-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24623413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1994 Mar;124(5):689-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8120092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Apr;74(7):3379-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10708455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1993 Aug;67(8):4504-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8392595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12995-3000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14569023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Jun;7(6):439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19430490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2009 Jun 1;122(Pt 11):1713-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19461071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2011 Apr 4;193(1):61-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21464228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Mar 14;299(5613):1713-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12589003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2009 Apr;10(4):364-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19192253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2013 Oct;445(1-2):99-114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23731971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Jul 26;362(9380):263-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Feb 12;327(5967):873-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20093437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jun;80(12):5768-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2001 Oct 2;11(19):R795-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11591341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2009 May;11(5):510-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19404330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1987 Sep;105(3):1215-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2821011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Jpn J Microbiol. 1976 Jun;20(3):219-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">184329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2001 Oct 1;61(19):7184-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11585753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2006 May;7(5):589-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16643281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1989 Dec;109(6 Pt 1):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2556406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 1995 Nov;5(11):424-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14732047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1995 Mar;95(3):1026-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7883950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(7):e6130</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19572016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Mar;78(6):2682-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14990688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2005 Mar;75(3):455-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15648064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2013;4(4). pii: e00524-13. doi: 10.1128/mBio.00524-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23943763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2012 Aug;15(4):490-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22749376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(6):e1002754</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22719252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2000 Oct 19;10(20):R739-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11069097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):5957-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 23;300(5623):1295-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(12):e1003072</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23236283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2001 Mar;75(5):2452-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11160748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Mar;74(5):2239-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10666254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Sep 16;6(9):e226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18798692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 1984 Mar;33(2):281-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6325194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2008 Aug;9(8):639-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18612320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Oct;74(19):9206-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10982367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 May 18;107(20):9346-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20439710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Mar;79(6):3391-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15731233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Dec 25;284(52):36592-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19840943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2009 Dec 20;395(2):298-311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19854459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1979 Oct;83(1):82-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">315944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Sep;82(17):8721-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18579604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):6048-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15141003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1994 Apr;200(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8128613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1995 Dec 7;378(6557):636-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8524400</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F51 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000F51 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:25096879
   |texte=   Coronaviruses induce entry-independent, continuous macropinocytosis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:25096879" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021