Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Human coronavirus OC43 3CL protease and the potential of ML188 as a broad-spectrum lead compound: homology modelling and molecular dynamic studies.

Identifieur interne : 000E24 ( PubMed/Curation ); précédent : 000E23; suivant : 000E25

Human coronavirus OC43 3CL protease and the potential of ML188 as a broad-spectrum lead compound: homology modelling and molecular dynamic studies.

Auteurs : Michael Berry [Afrique du Sud] ; Burtram Fielding [Afrique du Sud] ; Junaid Gamieldien [Afrique du Sud]

Source :

RBID : pubmed:25928480

Descripteurs français

English descriptors

Abstract

The coronavirus 3 chymotrypsin-like protease (3CL(pro)) is a validated target in the design of potential anticoronavirus inhibitors. The high degree of homology within the protease's active site and substrate conservation supports the identification of broad spectrum lead compounds. A previous study identified the compound ML188, also termed 16R, as an inhibitor of the Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) 3CL(pro). This study will detail the generation of a homology model of the 3CL(pro) of the human coronavirus OC43 and determine the potential of 16R to form a broad-spectrum lead compound. MODELLER was used to generate a suitable three-dimensional model of the OC43 3CL(pro) and the Prime module of Schrӧdinger predicted the binding conformation and free energy of binding of 16R within the 3CL(pro) active site. Molecular dynamics further confirmed ligand stability and hydrogen bonding networks.

DOI: 10.1186/s12900-015-0035-3
PubMed: 25928480

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25928480

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Human coronavirus OC43 3CL protease and the potential of ML188 as a broad-spectrum lead compound: homology modelling and molecular dynamic studies.</title>
<author>
<name sortKey="Berry, Michael" sort="Berry, Michael" uniqKey="Berry M" first="Michael" last="Berry">Michael Berry</name>
<affiliation wicri:level="1">
<nlm:affiliation>South African National Bioinformatics Institute/ MRC Unit for Bioinformatics Capacity Development, University of the Western Cape, Bellville, South Africa. michael@sanbi.ac.za.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>South African National Bioinformatics Institute/ MRC Unit for Bioinformatics Capacity Development, University of the Western Cape, Bellville</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Fielding, Burtram" sort="Fielding, Burtram" uniqKey="Fielding B" first="Burtram" last="Fielding">Burtram Fielding</name>
<affiliation wicri:level="1">
<nlm:affiliation>Molecular Biology and Virology Laboratory, Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa. bfielding@uwc.ac.za.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Molecular Biology and Virology Laboratory, Department of Medical Biosciences, University of the Western Cape, Bellville</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Gamieldien, Junaid" sort="Gamieldien, Junaid" uniqKey="Gamieldien J" first="Junaid" last="Gamieldien">Junaid Gamieldien</name>
<affiliation wicri:level="1">
<nlm:affiliation>South African National Bioinformatics Institute/ MRC Unit for Bioinformatics Capacity Development, University of the Western Cape, Bellville, South Africa. junaid@sanbi.ac.za.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>South African National Bioinformatics Institute/ MRC Unit for Bioinformatics Capacity Development, University of the Western Cape, Bellville</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25928480</idno>
<idno type="pmid">25928480</idno>
<idno type="doi">10.1186/s12900-015-0035-3</idno>
<idno type="wicri:Area/PubMed/Corpus">000E24</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000E24</idno>
<idno type="wicri:Area/PubMed/Curation">000E24</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000E24</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Human coronavirus OC43 3CL protease and the potential of ML188 as a broad-spectrum lead compound: homology modelling and molecular dynamic studies.</title>
<author>
<name sortKey="Berry, Michael" sort="Berry, Michael" uniqKey="Berry M" first="Michael" last="Berry">Michael Berry</name>
<affiliation wicri:level="1">
<nlm:affiliation>South African National Bioinformatics Institute/ MRC Unit for Bioinformatics Capacity Development, University of the Western Cape, Bellville, South Africa. michael@sanbi.ac.za.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>South African National Bioinformatics Institute/ MRC Unit for Bioinformatics Capacity Development, University of the Western Cape, Bellville</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Fielding, Burtram" sort="Fielding, Burtram" uniqKey="Fielding B" first="Burtram" last="Fielding">Burtram Fielding</name>
<affiliation wicri:level="1">
<nlm:affiliation>Molecular Biology and Virology Laboratory, Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa. bfielding@uwc.ac.za.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Molecular Biology and Virology Laboratory, Department of Medical Biosciences, University of the Western Cape, Bellville</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Gamieldien, Junaid" sort="Gamieldien, Junaid" uniqKey="Gamieldien J" first="Junaid" last="Gamieldien">Junaid Gamieldien</name>
<affiliation wicri:level="1">
<nlm:affiliation>South African National Bioinformatics Institute/ MRC Unit for Bioinformatics Capacity Development, University of the Western Cape, Bellville, South Africa. junaid@sanbi.ac.za.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>South African National Bioinformatics Institute/ MRC Unit for Bioinformatics Capacity Development, University of the Western Cape, Bellville</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC structural biology</title>
<idno type="eISSN">1472-6807</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetamides (pharmacology)</term>
<term>Catalytic Domain</term>
<term>Coronavirus OC43, Human (chemistry)</term>
<term>Coronavirus OC43, Human (enzymology)</term>
<term>Cysteine Endopeptidases (chemistry)</term>
<term>Cysteine Endopeptidases (metabolism)</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>Molecular Dynamics Simulation</term>
<term>Protein Structure, Tertiary</term>
<term>Structural Homology, Protein</term>
<term>Structure-Activity Relationship</term>
<term>Viral Proteins (antagonists & inhibitors)</term>
<term>Viral Proteins (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acétamides (pharmacologie)</term>
<term>Coronavirus humain OC43 ()</term>
<term>Coronavirus humain OC43 (enzymologie)</term>
<term>Cysteine endopeptidases ()</term>
<term>Cysteine endopeptidases (métabolisme)</term>
<term>Domaine catalytique</term>
<term>Humains</term>
<term>Modèles moléculaires</term>
<term>Protéines virales ()</term>
<term>Protéines virales (antagonistes et inhibiteurs)</term>
<term>Relation structure-activité</term>
<term>Similitude structurale de protéines</term>
<term>Simulation de dynamique moléculaire</term>
<term>Structure tertiaire des protéines</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cysteine Endopeptidases</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cysteine Endopeptidases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Acetamides</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Protéines virales</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Coronavirus OC43, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Coronavirus humain OC43</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Coronavirus OC43, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cysteine endopeptidases</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acétamides</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Catalytic Domain</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>Molecular Dynamics Simulation</term>
<term>Protein Structure, Tertiary</term>
<term>Structural Homology, Protein</term>
<term>Structure-Activity Relationship</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Coronavirus humain OC43</term>
<term>Cysteine endopeptidases</term>
<term>Domaine catalytique</term>
<term>Humains</term>
<term>Modèles moléculaires</term>
<term>Protéines virales</term>
<term>Relation structure-activité</term>
<term>Similitude structurale de protéines</term>
<term>Simulation de dynamique moléculaire</term>
<term>Structure tertiaire des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The coronavirus 3 chymotrypsin-like protease (3CL(pro)) is a validated target in the design of potential anticoronavirus inhibitors. The high degree of homology within the protease's active site and substrate conservation supports the identification of broad spectrum lead compounds. A previous study identified the compound ML188, also termed 16R, as an inhibitor of the Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) 3CL(pro). This study will detail the generation of a homology model of the 3CL(pro) of the human coronavirus OC43 and determine the potential of 16R to form a broad-spectrum lead compound. MODELLER was used to generate a suitable three-dimensional model of the OC43 3CL(pro) and the Prime module of Schrӧdinger predicted the binding conformation and free energy of binding of 16R within the 3CL(pro) active site. Molecular dynamics further confirmed ligand stability and hydrogen bonding networks.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25928480</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>01</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1472-6807</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<PubDate>
<Year>2015</Year>
<Month>Apr</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>BMC structural biology</Title>
<ISOAbbreviation>BMC Struct. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Human coronavirus OC43 3CL protease and the potential of ML188 as a broad-spectrum lead compound: homology modelling and molecular dynamic studies.</ArticleTitle>
<Pagination>
<MedlinePgn>8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12900-015-0035-3</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The coronavirus 3 chymotrypsin-like protease (3CL(pro)) is a validated target in the design of potential anticoronavirus inhibitors. The high degree of homology within the protease's active site and substrate conservation supports the identification of broad spectrum lead compounds. A previous study identified the compound ML188, also termed 16R, as an inhibitor of the Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) 3CL(pro). This study will detail the generation of a homology model of the 3CL(pro) of the human coronavirus OC43 and determine the potential of 16R to form a broad-spectrum lead compound. MODELLER was used to generate a suitable three-dimensional model of the OC43 3CL(pro) and the Prime module of Schrӧdinger predicted the binding conformation and free energy of binding of 16R within the 3CL(pro) active site. Molecular dynamics further confirmed ligand stability and hydrogen bonding networks.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">A high quality homology model of the OC43 3CL(pro) was successfully generated in an active conformation. Further studies reproduced the binding pose of 16R within the active site of the generated model, where its free energy of binding was shown to equal that of the 3CL(pro) of SARS-CoV, a receptor it is experimentally proven to inhibit. The stability of the ligand was subsequently confirmed by molecular dynamics.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">The lead compound 16R may represent a broad-spectrum inhibitor of the 3CL(pro) of OC43 and potentially other coronaviruses. This study provides an atomistic structure of the 3CL(pro) of OC43 and supports further experimental validation of the inhibitory effects of 16R. These findings further confirm that the 3CL(pro) of coronaviruses can be inhibited by broad spectrum lead compounds.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Berry</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>South African National Bioinformatics Institute/ MRC Unit for Bioinformatics Capacity Development, University of the Western Cape, Bellville, South Africa. michael@sanbi.ac.za.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fielding</LastName>
<ForeName>Burtram</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Molecular Biology and Virology Laboratory, Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa. bfielding@uwc.ac.za.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gamieldien</LastName>
<ForeName>Junaid</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>South African National Bioinformatics Institute/ MRC Unit for Bioinformatics Capacity Development, University of the Western Cape, Bellville, South Africa. junaid@sanbi.ac.za.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>04</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Struct Biol</MedlineTA>
<NlmUniqueID>101088689</NlmUniqueID>
<ISSNLinking>1472-6807</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000081">Acetamides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="C099456">3C-like proteinase, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="D003546">Cysteine Endopeptidases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000081" MajorTopicYN="N">Acetamides</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028962" MajorTopicYN="N">Coronavirus OC43, Human</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003546" MajorTopicYN="N">Cysteine Endopeptidases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056004" MajorTopicYN="N">Molecular Dynamics Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040681" MajorTopicYN="N">Structural Homology, Protein</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>11</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>04</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>1</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25928480</ArticleId>
<ArticleId IdType="doi">10.1186/s12900-015-0035-3</ArticleId>
<ArticleId IdType="pii">10.1186/s12900-015-0035-3</ArticleId>
<ArticleId IdType="pmc">PMC4411765</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Chem Theory Comput. 2010 May 11;6(5):1509-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26615687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2004 May 1;55(2):351-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15048827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pediatr Infect Dis J. 2013 Apr;32(4):325-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23337903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2003 Apr 15;36(8):985-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12684910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1994 Sep;3(9):1582-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7833817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2006 Jun;44(6):2063-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16757599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2013 May;69(Pt 5):747-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23633583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Apr;81(7):3051-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17079323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Jan 15;22(2):195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16301204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 Oct;3(10):e324</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16128623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2011 Aug;32(11):2359-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21541964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Sep 2;280(35):31257-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15788388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2001 Sep 13;44(19):3043-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11543671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2005 Dec 1;192(11):1898-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16267760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2009 Mar 15;199(6):847-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19239338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(11):e27228</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22073294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2006 Nov;15(11):2507-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17075131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Oct 23;553(3):451-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14572668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2000 Apr;81(Pt 4):853-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jun 13;300(5626):1763-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 1998 Apr 30;102(18):3586-616</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24889800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W407-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17517781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2003 Oct 1;37(7):929-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13130404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2002 Mar;83(Pt 3):595-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11842254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2008 May 22;51(10):2907-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18442228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2002 Jul 12;320(3):597-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12096912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 1993 Dec;17(4):355-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8108378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Pharm Des. 2006;12(35):4573-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17168763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Sep;82(17):8647-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18562531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2007 Feb 1;66(2):467-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17083088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem Lett. 2010 Jun 15;20(12):3569-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20494577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Mar;82(5):2515-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18094151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2013 Jan 24;56(2):534-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23231439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1993 Dec 5;234(3):779-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8254673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Mar 20;284(12):7646-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19144641</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E24 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000E24 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:25928480
   |texte=   Human coronavirus OC43 3CL protease and the potential of ML188 as a broad-spectrum lead compound: homology modelling and molecular dynamic studies.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:25928480" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021