Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reconstitution of the receptor-binding motif of the SARS coronavirus.

Identifieur interne : 000D50 ( PubMed/Curation ); précédent : 000D49; suivant : 000D51

Reconstitution of the receptor-binding motif of the SARS coronavirus.

Auteurs : Natalia T. Freund [États-Unis] ; Anna Roitburd-Berman [Israël] ; Jianhua Sui [République populaire de Chine] ; Wayne A. Marasco [États-Unis] ; Jonathan M. Gershoni [Israël]

Source :

RBID : pubmed:26487711

Descripteurs français

English descriptors

Abstract

The severe acute respiratory syndrome (SARS) coronavirus (CoV) identified in 2003 has infected ∼8000 people worldwide, killing nearly 10% of them. The infection of target cells by the SARS CoV is mediated through the interaction of the viral Spike (S) protein (1255 amino acids) and its cellular receptor, angiotensin-converting enzyme 2 (ACE2). The SARS CoV receptor-binding domain (amino acids N318-T509 of S protein) harbors an extended excursion along its periphery that contacts ACE2 and is designated the receptor-binding motif (RBM, amino acids S432-T486). In addition, the RBM is a major antigenic determinant, able to elicit production of neutralizing antibodies. Hence, the role of the RBM is a bi-functional bioactive surface that can be demonstrated by antibodies such as the neutralizing human anti-SARS monoclonal antibody (mAb) 80R which targets the RBM and competes with the ACE2 receptor for binding. Here, we employ phage-display peptide-libraries to reconstitute a functional RBM. This is achieved by generating a vast collection of candidate RBM peptides that present a diversity of conformations. Screening such 'Conformer Libraries' with corresponding ligands has produced short RBM constructs (ca. 40 amino acids) that can bind both the ACE2 receptor and the neutralizing mAb 80R.

DOI: 10.1093/protein/gzv052
PubMed: 26487711

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:26487711

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reconstitution of the receptor-binding motif of the SARS coronavirus.</title>
<author>
<name sortKey="Freund, Natalia T" sort="Freund, Natalia T" uniqKey="Freund N" first="Natalia T" last="Freund">Natalia T. Freund</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel Present address: Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel Present address: Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Roitburd Berman, Anna" sort="Roitburd Berman, Anna" uniqKey="Roitburd Berman A" first="Anna" last="Roitburd-Berman">Anna Roitburd-Berman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sui, Jianhua" sort="Sui, Jianhua" uniqKey="Sui J" first="Jianhua" last="Sui">Jianhua Sui</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute Department of Medicine, Harvard Medical School, Boston, MA 02115, USA Present address: National Institute of Biological Sciences, Beijing 102206, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute Department of Medicine, Harvard Medical School, Boston, MA 02115, USA Present address: National Institute of Biological Sciences, Beijing 102206</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Marasco, Wayne A" sort="Marasco, Wayne A" uniqKey="Marasco W" first="Wayne A" last="Marasco">Wayne A. Marasco</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute Department of Medicine, Harvard Medical School, Boston, MA 02115</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Gershoni, Jonathan M" sort="Gershoni, Jonathan M" uniqKey="Gershoni J" first="Jonathan M" last="Gershoni">Jonathan M. Gershoni</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel gershoni@tauex.tau.ac.il.</nlm:affiliation>
<country wicri:rule="url">Israël</country>
<wicri:regionArea>Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26487711</idno>
<idno type="pmid">26487711</idno>
<idno type="doi">10.1093/protein/gzv052</idno>
<idno type="wicri:Area/PubMed/Corpus">000D50</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000D50</idno>
<idno type="wicri:Area/PubMed/Curation">000D50</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000D50</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Reconstitution of the receptor-binding motif of the SARS coronavirus.</title>
<author>
<name sortKey="Freund, Natalia T" sort="Freund, Natalia T" uniqKey="Freund N" first="Natalia T" last="Freund">Natalia T. Freund</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel Present address: Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel Present address: Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Roitburd Berman, Anna" sort="Roitburd Berman, Anna" uniqKey="Roitburd Berman A" first="Anna" last="Roitburd-Berman">Anna Roitburd-Berman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sui, Jianhua" sort="Sui, Jianhua" uniqKey="Sui J" first="Jianhua" last="Sui">Jianhua Sui</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute Department of Medicine, Harvard Medical School, Boston, MA 02115, USA Present address: National Institute of Biological Sciences, Beijing 102206, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute Department of Medicine, Harvard Medical School, Boston, MA 02115, USA Present address: National Institute of Biological Sciences, Beijing 102206</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Marasco, Wayne A" sort="Marasco, Wayne A" uniqKey="Marasco W" first="Wayne A" last="Marasco">Wayne A. Marasco</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute Department of Medicine, Harvard Medical School, Boston, MA 02115</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Gershoni, Jonathan M" sort="Gershoni, Jonathan M" uniqKey="Gershoni J" first="Jonathan M" last="Gershoni">Jonathan M. Gershoni</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel gershoni@tauex.tau.ac.il.</nlm:affiliation>
<country wicri:rule="url">Israël</country>
<wicri:regionArea>Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Protein engineering, design & selection : PEDS</title>
<idno type="eISSN">1741-0134</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Motifs (genetics)</term>
<term>Amino Acid Sequence</term>
<term>Binding Sites (genetics)</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Peptide Fragments (chemistry)</term>
<term>Peptide Fragments (genetics)</term>
<term>Peptide Fragments (metabolism)</term>
<term>Peptide Library</term>
<term>Peptidyl-Dipeptidase A (chemistry)</term>
<term>Peptidyl-Dipeptidase A (metabolism)</term>
<term>SARS Virus (genetics)</term>
<term>Spike Glycoprotein, Coronavirus (chemistry)</term>
<term>Spike Glycoprotein, Coronavirus (genetics)</term>
<term>Spike Glycoprotein, Coronavirus (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Banque de peptides</term>
<term>Données de séquences moléculaires</term>
<term>Fragments peptidiques ()</term>
<term>Fragments peptidiques (génétique)</term>
<term>Fragments peptidiques (métabolisme)</term>
<term>Glycoprotéine de spicule des coronavirus ()</term>
<term>Glycoprotéine de spicule des coronavirus (génétique)</term>
<term>Glycoprotéine de spicule des coronavirus (métabolisme)</term>
<term>Humains</term>
<term>Modèles moléculaires</term>
<term>Motifs d'acides aminés (génétique)</term>
<term>Peptidyl-Dipeptidase A ()</term>
<term>Peptidyl-Dipeptidase A (métabolisme)</term>
<term>Sites de fixation (génétique)</term>
<term>Séquence d'acides aminés</term>
<term>Virus du SRAS (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Peptide Fragments</term>
<term>Peptidyl-Dipeptidase A</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Binding Sites</term>
<term>Peptide Fragments</term>
<term>SARS Virus</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Fragments peptidiques</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Motifs d'acides aminés</term>
<term>Sites de fixation</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Peptide Fragments</term>
<term>Peptidyl-Dipeptidase A</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Fragments peptidiques</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Peptidyl-Dipeptidase A</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Peptide Library</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Banque de peptides</term>
<term>Données de séquences moléculaires</term>
<term>Fragments peptidiques</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Humains</term>
<term>Modèles moléculaires</term>
<term>Peptidyl-Dipeptidase A</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The severe acute respiratory syndrome (SARS) coronavirus (CoV) identified in 2003 has infected ∼8000 people worldwide, killing nearly 10% of them. The infection of target cells by the SARS CoV is mediated through the interaction of the viral Spike (S) protein (1255 amino acids) and its cellular receptor, angiotensin-converting enzyme 2 (ACE2). The SARS CoV receptor-binding domain (amino acids N318-T509 of S protein) harbors an extended excursion along its periphery that contacts ACE2 and is designated the receptor-binding motif (RBM, amino acids S432-T486). In addition, the RBM is a major antigenic determinant, able to elicit production of neutralizing antibodies. Hence, the role of the RBM is a bi-functional bioactive surface that can be demonstrated by antibodies such as the neutralizing human anti-SARS monoclonal antibody (mAb) 80R which targets the RBM and competes with the ACE2 receptor for binding. Here, we employ phage-display peptide-libraries to reconstitute a functional RBM. This is achieved by generating a vast collection of candidate RBM peptides that present a diversity of conformations. Screening such 'Conformer Libraries' with corresponding ligands has produced short RBM constructs (ca. 40 amino acids) that can bind both the ACE2 receptor and the neutralizing mAb 80R. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26487711</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>05</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1741-0134</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>28</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2015</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Protein engineering, design & selection : PEDS</Title>
<ISOAbbreviation>Protein Eng. Des. Sel.</ISOAbbreviation>
</Journal>
<ArticleTitle>Reconstitution of the receptor-binding motif of the SARS coronavirus.</ArticleTitle>
<Pagination>
<MedlinePgn>567-75</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/protein/gzv052</ELocationID>
<Abstract>
<AbstractText>The severe acute respiratory syndrome (SARS) coronavirus (CoV) identified in 2003 has infected ∼8000 people worldwide, killing nearly 10% of them. The infection of target cells by the SARS CoV is mediated through the interaction of the viral Spike (S) protein (1255 amino acids) and its cellular receptor, angiotensin-converting enzyme 2 (ACE2). The SARS CoV receptor-binding domain (amino acids N318-T509 of S protein) harbors an extended excursion along its periphery that contacts ACE2 and is designated the receptor-binding motif (RBM, amino acids S432-T486). In addition, the RBM is a major antigenic determinant, able to elicit production of neutralizing antibodies. Hence, the role of the RBM is a bi-functional bioactive surface that can be demonstrated by antibodies such as the neutralizing human anti-SARS monoclonal antibody (mAb) 80R which targets the RBM and competes with the ACE2 receptor for binding. Here, we employ phage-display peptide-libraries to reconstitute a functional RBM. This is achieved by generating a vast collection of candidate RBM peptides that present a diversity of conformations. Screening such 'Conformer Libraries' with corresponding ligands has produced short RBM constructs (ca. 40 amino acids) that can bind both the ACE2 receptor and the neutralizing mAb 80R. </AbstractText>
<CopyrightInformation>© The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Freund</LastName>
<ForeName>Natalia T</ForeName>
<Initials>NT</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel Present address: Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Roitburd-Berman</LastName>
<ForeName>Anna</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sui</LastName>
<ForeName>Jianhua</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute Department of Medicine, Harvard Medical School, Boston, MA 02115, USA Present address: National Institute of Biological Sciences, Beijing 102206, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Marasco</LastName>
<ForeName>Wayne A</ForeName>
<Initials>WA</Initials>
<AffiliationInfo>
<Affiliation>Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gershoni</LastName>
<ForeName>Jonathan M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel gershoni@tauex.tau.ac.il.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>10</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Protein Eng Des Sel</MedlineTA>
<NlmUniqueID>101186484</NlmUniqueID>
<ISSNLinking>1741-0126</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010446">Peptide Fragments</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019151">Peptide Library</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.15.1</RegistryNumber>
<NameOfSubstance UI="D007703">Peptidyl-Dipeptidase A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.17.-</RegistryNumber>
<NameOfSubstance UI="C413524">angiotensin converting enzyme 2</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010446" MajorTopicYN="N">Peptide Fragments</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019151" MajorTopicYN="Y">Peptide Library</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007703" MajorTopicYN="N">Peptidyl-Dipeptidase A</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">bioactive peptide</Keyword>
<Keyword MajorTopicYN="N">conformational library</Keyword>
<Keyword MajorTopicYN="N">phage-display</Keyword>
<Keyword MajorTopicYN="N">virus spike</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>07</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>09</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>10</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>10</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26487711</ArticleId>
<ArticleId IdType="pii">gzv052</ArticleId>
<ArticleId IdType="doi">10.1093/protein/gzv052</ArticleId>
<ArticleId IdType="pmc">PMC7107155</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol Methods. 2014 Jun;201:1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24530430</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Dec 26;312(4):1159-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14651994</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1994 Sep;68(9):5403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7520090</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1991 Dec;65(12):6881-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1719235</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2008 Nov;4(11):e1000197</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18989460</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2007;35(1):69-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17151070</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12123-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17620608</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2001 May 15;29(10):E50-0</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11353095</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2006 Nov 10;281(45):34610-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16954221</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2005 Sep 16;309(5742):1864-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16166518</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2008 Apr;82(7):3220-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18199635</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2003 Apr;77(7):4435-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12634402</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2012 Sep;86(17):9113-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22696652</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1993 Jan;67(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8380065</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 2004 Dec;10(12 Suppl):S88-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15577937</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Anal Biochem. 2012 Jan 1;420(1):68-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21945353</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12467-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15306681</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2007 Dec 1;23(23):3244-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17977889</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2006 May 26;359(1):190-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16630634</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2003 Feb;77(4):2530-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12551991</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Dis. 2010 Mar 15;201(6):946-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20144042</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2005 May 20;348(5):1153-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15854651</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FASEB J. 2006 Sep;20(11):1762-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16940148</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Anal Biochem. 2013 Jan 15;432(2):63-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23017878</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Mar;7(3):226-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19198616</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2004 Jan 30;279(5):3197-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14670965</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Comb Chem. 2005 Sep-Oct;7(5):648-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16153058</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Antiviral Res. 2006 Feb;69(2):70-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16337697</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2006 Jun 9;281(23):15829-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16597622</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 May;79(10):5900-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15857975</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BioDrugs. 2007;21(3):145-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17516710</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Rev Med Virol. 2012 Jan;22(1):2-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21905149</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proteins. 2007 Jul 1;68(1):294-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17427229</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Antiviral Res. 2012 Jun;94(3):288-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22265858</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Immunol. 2008 Jul;45(12):3477-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18023478</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2536-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14983044</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 May;78(9):4552-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15078936</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19458158</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 1992 Jun 4;357(6377):420-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1350662</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D50 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000D50 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:26487711
   |texte=   Reconstitution of the receptor-binding motif of the SARS coronavirus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:26487711" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021