Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Avoiding Regions Symptomatic of Conformational and Functional Flexibility to Identify Antiviral Targets in Current and Future Coronaviruses.

Identifieur interne : 000B93 ( PubMed/Curation ); précédent : 000B92; suivant : 000B94

Avoiding Regions Symptomatic of Conformational and Functional Flexibility to Identify Antiviral Targets in Current and Future Coronaviruses.

Auteurs : Jordon Rahaman [États-Unis] ; Jessica Siltberg-Liberles [États-Unis]

Source :

RBID : pubmed:27797946

Descripteurs français

English descriptors

Abstract

Within the last 15 years, two related coronaviruses (Severe Acute Respiratory Syndrome [SARS]-CoV and Middle East Respiratory Syndrome [MERS]-CoV) expanded their host range to include humans, with increased virulence in their new host. Coronaviruses were recently found to have little intrinsic disorder compared with many other virus families. Because intrinsically disordered regions have been proposed to be important for rewiring interactions between virus and host, we investigated the conservation of intrinsic disorder and secondary structure in coronaviruses in an evolutionary context. We found that regions of intrinsic disorder are rarely conserved among different coronavirus protein families, with the primary exception of the nucleocapsid. Also, secondary structure predictions are only conserved across 50-80% of sites for most protein families, with the implication that 20-50% of sites do not have conserved secondary structure prediction. Furthermore, nonconserved structure sites are significantly less constrained in sequence divergence than either sites conserved in the secondary structure or sites conserved in loop. Avoiding regions symptomatic of conformational flexibility such as disordered sites and sites with nonconserved secondary structure to identify potential broad-specificity antiviral targets, only one sequence motif (five residues or longer) remains from the >10,000 starting sites across all coronaviruses in this study. The identified sequence motif is found within the nonstructural protein (NSP) 12 and constitutes an antiviral target potentially effective against the present day and future coronaviruses. On shorter evolutionary timescales, the SARS and MERS clades have more sequence motifs fulfilling the criteria applied. Interestingly, many motifs map to NSP12 making this a prime target for coronavirus antivirals.

DOI: 10.1093/gbe/evw246
PubMed: 27797946

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:27797946

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Avoiding Regions Symptomatic of Conformational and Functional Flexibility to Identify Antiviral Targets in Current and Future Coronaviruses.</title>
<author>
<name sortKey="Rahaman, Jordon" sort="Rahaman, Jordon" uniqKey="Rahaman J" first="Jordon" last="Rahaman">Jordon Rahaman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Florida International University, Miami, FL.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Floride</region>
</placeName>
<wicri:cityArea>Department of Biological Sciences, Florida International University, Miami</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Siltberg Liberles, Jessica" sort="Siltberg Liberles, Jessica" uniqKey="Siltberg Liberles J" first="Jessica" last="Siltberg-Liberles">Jessica Siltberg-Liberles</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, Florida International University, Miami, FL jliberle@fiu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Florida International University, Miami</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27797946</idno>
<idno type="pmid">27797946</idno>
<idno type="doi">10.1093/gbe/evw246</idno>
<idno type="wicri:Area/PubMed/Corpus">000B93</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000B93</idno>
<idno type="wicri:Area/PubMed/Curation">000B93</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000B93</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Avoiding Regions Symptomatic of Conformational and Functional Flexibility to Identify Antiviral Targets in Current and Future Coronaviruses.</title>
<author>
<name sortKey="Rahaman, Jordon" sort="Rahaman, Jordon" uniqKey="Rahaman J" first="Jordon" last="Rahaman">Jordon Rahaman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Florida International University, Miami, FL.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Floride</region>
</placeName>
<wicri:cityArea>Department of Biological Sciences, Florida International University, Miami</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Siltberg Liberles, Jessica" sort="Siltberg Liberles, Jessica" uniqKey="Siltberg Liberles J" first="Jessica" last="Siltberg-Liberles">Jessica Siltberg-Liberles</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, Florida International University, Miami, FL jliberle@fiu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Florida International University, Miami</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Genome biology and evolution</title>
<idno type="eISSN">1759-6653</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antiviral Agents (pharmacology)</term>
<term>Binding Sites</term>
<term>Conserved Sequence</term>
<term>Evolution, Molecular</term>
<term>Genome, Viral</term>
<term>Intrinsically Disordered Proteins (chemistry)</term>
<term>Intrinsically Disordered Proteins (genetics)</term>
<term>Middle East Respiratory Syndrome Coronavirus (drug effects)</term>
<term>Middle East Respiratory Syndrome Coronavirus (genetics)</term>
<term>Nucleotide Motifs</term>
<term>Protein Binding</term>
<term>SARS Virus (drug effects)</term>
<term>SARS Virus (genetics)</term>
<term>Viral Proteins (chemistry)</term>
<term>Viral Proteins (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antiviraux (pharmacologie)</term>
<term>Coronavirus du syndrome respiratoire du Moyen-Orient ()</term>
<term>Coronavirus du syndrome respiratoire du Moyen-Orient (génétique)</term>
<term>Génome viral</term>
<term>Liaison aux protéines</term>
<term>Motifs nucléotidiques</term>
<term>Protéines intrinsèquement désordonnées ()</term>
<term>Protéines intrinsèquement désordonnées (génétique)</term>
<term>Protéines virales ()</term>
<term>Protéines virales (génétique)</term>
<term>Sites de fixation</term>
<term>Séquence conservée</term>
<term>Virus du SRAS ()</term>
<term>Virus du SRAS (génétique)</term>
<term>Évolution moléculaire</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Intrinsically Disordered Proteins</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Intrinsically Disordered Proteins</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antiviral Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Middle East Respiratory Syndrome Coronavirus</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Middle East Respiratory Syndrome Coronavirus</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Coronavirus du syndrome respiratoire du Moyen-Orient</term>
<term>Protéines intrinsèquement désordonnées</term>
<term>Protéines virales</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antiviraux</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Conserved Sequence</term>
<term>Evolution, Molecular</term>
<term>Genome, Viral</term>
<term>Nucleotide Motifs</term>
<term>Protein Binding</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Coronavirus du syndrome respiratoire du Moyen-Orient</term>
<term>Génome viral</term>
<term>Liaison aux protéines</term>
<term>Motifs nucléotidiques</term>
<term>Protéines intrinsèquement désordonnées</term>
<term>Protéines virales</term>
<term>Sites de fixation</term>
<term>Séquence conservée</term>
<term>Virus du SRAS</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Within the last 15 years, two related coronaviruses (Severe Acute Respiratory Syndrome [SARS]-CoV and Middle East Respiratory Syndrome [MERS]-CoV) expanded their host range to include humans, with increased virulence in their new host. Coronaviruses were recently found to have little intrinsic disorder compared with many other virus families. Because intrinsically disordered regions have been proposed to be important for rewiring interactions between virus and host, we investigated the conservation of intrinsic disorder and secondary structure in coronaviruses in an evolutionary context. We found that regions of intrinsic disorder are rarely conserved among different coronavirus protein families, with the primary exception of the nucleocapsid. Also, secondary structure predictions are only conserved across 50-80% of sites for most protein families, with the implication that 20-50% of sites do not have conserved secondary structure prediction. Furthermore, nonconserved structure sites are significantly less constrained in sequence divergence than either sites conserved in the secondary structure or sites conserved in loop. Avoiding regions symptomatic of conformational flexibility such as disordered sites and sites with nonconserved secondary structure to identify potential broad-specificity antiviral targets, only one sequence motif (five residues or longer) remains from the >10,000 starting sites across all coronaviruses in this study. The identified sequence motif is found within the nonstructural protein (NSP) 12 and constitutes an antiviral target potentially effective against the present day and future coronaviruses. On shorter evolutionary timescales, the SARS and MERS clades have more sequence motifs fulfilling the criteria applied. Interestingly, many motifs map to NSP12 making this a prime target for coronavirus antivirals.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27797946</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>09</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1759-6653</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2016</Year>
<Month>12</Month>
<Day>31</Day>
</PubDate>
</JournalIssue>
<Title>Genome biology and evolution</Title>
<ISOAbbreviation>Genome Biol Evol</ISOAbbreviation>
</Journal>
<ArticleTitle>Avoiding Regions Symptomatic of Conformational and Functional Flexibility to Identify Antiviral Targets in Current and Future Coronaviruses.</ArticleTitle>
<Pagination>
<MedlinePgn>3471-3484</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/gbe/evw246</ELocationID>
<Abstract>
<AbstractText>Within the last 15 years, two related coronaviruses (Severe Acute Respiratory Syndrome [SARS]-CoV and Middle East Respiratory Syndrome [MERS]-CoV) expanded their host range to include humans, with increased virulence in their new host. Coronaviruses were recently found to have little intrinsic disorder compared with many other virus families. Because intrinsically disordered regions have been proposed to be important for rewiring interactions between virus and host, we investigated the conservation of intrinsic disorder and secondary structure in coronaviruses in an evolutionary context. We found that regions of intrinsic disorder are rarely conserved among different coronavirus protein families, with the primary exception of the nucleocapsid. Also, secondary structure predictions are only conserved across 50-80% of sites for most protein families, with the implication that 20-50% of sites do not have conserved secondary structure prediction. Furthermore, nonconserved structure sites are significantly less constrained in sequence divergence than either sites conserved in the secondary structure or sites conserved in loop. Avoiding regions symptomatic of conformational flexibility such as disordered sites and sites with nonconserved secondary structure to identify potential broad-specificity antiviral targets, only one sequence motif (five residues or longer) remains from the >10,000 starting sites across all coronaviruses in this study. The identified sequence motif is found within the nonstructural protein (NSP) 12 and constitutes an antiviral target potentially effective against the present day and future coronaviruses. On shorter evolutionary timescales, the SARS and MERS clades have more sequence motifs fulfilling the criteria applied. Interestingly, many motifs map to NSP12 making this a prime target for coronavirus antivirals.</AbstractText>
<CopyrightInformation>© The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rahaman</LastName>
<ForeName>Jordon</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Florida International University, Miami, FL.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Siltberg-Liberles</LastName>
<ForeName>Jessica</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Florida International University, Miami, FL jliberle@fiu.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, FL.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>12</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Genome Biol Evol</MedlineTA>
<NlmUniqueID>101509707</NlmUniqueID>
<ISSNLinking>1759-6653</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064267">Intrinsically Disordered Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016679" MajorTopicYN="N">Genome, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064267" MajorTopicYN="N">Intrinsically Disordered Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065207" MajorTopicYN="N">Middle East Respiratory Syndrome Coronavirus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059372" MajorTopicYN="Y">Nucleotide Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Coronavirus</Keyword>
<Keyword MajorTopicYN="Y">MERS-CoV</Keyword>
<Keyword MajorTopicYN="Y">divergence</Keyword>
<Keyword MajorTopicYN="Y">evolution</Keyword>
<Keyword MajorTopicYN="Y">evolutionary dynamics</Keyword>
<Keyword MajorTopicYN="Y">structural disorder</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>11</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>11</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27797946</ArticleId>
<ArticleId IdType="pii">evw246</ArticleId>
<ArticleId IdType="doi">10.1093/gbe/evw246</ArticleId>
<ArticleId IdType="pmc">PMC5203785</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2430-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15695582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2016 Jun;24(6):490-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27012512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2000 Apr;16(4):404-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10869041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2015;1282:1-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25720466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Jan 1;28(1):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10592235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 May 20;5:3877</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24846574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 May 04;6:25049</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27142087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9436-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26159422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2011 Oct 20;11:234</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22014111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Aug 12;19(12):1572-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12912839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jul 1;43(W1):W389-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25883141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2013;5(3):504-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23418179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Mar 02;6:22298</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26931396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes (Basel). 2011 Oct 28;2(4):748-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24710290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1992 Jun;8(3):275-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1633570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antivir Ther. 2007;12(4 Pt B):651-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17944272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2015 Jan;235(2):185-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25270030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Virol. 2016 Feb;16:55-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26826951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jul 15;30(14):3059-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12136088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Microbes Infect. 2012 Nov;1(11):e35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26038405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Negl Trop Dis. 2015 Jun 11;9(6):e0003749</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26065421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2012 Oct 04;17(40):20290</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23078800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Jun;33(6):1635-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26921390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2005 Apr 8;347(4):827-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15769473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2010 Nov;36 Suppl 1:S21-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20801001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Aug 15;21(16):3433-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15955779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W36-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2014 Jul 9;114(13):6880-911</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24823319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Jun;88(11):6181-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24648453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Apr 19;8(4):e60724</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23620725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jul;87(14):7790-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23678167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Oct 14;9(10):e109832</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25314659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2007 Nov;16(11):2472-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17962404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Dec 11;10(12):e1004529</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25502394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13190-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14585926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Sep 30;43(17):8416-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26304538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Nov 15;26(22):2914-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20876605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Sep 1;20(13):2138-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15044227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Virol. 2012 Feb;2(1):63-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22440968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2004 Sep;21(9):1781-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15201400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2012 Nov 20;3(6):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23170002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2015 Aug;23(8):468-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26206723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Virol. 2011 Oct;1(4):289-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22440785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2001 Aug;17(8):754-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11524383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Aug 15;154(4):763-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23953110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Vaccines. 2012 Mar;11(3):267-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22380818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Pept Lett. 2008;15(9):956-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18991772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2011 Apr 5;29(16):3043-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21320540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2010 Mar;27(3):703-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19808865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2006 May 10;348(2):437-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16545415</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B93 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000B93 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:27797946
   |texte=   Avoiding Regions Symptomatic of Conformational and Functional Flexibility to Identify Antiviral Targets in Current and Future Coronaviruses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:27797946" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021