Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Coronavirus nucleocapsid proteins assemble constitutively in high molecular oligomers.

Identifieur interne : 000A98 ( PubMed/Curation ); précédent : 000A97; suivant : 000A99

Coronavirus nucleocapsid proteins assemble constitutively in high molecular oligomers.

Auteurs : Yingying Cong [Pays-Bas] ; Franziska Kriegenburg [Pays-Bas] ; Cornelis A M. De Haan [Pays-Bas] ; Fulvio Reggiori [Pays-Bas]

Source :

RBID : pubmed:28720894

Descripteurs français

English descriptors

Abstract

Coronaviruses (CoV) are enveloped viruses and rely on their nucleocapsid N protein to incorporate the positive-stranded genomic RNA into the virions. CoV N proteins form oligomers but the mechanism and relevance underlying their multimerization remain to be fully understood. Using in vitro pull-down experiments and density glycerol gradients, we found that at least 3 regions distributed over its entire length mediate the self-interaction of mouse hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus (SARS-CoV) N protein. The fact that these regions can bind reciprocally between themselves provides a possible molecular basis for N protein oligomerization. Interestingly, cytoplasmic N molecules of MHV-infected cells constitutively assemble into oligomers through a process that does not require binding to genomic RNA. Based on our data, we propose a model where constitutive N protein oligomerization allows the optimal loading of the genomic viral RNA into a ribonucleoprotein complex via the presentation of multiple viral RNA binding motifs.

DOI: 10.1038/s41598-017-06062-w
PubMed: 28720894

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:28720894

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Coronavirus nucleocapsid proteins assemble constitutively in high molecular oligomers.</title>
<author>
<name sortKey="Cong, Yingying" sort="Cong, Yingying" uniqKey="Cong Y" first="Yingying" last="Cong">Yingying Cong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kriegenburg, Franziska" sort="Kriegenburg, Franziska" uniqKey="Kriegenburg F" first="Franziska" last="Kriegenburg">Franziska Kriegenburg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="De Haan, Cornelis A M" sort="De Haan, Cornelis A M" uniqKey="De Haan C" first="Cornelis A M" last="De Haan">Cornelis A M. De Haan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Reggiori, Fulvio" sort="Reggiori, Fulvio" uniqKey="Reggiori F" first="Fulvio" last="Reggiori">Fulvio Reggiori</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands. f.m.reggiori@umcg.nl.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28720894</idno>
<idno type="pmid">28720894</idno>
<idno type="doi">10.1038/s41598-017-06062-w</idno>
<idno type="wicri:Area/PubMed/Corpus">000A98</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000A98</idno>
<idno type="wicri:Area/PubMed/Curation">000A98</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000A98</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Coronavirus nucleocapsid proteins assemble constitutively in high molecular oligomers.</title>
<author>
<name sortKey="Cong, Yingying" sort="Cong, Yingying" uniqKey="Cong Y" first="Yingying" last="Cong">Yingying Cong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kriegenburg, Franziska" sort="Kriegenburg, Franziska" uniqKey="Kriegenburg F" first="Franziska" last="Kriegenburg">Franziska Kriegenburg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="De Haan, Cornelis A M" sort="De Haan, Cornelis A M" uniqKey="De Haan C" first="Cornelis A M" last="De Haan">Cornelis A M. De Haan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Reggiori, Fulvio" sort="Reggiori, Fulvio" uniqKey="Reggiori F" first="Fulvio" last="Reggiori">Fulvio Reggiori</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands. f.m.reggiori@umcg.nl.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Mice</term>
<term>Nucleocapsid Proteins (metabolism)</term>
<term>Protein Binding</term>
<term>Protein Multimerization</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Liaison aux protéines</term>
<term>Lignée cellulaire</term>
<term>Multimérisation de protéines</term>
<term>Protéines nucléocapside (métabolisme)</term>
<term>Souris</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Nucleocapsid Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines nucléocapside</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Mice</term>
<term>Protein Binding</term>
<term>Protein Multimerization</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Liaison aux protéines</term>
<term>Lignée cellulaire</term>
<term>Multimérisation de protéines</term>
<term>Souris</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Coronaviruses (CoV) are enveloped viruses and rely on their nucleocapsid N protein to incorporate the positive-stranded genomic RNA into the virions. CoV N proteins form oligomers but the mechanism and relevance underlying their multimerization remain to be fully understood. Using in vitro pull-down experiments and density glycerol gradients, we found that at least 3 regions distributed over its entire length mediate the self-interaction of mouse hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus (SARS-CoV) N protein. The fact that these regions can bind reciprocally between themselves provides a possible molecular basis for N protein oligomerization. Interestingly, cytoplasmic N molecules of MHV-infected cells constitutively assemble into oligomers through a process that does not require binding to genomic RNA. Based on our data, we propose a model where constitutive N protein oligomerization allows the optimal loading of the genomic viral RNA into a ribonucleoprotein complex via the presentation of multiple viral RNA binding motifs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28720894</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>01</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>07</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Coronavirus nucleocapsid proteins assemble constitutively in high molecular oligomers.</ArticleTitle>
<Pagination>
<MedlinePgn>5740</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-017-06062-w</ELocationID>
<Abstract>
<AbstractText>Coronaviruses (CoV) are enveloped viruses and rely on their nucleocapsid N protein to incorporate the positive-stranded genomic RNA into the virions. CoV N proteins form oligomers but the mechanism and relevance underlying their multimerization remain to be fully understood. Using in vitro pull-down experiments and density glycerol gradients, we found that at least 3 regions distributed over its entire length mediate the self-interaction of mouse hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus (SARS-CoV) N protein. The fact that these regions can bind reciprocally between themselves provides a possible molecular basis for N protein oligomerization. Interestingly, cytoplasmic N molecules of MHV-infected cells constitutively assemble into oligomers through a process that does not require binding to genomic RNA. Based on our data, we propose a model where constitutive N protein oligomerization allows the optimal loading of the genomic viral RNA into a ribonucleoprotein complex via the presentation of multiple viral RNA binding motifs.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cong</LastName>
<ForeName>Yingying</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kriegenburg</LastName>
<ForeName>Franziska</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>de Haan</LastName>
<ForeName>Cornelis A M</ForeName>
<Initials>CAM</Initials>
<AffiliationInfo>
<Affiliation>Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reggiori</LastName>
<ForeName>Fulvio</ForeName>
<Initials>F</Initials>
<Identifier Source="ORCID">0000-0003-2652-2686</Identifier>
<AffiliationInfo>
<Affiliation>Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands. f.m.reggiori@umcg.nl.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>07</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019590">Nucleocapsid Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C099602">nucleocapsid protein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C099600">nucleocapsid protein, Hepatitis virus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019590" MajorTopicYN="N">Nucleocapsid Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="Y">Protein Multimerization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>03</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>06</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>7</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>7</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28720894</ArticleId>
<ArticleId IdType="doi">10.1038/s41598-017-06062-w</ArticleId>
<ArticleId IdType="pii">10.1038/s41598-017-06062-w</ArticleId>
<ArticleId IdType="pmc">PMC5515880</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Viruses. 2014 Aug 07;6(8):2991-3018</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25105276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Mar;83(5):2255-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19052082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Cell. 2010 Jul;1(7):688-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21203940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Oct 24;579(25):5663-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16214138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2015;1282:261-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25720487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Aug;87(16):9159-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23760243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2015;1282:1-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25720466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2016 Apr 14;90(9):4357-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26889024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1994 Oct;68(10):6523-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8083990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 23;281(25):17134-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16627473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Apr;81(8):3913-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17229691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Genet Evol. 2008 Jul;8(4):397-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17881296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Jun;7(6):439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19430490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1997 Oct 15;249(2):592-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9370371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Nov;79(21):13285-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16227251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys Chem. 2004 Dec 1;112(1):15-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15501572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2008 Jul 18;380(4):608-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18561946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Nucleic Acid Res Mol Biol. 2002;72:223-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12206453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Oct 30;580(25):5993-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17052713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Jul;83(14):7221-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19420077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Feb 15;5:e12627</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26880565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Oct;84(19):10276-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20660183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 May 14;317(4):1030-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15094372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 Dec 4;394(3):544-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19782089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2004 May 25;43(20):6059-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15147189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Med Virol. 2014 Sep;24(5):308-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24737708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Feb;84(4):2169-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19955314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Apr 2;316(2):476-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15020242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 May 23;8(5):e65045</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23717688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jul;80(13):6612-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16775348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1992 Apr;66(4):1841-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1312608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Oct 3;45(39):11827-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17002283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1992 Sep;66(9):5232-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1501273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2007 Jun 1;365(1):147-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17400170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 May;76(10):4987-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11967315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2013 Dec 1;126(Pt 23):5500-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24105263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Sep 16;6(9):e226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18798692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jun 28;109(7):797-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12110176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2016 Jul;494:100-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27105451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virus Res. 2011;81:85-164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22094080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Jul 16;305(5682):386-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15256668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 May 11;368(4):1075-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17379242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2016 Aug;97(8):1853-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27145752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2005 Dec;13(12):1859-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16338414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2003 Dec;98(2):131-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14659560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jan 13;106(2):582-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19124777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jun 17;280(24):23280-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15849181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Cell. 2017 Mar;8(3):219-224</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28044277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Anaesthesiol Scand. 1989 Feb;33(2):146-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2922983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Nov;84(21):11575-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20739524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Jan 20;357(2):215-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16979208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2004 Nov;5(11):908-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15520810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2000 Jan;81(Pt 1):181-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10640556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Med. 2016 Jun;10 (2):120-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26791756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2014 Mar;103:39-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24418573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Mol Med. 2003 Aug;9(8):323-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12928031</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A98 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000A98 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:28720894
   |texte=   Coronavirus nucleocapsid proteins assemble constitutively in high molecular oligomers.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:28720894" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021