Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comprehensive structural analysis of designed incomplete polypeptide chains of the replicase nonstructural protein 1 from the severe acute respiratory syndrome coronavirus.

Identifieur interne : 000A93 ( PubMed/Curation ); précédent : 000A92; suivant : 000A94

Comprehensive structural analysis of designed incomplete polypeptide chains of the replicase nonstructural protein 1 from the severe acute respiratory syndrome coronavirus.

Auteurs : Leonardo Vazquez [Brésil] ; Luis Mauricio Trambaioli Da Rocha E Lima [Brésil] ; Marcius Da Silva Almeida [Brésil]

Source :

RBID : pubmed:28750053

Descripteurs français

English descriptors

Abstract

The cotranslational folding is recognized as a very cooperative process that occurs after the nearly completion of the polypeptide sequence of a domain. Here we investigated the challenges faced by polypeptide segments of a non-vectorial β-barrel fold. Besides the biological interest behind the SARS coronavirus non-structural protein 1 (nsp1, 117 amino acids), this study model has two structural features that motivated its use in this work: 1- its recombinant production is dependent on the temperature, with greater solubility when expressed at low temperatures. This is an indication of the cotranslational guidance to the native protein conformation. 2- Conversely, nsp1 has a six-stranded, mixed parallel/antiparallel β-barrel with intricate long-range interactions, indicating it will need the full-length protein to fold properly. We used non-denaturing purification conditions that allowed the characterization of polypeptide chains of different lengths, mimicking the landscape of the cotranslational fold of a β-barrel, and avoiding the major technical hindrances of working with the nascent polypeptide bound to the ribosome. Our results showed partially folded states formed as soon as the amino acids of the second β-strand were present (55 amino acids). These partially folded states are different based on the length of polypeptide chain. The native α-helix (amino acids 24-37) was identified as a transient structure (~20-30% propensity). We identified the presence of regular secondary structure after the fourth native β-strand is present (89 amino acids), in parallel to the collapse to a non-native 3D structure. Interestingly the polypeptide sequences of the native strands β2, β3 and β4 have characteristics of α-helices. Our comprehensive analyses support the idea that incomplete polypeptide chains, such as the ones of nascent proteins much earlier than the end of the translation, adopt an abundance of specific transient folds, instead of disordered conformations.

DOI: 10.1371/journal.pone.0182132
PubMed: 28750053

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:28750053

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comprehensive structural analysis of designed incomplete polypeptide chains of the replicase nonstructural protein 1 from the severe acute respiratory syndrome coronavirus.</title>
<author>
<name sortKey="Vazquez, Leonardo" sort="Vazquez, Leonardo" uniqKey="Vazquez L" first="Leonardo" last="Vazquez">Leonardo Vazquez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Instituto de Bioquímica Médica Leopoldo de Meis, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Instituto de Bioquímica Médica Leopoldo de Meis, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="E Lima, Luis Mauricio Trambaioli Da Rocha" sort="E Lima, Luis Mauricio Trambaioli Da Rocha" uniqKey="E Lima L" first="Luis Mauricio Trambaioli Da Rocha" last="E Lima">Luis Mauricio Trambaioli Da Rocha E Lima</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Almeida, Marcius Da Silva" sort="Almeida, Marcius Da Silva" uniqKey="Almeida M" first="Marcius Da Silva" last="Almeida">Marcius Da Silva Almeida</name>
<affiliation wicri:level="1">
<nlm:affiliation>Instituto de Bioquímica Médica Leopoldo de Meis, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Instituto de Bioquímica Médica Leopoldo de Meis, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28750053</idno>
<idno type="pmid">28750053</idno>
<idno type="doi">10.1371/journal.pone.0182132</idno>
<idno type="wicri:Area/PubMed/Corpus">000A93</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000A93</idno>
<idno type="wicri:Area/PubMed/Curation">000A93</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000A93</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comprehensive structural analysis of designed incomplete polypeptide chains of the replicase nonstructural protein 1 from the severe acute respiratory syndrome coronavirus.</title>
<author>
<name sortKey="Vazquez, Leonardo" sort="Vazquez, Leonardo" uniqKey="Vazquez L" first="Leonardo" last="Vazquez">Leonardo Vazquez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Instituto de Bioquímica Médica Leopoldo de Meis, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Instituto de Bioquímica Médica Leopoldo de Meis, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="E Lima, Luis Mauricio Trambaioli Da Rocha" sort="E Lima, Luis Mauricio Trambaioli Da Rocha" uniqKey="E Lima L" first="Luis Mauricio Trambaioli Da Rocha" last="E Lima">Luis Mauricio Trambaioli Da Rocha E Lima</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Almeida, Marcius Da Silva" sort="Almeida, Marcius Da Silva" uniqKey="Almeida M" first="Marcius Da Silva" last="Almeida">Marcius Da Silva Almeida</name>
<affiliation wicri:level="1">
<nlm:affiliation>Instituto de Bioquímica Médica Leopoldo de Meis, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Instituto de Bioquímica Médica Leopoldo de Meis, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Circular Dichroism</term>
<term>Hydrophobic and Hydrophilic Interactions</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Models, Molecular</term>
<term>Peptides (chemistry)</term>
<term>Protein Biosynthesis</term>
<term>Protein Folding</term>
<term>Protein Structure, Secondary</term>
<term>Protein Structure, Tertiary</term>
<term>Recombinant Fusion Proteins (chemistry)</term>
<term>SARS Virus (chemistry)</term>
<term>Scattering, Small Angle</term>
<term>Viral Nonstructural Proteins (chemistry)</term>
<term>X-Ray Diffraction</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biosynthèse des protéines</term>
<term>Dichroïsme circulaire</term>
<term>Diffraction des rayons X</term>
<term>Diffusion aux petits angles</term>
<term>Interactions hydrophobes et hydrophiles</term>
<term>Modèles moléculaires</term>
<term>Peptides ()</term>
<term>Pliage des protéines</term>
<term>Protéines de fusion recombinantes ()</term>
<term>Protéines virales non structurales ()</term>
<term>Spectroscopie par résonance magnétique</term>
<term>Structure secondaire des protéines</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
<term>Virus du SRAS ()</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Peptides</term>
<term>Recombinant Fusion Proteins</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Circular Dichroism</term>
<term>Hydrophobic and Hydrophilic Interactions</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Models, Molecular</term>
<term>Protein Biosynthesis</term>
<term>Protein Folding</term>
<term>Protein Structure, Secondary</term>
<term>Protein Structure, Tertiary</term>
<term>Scattering, Small Angle</term>
<term>X-Ray Diffraction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biosynthèse des protéines</term>
<term>Dichroïsme circulaire</term>
<term>Diffraction des rayons X</term>
<term>Diffusion aux petits angles</term>
<term>Interactions hydrophobes et hydrophiles</term>
<term>Modèles moléculaires</term>
<term>Peptides</term>
<term>Pliage des protéines</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines virales non structurales</term>
<term>Spectroscopie par résonance magnétique</term>
<term>Structure secondaire des protéines</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
<term>Virus du SRAS</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The cotranslational folding is recognized as a very cooperative process that occurs after the nearly completion of the polypeptide sequence of a domain. Here we investigated the challenges faced by polypeptide segments of a non-vectorial β-barrel fold. Besides the biological interest behind the SARS coronavirus non-structural protein 1 (nsp1, 117 amino acids), this study model has two structural features that motivated its use in this work: 1- its recombinant production is dependent on the temperature, with greater solubility when expressed at low temperatures. This is an indication of the cotranslational guidance to the native protein conformation. 2- Conversely, nsp1 has a six-stranded, mixed parallel/antiparallel β-barrel with intricate long-range interactions, indicating it will need the full-length protein to fold properly. We used non-denaturing purification conditions that allowed the characterization of polypeptide chains of different lengths, mimicking the landscape of the cotranslational fold of a β-barrel, and avoiding the major technical hindrances of working with the nascent polypeptide bound to the ribosome. Our results showed partially folded states formed as soon as the amino acids of the second β-strand were present (55 amino acids). These partially folded states are different based on the length of polypeptide chain. The native α-helix (amino acids 24-37) was identified as a transient structure (~20-30% propensity). We identified the presence of regular secondary structure after the fourth native β-strand is present (89 amino acids), in parallel to the collapse to a non-native 3D structure. Interestingly the polypeptide sequences of the native strands β2, β3 and β4 have characteristics of α-helices. Our comprehensive analyses support the idea that incomplete polypeptide chains, such as the ones of nascent proteins much earlier than the end of the translation, adopt an abundance of specific transient folds, instead of disordered conformations.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28750053</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>10</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Comprehensive structural analysis of designed incomplete polypeptide chains of the replicase nonstructural protein 1 from the severe acute respiratory syndrome coronavirus.</ArticleTitle>
<Pagination>
<MedlinePgn>e0182132</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0182132</ELocationID>
<Abstract>
<AbstractText>The cotranslational folding is recognized as a very cooperative process that occurs after the nearly completion of the polypeptide sequence of a domain. Here we investigated the challenges faced by polypeptide segments of a non-vectorial β-barrel fold. Besides the biological interest behind the SARS coronavirus non-structural protein 1 (nsp1, 117 amino acids), this study model has two structural features that motivated its use in this work: 1- its recombinant production is dependent on the temperature, with greater solubility when expressed at low temperatures. This is an indication of the cotranslational guidance to the native protein conformation. 2- Conversely, nsp1 has a six-stranded, mixed parallel/antiparallel β-barrel with intricate long-range interactions, indicating it will need the full-length protein to fold properly. We used non-denaturing purification conditions that allowed the characterization of polypeptide chains of different lengths, mimicking the landscape of the cotranslational fold of a β-barrel, and avoiding the major technical hindrances of working with the nascent polypeptide bound to the ribosome. Our results showed partially folded states formed as soon as the amino acids of the second β-strand were present (55 amino acids). These partially folded states are different based on the length of polypeptide chain. The native α-helix (amino acids 24-37) was identified as a transient structure (~20-30% propensity). We identified the presence of regular secondary structure after the fourth native β-strand is present (89 amino acids), in parallel to the collapse to a non-native 3D structure. Interestingly the polypeptide sequences of the native strands β2, β3 and β4 have characteristics of α-helices. Our comprehensive analyses support the idea that incomplete polypeptide chains, such as the ones of nascent proteins much earlier than the end of the translation, adopt an abundance of specific transient folds, instead of disordered conformations.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Vazquez</LastName>
<ForeName>Leonardo</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Instituto de Bioquímica Médica Leopoldo de Meis, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>E Lima</LastName>
<ForeName>Luis Mauricio Trambaioli da Rocha</ForeName>
<Initials>LMTDR</Initials>
<AffiliationInfo>
<Affiliation>Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Almeida</LastName>
<ForeName>Marcius da Silva</ForeName>
<Initials>MDS</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-4921-8185</Identifier>
<AffiliationInfo>
<Affiliation>Instituto de Bioquímica Médica Leopoldo de Meis, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>07</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011993">Recombinant Fusion Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017361">Viral Nonstructural Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C087633">nonstructural protein, coronavirus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002942" MajorTopicYN="N">Circular Dichroism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057927" MajorTopicYN="N">Hydrophobic and Hydrophilic Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009682" MajorTopicYN="N">Magnetic Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="N">Peptides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014176" MajorTopicYN="N">Protein Biosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017510" MajorTopicYN="N">Protein Folding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011993" MajorTopicYN="N">Recombinant Fusion Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053838" MajorTopicYN="N">Scattering, Small Angle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017361" MajorTopicYN="N">Viral Nonstructural Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014961" MajorTopicYN="N">X-Ray Diffraction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>04</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>07</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28750053</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0182132</ArticleId>
<ArticleId IdType="pii">PONE-D-17-14533</ArticleId>
<ArticleId IdType="pmc">PMC5531528</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biomol NMR. 1995 Sep;6(2):135-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8589602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Apr;81(7):3151-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17202208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2010 Oct;172(1):128-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20558299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1990 Oct 25;347(6295):776-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2234050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1969 Oct;8(10):3915-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5388144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1991 Feb 15;193(1):72-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2042744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Jun 3;269(22):15945-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7515066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Nucl Magn Reson Spectrosc. 2013 Aug;73:1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23962882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2010 Apr 7;98(7):1312-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20371331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2012 Aug;53(4):341-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22752932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2016 Apr;23 (4):278-285</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26926436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2006;36 Suppl 1:46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16821128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Apr 24;348(6233):444-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25908822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharm Res. 2008 Jul;25(7):1487-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18172579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2008 Jul;41(3):127-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18512031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1961 Apr 15;47:489-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13755892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1996 Aug;5(8):1594-612</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8844849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):10876-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16043707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2003 Nov;12(11):2606-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14573871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2002 May;23(1):23-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12061715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Jan 22;285(3):1309-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9887278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7250-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10377400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Dec 23;334(6063):1723-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22194581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1998 Jul 31;280(5):933-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9671561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1972 Feb;69(2):412-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4551143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein J. 2004 Jul;23(5):335-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15328889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1990 Aug 2;346(6283):440-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2377205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 1994 Mar;4(2):171-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8019132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1989 Nov 14;28(23):8972-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2690953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2008 Nov;42(3):179-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18841481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 Dec 14;38(50):16424-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10600103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2009 Apr;16(4):405-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19270700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1995 Dec 15;254(5):968-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7500364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2009 Mar;16(3):274-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19198590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Feb 18;31(6):1647-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1737021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jan 20;287(4):2568-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22128180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2010 Mar 12;396(5):1310-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20043920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1994 Nov;3(11):1945-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7703841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2009 Jan;34(1):16-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18996013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2016 Feb 4;61(3):341-351</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26849192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2003 Jun 17;42(23):7090-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12795605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2008 Nov 7;383(2):281-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18722384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2010 Dec 1;132(47):16928-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21062068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomolecules. 2014 Feb 13;4(1):202-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24970212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1997 Nov;6(11):2359-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9385638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2015 Sep 8;12(10):1533-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26321634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Magn Reson. 2000 Apr;143(2):423-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10729271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3683-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7731965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Nov 22;113(47):13402-13407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27821780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Nucl Magn Reson Spectrosc. 2013 Oct;74:57-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24083462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1995 Oct 26;377(6551):754-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7477269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2006 Dec;15(12):2795-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17088319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protein Pept Sci. 2000 Dec;1(4):349-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12369905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):748-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1731350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1987 Aug 31;221(1):115-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3040467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Nov 11;36(45):13882-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9374866</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A93 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000A93 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:28750053
   |texte=   Comprehensive structural analysis of designed incomplete polypeptide chains of the replicase nonstructural protein 1 from the severe acute respiratory syndrome coronavirus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:28750053" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021