Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Insight into the evolution of nidovirus endoribonuclease based on the finding that nsp15 from porcine Deltacoronavirus functions as a dimer.

Identifieur interne : 000997 ( PubMed/Curation ); précédent : 000996; suivant : 000998

Insight into the evolution of nidovirus endoribonuclease based on the finding that nsp15 from porcine Deltacoronavirus functions as a dimer.

Auteurs : Anjun Zheng ; Yuejun Shi ; Zhou Shen ; Gang Wang ; Jiale Shi ; Qiqi Xiong ; Liurong Fang ; Shaobo Xiao ; Zhen F. Fu [États-Unis] ; Guiqing Peng [République populaire de Chine]

Source :

RBID : pubmed:29887523

Descripteurs français

English descriptors

Abstract

Nidovirus endoribonucleases (NendoUs) include nonstructural protein 15 (nsp15) from coronaviruses and nsp11 from arteriviruses, both of which have been reported to participate in the viral replication process and in the evasion of the host immune system. Results from a previous study of coronaviruses SARS-CoV, HCoV-229E, and MHV nsp15 indicate that it mainly forms a functional hexamer, whereas nsp11 from the arterivirus PRRSV is a dimer. Here, we found that porcine Deltacoronavirus (PDCoV) nsp15 primarily exists as dimers and monomers in vitro Biological experiments reveal that a PDCoV nsp15 mutant lacking the first 27 amino acids of the N-terminal domain (Asn-1-Asn-27) forms more monomers and displays decreased enzymatic activity, indicating that this region is important for its dimerization. Moreover, multiple sequence alignments and three-dimensional structural analysis indicated that the C-terminal region (His-251-Val-261) of PDCoV nsp15 is 10 amino acids shorter and forms a shorter loop than that formed by the equivalent sequence (Gln-259-Phe-279) of SARS-CoV nsp15. This result may explain why PDCoV nsp15 failed to form hexamers. We speculate that NendoUs may have originated from XendoU endoribonucleases (XendoUs) forming monomers in eukaryotic cells, that NendoU from arterivirus gained the ability to form dimers, and that the coronavirus variants then evolved the capacity to assemble into hexamers. We further propose that PDCoV nsp15 may be an intermediate in this evolutionary process. Our findings provide a theoretical basis for improving our understanding of NendoU evolution and offer useful clues for designing drugs and vaccines against nidoviruses.

DOI: 10.1074/jbc.RA118.003756
PubMed: 29887523

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:29887523

Curation

No country items

Anjun Zheng
<affiliation>
<nlm:affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine.</nlm:affiliation>
<wicri:noCountry code="subField">College of Veterinary Medicine</wicri:noCountry>
</affiliation>
Yuejun Shi
<affiliation>
<nlm:affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine.</nlm:affiliation>
<wicri:noCountry code="subField">College of Veterinary Medicine</wicri:noCountry>
</affiliation>
Zhou Shen
<affiliation>
<nlm:affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine.</nlm:affiliation>
<wicri:noCountry code="subField">College of Veterinary Medicine</wicri:noCountry>
</affiliation>
Gang Wang
<affiliation>
<nlm:affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine.</nlm:affiliation>
<wicri:noCountry code="subField">College of Veterinary Medicine</wicri:noCountry>
</affiliation>
Jiale Shi
<affiliation>
<nlm:affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine.</nlm:affiliation>
<wicri:noCountry code="subField">College of Veterinary Medicine</wicri:noCountry>
</affiliation>
Qiqi Xiong
<affiliation>
<nlm:affiliation>College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China and.</nlm:affiliation>
<wicri:noCountry code="subField">China and</wicri:noCountry>
</affiliation>
Liurong Fang
<affiliation>
<nlm:affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine.</nlm:affiliation>
<wicri:noCountry code="subField">College of Veterinary Medicine</wicri:noCountry>
</affiliation>
Shaobo Xiao
<affiliation>
<nlm:affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine.</nlm:affiliation>
<wicri:noCountry code="subField">College of Veterinary Medicine</wicri:noCountry>
</affiliation>

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Insight into the evolution of nidovirus endoribonuclease based on the finding that nsp15 from porcine
<i>Deltacoronavirus</i>
functions as a dimer.</title>
<author>
<name sortKey="Zheng, Anjun" sort="Zheng, Anjun" uniqKey="Zheng A" first="Anjun" last="Zheng">Anjun Zheng</name>
<affiliation>
<nlm:affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine.</nlm:affiliation>
<wicri:noCountry code="subField">College of Veterinary Medicine</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Shi, Yuejun" sort="Shi, Yuejun" uniqKey="Shi Y" first="Yuejun" last="Shi">Yuejun Shi</name>
<affiliation>
<nlm:affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine.</nlm:affiliation>
<wicri:noCountry code="subField">College of Veterinary Medicine</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Shen, Zhou" sort="Shen, Zhou" uniqKey="Shen Z" first="Zhou" last="Shen">Zhou Shen</name>
<affiliation>
<nlm:affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine.</nlm:affiliation>
<wicri:noCountry code="subField">College of Veterinary Medicine</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Wang, Gang" sort="Wang, Gang" uniqKey="Wang G" first="Gang" last="Wang">Gang Wang</name>
<affiliation>
<nlm:affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine.</nlm:affiliation>
<wicri:noCountry code="subField">College of Veterinary Medicine</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Shi, Jiale" sort="Shi, Jiale" uniqKey="Shi J" first="Jiale" last="Shi">Jiale Shi</name>
<affiliation>
<nlm:affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine.</nlm:affiliation>
<wicri:noCountry code="subField">College of Veterinary Medicine</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Xiong, Qiqi" sort="Xiong, Qiqi" uniqKey="Xiong Q" first="Qiqi" last="Xiong">Qiqi Xiong</name>
<affiliation>
<nlm:affiliation>College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China and.</nlm:affiliation>
<wicri:noCountry code="subField">China and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Fang, Liurong" sort="Fang, Liurong" uniqKey="Fang L" first="Liurong" last="Fang">Liurong Fang</name>
<affiliation>
<nlm:affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine.</nlm:affiliation>
<wicri:noCountry code="subField">College of Veterinary Medicine</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Xiao, Shaobo" sort="Xiao, Shaobo" uniqKey="Xiao S" first="Shaobo" last="Xiao">Shaobo Xiao</name>
<affiliation>
<nlm:affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine.</nlm:affiliation>
<wicri:noCountry code="subField">College of Veterinary Medicine</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Fu, Zhen F" sort="Fu, Zhen F" uniqKey="Fu Z" first="Zhen F" last="Fu">Zhen F. Fu</name>
<affiliation wicri:level="2">
<nlm:affiliation>the Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>the Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Peng, Guiqing" sort="Peng, Guiqing" uniqKey="Peng G" first="Guiqing" last="Peng">Guiqing Peng</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, penggq@mail.hzau.edu.cn.</nlm:affiliation>
<country wicri:rule="url">République populaire de Chine</country>
<wicri:regionArea>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29887523</idno>
<idno type="pmid">29887523</idno>
<idno type="doi">10.1074/jbc.RA118.003756</idno>
<idno type="wicri:Area/PubMed/Corpus">000997</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000997</idno>
<idno type="wicri:Area/PubMed/Curation">000997</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000997</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Insight into the evolution of nidovirus endoribonuclease based on the finding that nsp15 from porcine
<i>Deltacoronavirus</i>
functions as a dimer.</title>
<author>
<name sortKey="Zheng, Anjun" sort="Zheng, Anjun" uniqKey="Zheng A" first="Anjun" last="Zheng">Anjun Zheng</name>
<affiliation>
<nlm:affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine.</nlm:affiliation>
<wicri:noCountry code="subField">College of Veterinary Medicine</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Shi, Yuejun" sort="Shi, Yuejun" uniqKey="Shi Y" first="Yuejun" last="Shi">Yuejun Shi</name>
<affiliation>
<nlm:affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine.</nlm:affiliation>
<wicri:noCountry code="subField">College of Veterinary Medicine</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Shen, Zhou" sort="Shen, Zhou" uniqKey="Shen Z" first="Zhou" last="Shen">Zhou Shen</name>
<affiliation>
<nlm:affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine.</nlm:affiliation>
<wicri:noCountry code="subField">College of Veterinary Medicine</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Wang, Gang" sort="Wang, Gang" uniqKey="Wang G" first="Gang" last="Wang">Gang Wang</name>
<affiliation>
<nlm:affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine.</nlm:affiliation>
<wicri:noCountry code="subField">College of Veterinary Medicine</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Shi, Jiale" sort="Shi, Jiale" uniqKey="Shi J" first="Jiale" last="Shi">Jiale Shi</name>
<affiliation>
<nlm:affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine.</nlm:affiliation>
<wicri:noCountry code="subField">College of Veterinary Medicine</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Xiong, Qiqi" sort="Xiong, Qiqi" uniqKey="Xiong Q" first="Qiqi" last="Xiong">Qiqi Xiong</name>
<affiliation>
<nlm:affiliation>College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China and.</nlm:affiliation>
<wicri:noCountry code="subField">China and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Fang, Liurong" sort="Fang, Liurong" uniqKey="Fang L" first="Liurong" last="Fang">Liurong Fang</name>
<affiliation>
<nlm:affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine.</nlm:affiliation>
<wicri:noCountry code="subField">College of Veterinary Medicine</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Xiao, Shaobo" sort="Xiao, Shaobo" uniqKey="Xiao S" first="Shaobo" last="Xiao">Shaobo Xiao</name>
<affiliation>
<nlm:affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine.</nlm:affiliation>
<wicri:noCountry code="subField">College of Veterinary Medicine</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Fu, Zhen F" sort="Fu, Zhen F" uniqKey="Fu Z" first="Zhen F" last="Fu">Zhen F. Fu</name>
<affiliation wicri:level="2">
<nlm:affiliation>the Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>the Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Peng, Guiqing" sort="Peng, Guiqing" uniqKey="Peng G" first="Guiqing" last="Peng">Guiqing Peng</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, penggq@mail.hzau.edu.cn.</nlm:affiliation>
<country wicri:rule="url">République populaire de Chine</country>
<wicri:regionArea>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Arterivirus (chemistry)</term>
<term>Arterivirus (classification)</term>
<term>Arterivirus (genetics)</term>
<term>Arterivirus (metabolism)</term>
<term>Binding Sites</term>
<term>Cloning, Molecular</term>
<term>Coronavirus (chemistry)</term>
<term>Coronavirus (classification)</term>
<term>Coronavirus (genetics)</term>
<term>Coronavirus (metabolism)</term>
<term>Crystallography, X-Ray</term>
<term>Endoribonucleases (chemistry)</term>
<term>Endoribonucleases (genetics)</term>
<term>Endoribonucleases (metabolism)</term>
<term>Escherichia coli (genetics)</term>
<term>Escherichia coli (metabolism)</term>
<term>Evolution, Molecular</term>
<term>Gene Expression</term>
<term>Genetic Vectors (chemistry)</term>
<term>Genetic Vectors (metabolism)</term>
<term>Models, Molecular</term>
<term>Nidovirales (chemistry)</term>
<term>Nidovirales (classification)</term>
<term>Nidovirales (genetics)</term>
<term>Nidovirales (metabolism)</term>
<term>Protein Binding</term>
<term>Protein Conformation, alpha-Helical</term>
<term>Protein Conformation, beta-Strand</term>
<term>Protein Interaction Domains and Motifs</term>
<term>Protein Multimerization</term>
<term>Protein Subunits (chemistry)</term>
<term>Protein Subunits (genetics)</term>
<term>Protein Subunits (metabolism)</term>
<term>Recombinant Proteins (chemistry)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>SARS Virus (chemistry)</term>
<term>SARS Virus (classification)</term>
<term>SARS Virus (genetics)</term>
<term>SARS Virus (metabolism)</term>
<term>Sequence Alignment</term>
<term>Sequence Homology, Amino Acid</term>
<term>Viral Nonstructural Proteins (chemistry)</term>
<term>Viral Nonstructural Proteins (genetics)</term>
<term>Viral Nonstructural Proteins (metabolism)</term>
<term>Virus Replication (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Arterivirus ()</term>
<term>Arterivirus (génétique)</term>
<term>Arterivirus (métabolisme)</term>
<term>Clonage moléculaire</term>
<term>Coronavirus ()</term>
<term>Coronavirus (génétique)</term>
<term>Coronavirus (métabolisme)</term>
<term>Cristallographie aux rayons X</term>
<term>Endoribonucleases ()</term>
<term>Endoribonucleases (génétique)</term>
<term>Endoribonucleases (métabolisme)</term>
<term>Escherichia coli (génétique)</term>
<term>Escherichia coli (métabolisme)</term>
<term>Expression des gènes</term>
<term>Liaison aux protéines</term>
<term>Modèles moléculaires</term>
<term>Motifs et domaines d'intéraction protéique</term>
<term>Multimérisation de protéines</term>
<term>Nidovirales ()</term>
<term>Nidovirales (génétique)</term>
<term>Nidovirales (métabolisme)</term>
<term>Protéines recombinantes ()</term>
<term>Protéines recombinantes (génétique)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Protéines virales non structurales ()</term>
<term>Protéines virales non structurales (génétique)</term>
<term>Protéines virales non structurales (métabolisme)</term>
<term>Réplication virale (génétique)</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Sites de fixation</term>
<term>Sous-unités de protéines ()</term>
<term>Sous-unités de protéines (génétique)</term>
<term>Sous-unités de protéines (métabolisme)</term>
<term>Structure en brin bêta</term>
<term>Structure en hélice alpha</term>
<term>Séquence d'acides aminés</term>
<term>Vecteurs génétiques ()</term>
<term>Vecteurs génétiques (métabolisme)</term>
<term>Virus du SRAS ()</term>
<term>Virus du SRAS (génétique)</term>
<term>Virus du SRAS (métabolisme)</term>
<term>Évolution moléculaire</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Endoribonucleases</term>
<term>Protein Subunits</term>
<term>Recombinant Proteins</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Arterivirus</term>
<term>Coronavirus</term>
<term>Genetic Vectors</term>
<term>Nidovirales</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Arterivirus</term>
<term>Coronavirus</term>
<term>Nidovirales</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arterivirus</term>
<term>Coronavirus</term>
<term>Endoribonucleases</term>
<term>Escherichia coli</term>
<term>Nidovirales</term>
<term>Protein Subunits</term>
<term>Recombinant Proteins</term>
<term>SARS Virus</term>
<term>Viral Nonstructural Proteins</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arterivirus</term>
<term>Coronavirus</term>
<term>Endoribonucleases</term>
<term>Escherichia coli</term>
<term>Nidovirales</term>
<term>Protéines recombinantes</term>
<term>Protéines virales non structurales</term>
<term>Réplication virale</term>
<term>Sous-unités de protéines</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arterivirus</term>
<term>Coronavirus</term>
<term>Endoribonucleases</term>
<term>Escherichia coli</term>
<term>Genetic Vectors</term>
<term>Nidovirales</term>
<term>Protein Subunits</term>
<term>Recombinant Proteins</term>
<term>SARS Virus</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arterivirus</term>
<term>Coronavirus</term>
<term>Endoribonucleases</term>
<term>Escherichia coli</term>
<term>Nidovirales</term>
<term>Protéines recombinantes</term>
<term>Protéines virales non structurales</term>
<term>Sous-unités de protéines</term>
<term>Vecteurs génétiques</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Cloning, Molecular</term>
<term>Crystallography, X-Ray</term>
<term>Evolution, Molecular</term>
<term>Gene Expression</term>
<term>Models, Molecular</term>
<term>Protein Binding</term>
<term>Protein Conformation, alpha-Helical</term>
<term>Protein Conformation, beta-Strand</term>
<term>Protein Interaction Domains and Motifs</term>
<term>Protein Multimerization</term>
<term>Sequence Alignment</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Arterivirus</term>
<term>Clonage moléculaire</term>
<term>Coronavirus</term>
<term>Cristallographie aux rayons X</term>
<term>Endoribonucleases</term>
<term>Expression des gènes</term>
<term>Liaison aux protéines</term>
<term>Modèles moléculaires</term>
<term>Motifs et domaines d'intéraction protéique</term>
<term>Multimérisation de protéines</term>
<term>Nidovirales</term>
<term>Protéines recombinantes</term>
<term>Protéines virales non structurales</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Sites de fixation</term>
<term>Sous-unités de protéines</term>
<term>Structure en brin bêta</term>
<term>Structure en hélice alpha</term>
<term>Séquence d'acides aminés</term>
<term>Vecteurs génétiques</term>
<term>Virus du SRAS</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nidovirus endoribonucleases (NendoUs) include nonstructural protein 15 (nsp15) from coronaviruses and nsp11 from arteriviruses, both of which have been reported to participate in the viral replication process and in the evasion of the host immune system. Results from a previous study of coronaviruses SARS-CoV, HCoV-229E, and MHV nsp15 indicate that it mainly forms a functional hexamer, whereas nsp11 from the arterivirus PRRSV is a dimer. Here, we found that porcine
<i>Deltacoronavirus</i>
(PDCoV) nsp15 primarily exists as dimers and monomers
<i>in vitro</i>
Biological experiments reveal that a PDCoV nsp15 mutant lacking the first 27 amino acids of the N-terminal domain (Asn-1-Asn-27) forms more monomers and displays decreased enzymatic activity, indicating that this region is important for its dimerization. Moreover, multiple sequence alignments and three-dimensional structural analysis indicated that the C-terminal region (His-251-Val-261) of PDCoV nsp15 is 10 amino acids shorter and forms a shorter loop than that formed by the equivalent sequence (Gln-259-Phe-279) of SARS-CoV nsp15. This result may explain why PDCoV nsp15 failed to form hexamers. We speculate that NendoUs may have originated from XendoU endoribonucleases (XendoUs) forming monomers in eukaryotic cells, that NendoU from arterivirus gained the ability to form dimers, and that the coronavirus variants then evolved the capacity to assemble into hexamers. We further propose that PDCoV nsp15 may be an intermediate in this evolutionary process. Our findings provide a theoretical basis for improving our understanding of NendoU evolution and offer useful clues for designing drugs and vaccines against nidoviruses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29887523</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>02</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>293</Volume>
<Issue>31</Issue>
<PubDate>
<Year>2018</Year>
<Month>08</Month>
<Day>03</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J. Biol. Chem.</ISOAbbreviation>
</Journal>
<ArticleTitle>Insight into the evolution of nidovirus endoribonuclease based on the finding that nsp15 from porcine
<i>Deltacoronavirus</i>
functions as a dimer.</ArticleTitle>
<Pagination>
<MedlinePgn>12054-12067</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.RA118.003756</ELocationID>
<Abstract>
<AbstractText>Nidovirus endoribonucleases (NendoUs) include nonstructural protein 15 (nsp15) from coronaviruses and nsp11 from arteriviruses, both of which have been reported to participate in the viral replication process and in the evasion of the host immune system. Results from a previous study of coronaviruses SARS-CoV, HCoV-229E, and MHV nsp15 indicate that it mainly forms a functional hexamer, whereas nsp11 from the arterivirus PRRSV is a dimer. Here, we found that porcine
<i>Deltacoronavirus</i>
(PDCoV) nsp15 primarily exists as dimers and monomers
<i>in vitro</i>
Biological experiments reveal that a PDCoV nsp15 mutant lacking the first 27 amino acids of the N-terminal domain (Asn-1-Asn-27) forms more monomers and displays decreased enzymatic activity, indicating that this region is important for its dimerization. Moreover, multiple sequence alignments and three-dimensional structural analysis indicated that the C-terminal region (His-251-Val-261) of PDCoV nsp15 is 10 amino acids shorter and forms a shorter loop than that formed by the equivalent sequence (Gln-259-Phe-279) of SARS-CoV nsp15. This result may explain why PDCoV nsp15 failed to form hexamers. We speculate that NendoUs may have originated from XendoU endoribonucleases (XendoUs) forming monomers in eukaryotic cells, that NendoU from arterivirus gained the ability to form dimers, and that the coronavirus variants then evolved the capacity to assemble into hexamers. We further propose that PDCoV nsp15 may be an intermediate in this evolutionary process. Our findings provide a theoretical basis for improving our understanding of NendoU evolution and offer useful clues for designing drugs and vaccines against nidoviruses.</AbstractText>
<CopyrightInformation>© 2018 Zheng et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>Anjun</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Yuejun</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, and.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shen</LastName>
<ForeName>Zhou</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Gang</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Jiale</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xiong</LastName>
<ForeName>Qiqi</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fang</LastName>
<ForeName>Liurong</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xiao</LastName>
<ForeName>Shaobo</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fu</LastName>
<ForeName>Zhen F</ForeName>
<Initials>ZF</Initials>
<AffiliationInfo>
<Affiliation>the Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Peng</LastName>
<ForeName>Guiqing</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>From the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, penggq@mail.hzau.edu.cn.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, and.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>2rhb</AccessionNumber>
<AccessionNumber>2H85</AccessionNumber>
<AccessionNumber>2C1W</AccessionNumber>
<AccessionNumber>5DA1</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>06</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D021122">Protein Subunits</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017361">Viral Nonstructural Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="D004722">Endoribonucleases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="C000657925">nidoviral uridylate-specific endoribonuclease</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018018" MajorTopicYN="N">Arterivirus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="N">Coronavirus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004722" MajorTopicYN="N">Endoribonucleases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005822" MajorTopicYN="N">Genetic Vectors</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028381" MajorTopicYN="N">Nidovirales</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072756" MajorTopicYN="N">Protein Conformation, alpha-Helical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072757" MajorTopicYN="N">Protein Conformation, beta-Strand</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054730" MajorTopicYN="N">Protein Interaction Domains and Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="N">Protein Multimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021122" MajorTopicYN="N">Protein Subunits</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017361" MajorTopicYN="N">Viral Nonstructural Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">PDCoV nsp15</Keyword>
<Keyword MajorTopicYN="Y">endoribonuclease</Keyword>
<Keyword MajorTopicYN="Y">evolution</Keyword>
<Keyword MajorTopicYN="Y">nidovirus</Keyword>
<Keyword MajorTopicYN="Y">oligomerization</Keyword>
<Keyword MajorTopicYN="Y">protein evolution</Keyword>
<Keyword MajorTopicYN="Y">protein purification</Keyword>
<Keyword MajorTopicYN="Y">viral protein</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>04</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>05</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>2</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29887523</ArticleId>
<ArticleId IdType="pii">RA118.003756</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.RA118.003756</ArticleId>
<ArticleId IdType="pmc">PMC6078464</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2006 Feb;80(4):1653-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16439522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prev Vet Med. 2016 Jan 1;123:185-191</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26603048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2005 Nov 11;353(5):1106-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16216269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2012 Aug;167(2):247-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22617024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2016 Oct;161(10):2909-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27424024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2009 Aug;10(8):531-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19546856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Apr;76(8):3697-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11907209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2017 Jul 11;9(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28696396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2018 Apr;517:157-163</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29307596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):11892-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16882730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jul 1;43(W1):W580-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25845596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Sep;7(9):e1002215</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21931546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Aug;80(16):7909-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16873248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 May 13;280(19):18996-9002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15755742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12694-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15304651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2012 Aug;157(8):1623-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22527862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2012 Feb;163(2):650-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22119900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2014 May 20;11:97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24884700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2018 Apr;517:38-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29475599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12365-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16895992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jul;42(Web Server issue):W320-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24753421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2015 Mar 10;6(2):e00064</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25759498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2000 Apr;81(Pt 4):853-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Immunol. 2011 Jul;48(12-13):1568-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21481939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 May 23;114(21):E4251-E4260</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28484023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jun;81(12):6700-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17409150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Apr 11;278(15):13026-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12571235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Jun;83(11):5671-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19297500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2006 Aug 11;361(2):243-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16828802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Sep 16;6(9):e226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18798692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Apr;86(7):3995-4008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22278237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Virol. 2017 Dec;27:57-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29172072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr F Struct Biol Commun. 2015 Sep;71(Pt 9):1156-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26323302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Jul 10;7(1):4932</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28694495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2018 Jan 4;15(1):2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29301547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Nov;78(22):12218-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15507608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Intervirology. 2008;51(5):342-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19023218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Dec;81(24):13587-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17898055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Inf Model. 2011 Oct 24;51(10):2778-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21919503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2013 Oct;94(Pt 10):2141-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23939974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2016 Apr 14;90(9):4579-4592</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26912626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1987 Dec 1;6(12):3779-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3428275</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000997 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000997 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:29887523
   |texte=   Insight into the evolution of nidovirus endoribonuclease based on the finding that nsp15 from porcine Deltacoronavirus functions as a dimer.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:29887523" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021