Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes.

Identifieur interne : 000894 ( PubMed/Curation ); précédent : 000893; suivant : 000895

SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes.

Auteurs : Chong-Shan Shi [États-Unis] ; Neel R. Nabar [États-Unis] ; Ning-Na Huang [États-Unis] ; John H. Kehrl [États-Unis]

Source :

RBID : pubmed:31231549

Abstract

The SARS (severe acute respiratory syndrome) outbreak was caused by a coronavirus (CoV) named the SARS-CoV. SARS pathology is propagated both by direct cytotoxic effects of the virus and aberrant activation of the innate immune response. Here, we identify several mechanisms by which a SARS-CoV open reading frame (ORF) activates intracellular stress pathways and targets the innate immune response. We show that ORF8b forms insoluble intracellular aggregates dependent on a valine at residue 77. Aggregated ORF8b induces endoplasmic reticulum (ER) stress, lysosomal damage, and subsequent activation of the master regulator of the autophagy and lysosome machinery, Transcription factor EB (TFEB). ORF8b causes cell death in epithelial cells, which is partially rescued by reducing its ability to aggregate. In macrophages, ORF8b robustly activates the NLRP3 inflammasome by providing a potent signal 2 required for activation. Mechanistically, ORF8b interacts directly with the Leucine Rich Repeat domain of NLRP3 and localizes with NLRP3 and ASC in cytosolic dot-like structures. ORF8b triggers cell death consistent with pyroptotic cell death in macrophages. While in those cells lacking NLRP3 accumulating ORF8b cytosolic aggregates cause ER stress, mitochondrial dysfunction, and caspase-independent cell death.

DOI: 10.1038/s41420-019-0181-7
PubMed: 31231549

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:31231549

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes.</title>
<author>
<name sortKey="Shi, Chong Shan" sort="Shi, Chong Shan" uniqKey="Shi C" first="Chong-Shan" last="Shi">Chong-Shan Shi</name>
<affiliation wicri:level="2">
<nlm:affiliation>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Nabar, Neel R" sort="Nabar, Neel R" uniqKey="Nabar N" first="Neel R" last="Nabar">Neel R. Nabar</name>
<affiliation wicri:level="2">
<nlm:affiliation>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Huang, Ning Na" sort="Huang, Ning Na" uniqKey="Huang N" first="Ning-Na" last="Huang">Ning-Na Huang</name>
<affiliation wicri:level="2">
<nlm:affiliation>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kehrl, John H" sort="Kehrl, John H" uniqKey="Kehrl J" first="John H" last="Kehrl">John H. Kehrl</name>
<affiliation wicri:level="2">
<nlm:affiliation>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31231549</idno>
<idno type="pmid">31231549</idno>
<idno type="doi">10.1038/s41420-019-0181-7</idno>
<idno type="wicri:Area/PubMed/Corpus">000894</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000894</idno>
<idno type="wicri:Area/PubMed/Curation">000894</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000894</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes.</title>
<author>
<name sortKey="Shi, Chong Shan" sort="Shi, Chong Shan" uniqKey="Shi C" first="Chong-Shan" last="Shi">Chong-Shan Shi</name>
<affiliation wicri:level="2">
<nlm:affiliation>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Nabar, Neel R" sort="Nabar, Neel R" uniqKey="Nabar N" first="Neel R" last="Nabar">Neel R. Nabar</name>
<affiliation wicri:level="2">
<nlm:affiliation>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Huang, Ning Na" sort="Huang, Ning Na" uniqKey="Huang N" first="Ning-Na" last="Huang">Ning-Na Huang</name>
<affiliation wicri:level="2">
<nlm:affiliation>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kehrl, John H" sort="Kehrl, John H" uniqKey="Kehrl J" first="John H" last="Kehrl">John H. Kehrl</name>
<affiliation wicri:level="2">
<nlm:affiliation>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cell death discovery</title>
<idno type="ISSN">2058-7716</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The SARS (severe acute respiratory syndrome) outbreak was caused by a coronavirus (CoV) named the SARS-CoV. SARS pathology is propagated both by direct cytotoxic effects of the virus and aberrant activation of the innate immune response. Here, we identify several mechanisms by which a SARS-CoV open reading frame (ORF) activates intracellular stress pathways and targets the innate immune response. We show that ORF8b forms insoluble intracellular aggregates dependent on a valine at residue 77. Aggregated ORF8b induces endoplasmic reticulum (ER) stress, lysosomal damage, and subsequent activation of the master regulator of the autophagy and lysosome machinery, Transcription factor EB (TFEB). ORF8b causes cell death in epithelial cells, which is partially rescued by reducing its ability to aggregate. In macrophages, ORF8b robustly activates the NLRP3 inflammasome by providing a potent signal 2 required for activation. Mechanistically, ORF8b interacts directly with the Leucine Rich Repeat domain of NLRP3 and localizes with NLRP3 and ASC in cytosolic dot-like structures. ORF8b triggers cell death consistent with pyroptotic cell death in macrophages. While in those cells lacking NLRP3 accumulating ORF8b cytosolic aggregates cause ER stress, mitochondrial dysfunction, and caspase-independent cell death.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31231549</PMID>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2058-7716</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>5</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Cell death discovery</Title>
<ISOAbbreviation>Cell Death Discov</ISOAbbreviation>
</Journal>
<ArticleTitle>SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes.</ArticleTitle>
<Pagination>
<MedlinePgn>101</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41420-019-0181-7</ELocationID>
<Abstract>
<AbstractText>The SARS (severe acute respiratory syndrome) outbreak was caused by a coronavirus (CoV) named the SARS-CoV. SARS pathology is propagated both by direct cytotoxic effects of the virus and aberrant activation of the innate immune response. Here, we identify several mechanisms by which a SARS-CoV open reading frame (ORF) activates intracellular stress pathways and targets the innate immune response. We show that ORF8b forms insoluble intracellular aggregates dependent on a valine at residue 77. Aggregated ORF8b induces endoplasmic reticulum (ER) stress, lysosomal damage, and subsequent activation of the master regulator of the autophagy and lysosome machinery, Transcription factor EB (TFEB). ORF8b causes cell death in epithelial cells, which is partially rescued by reducing its ability to aggregate. In macrophages, ORF8b robustly activates the NLRP3 inflammasome by providing a potent signal 2 required for activation. Mechanistically, ORF8b interacts directly with the Leucine Rich Repeat domain of NLRP3 and localizes with NLRP3 and ASC in cytosolic dot-like structures. ORF8b triggers cell death consistent with pyroptotic cell death in macrophages. While in those cells lacking NLRP3 accumulating ORF8b cytosolic aggregates cause ER stress, mitochondrial dysfunction, and caspase-independent cell death.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Chong-Shan</ForeName>
<Initials>CS</Initials>
<AffiliationInfo>
<Affiliation>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA.</Affiliation>
<Identifier Source="ISNI">0000 0001 2164 9667</Identifier>
<Identifier Source="GRID">grid.419681.3</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nabar</LastName>
<ForeName>Neel R</ForeName>
<Initials>NR</Initials>
<Identifier Source="ORCID">0000-0002-9704-3570</Identifier>
<AffiliationInfo>
<Affiliation>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA.</Affiliation>
<Identifier Source="ISNI">0000 0001 2164 9667</Identifier>
<Identifier Source="GRID">grid.419681.3</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Ning-Na</ForeName>
<Initials>NN</Initials>
<AffiliationInfo>
<Affiliation>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA.</Affiliation>
<Identifier Source="ISNI">0000 0001 2164 9667</Identifier>
<Identifier Source="GRID">grid.419681.3</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kehrl</LastName>
<ForeName>John H</ForeName>
<Initials>JH</Initials>
<AffiliationInfo>
<Affiliation>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA.</Affiliation>
<Identifier Source="ISNI">0000 0001 2164 9667</Identifier>
<Identifier Source="GRID">grid.419681.3</Identifier>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>06</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Cell Death Discov</MedlineTA>
<NlmUniqueID>101665035</NlmUniqueID>
<ISSNLinking>2058-7716</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Cell death and immune response</Keyword>
<Keyword MajorTopicYN="N">Inflammasome</Keyword>
</KeywordList>
<CoiStatement>Conflict of interestThe authors declare that they have no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>03</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>04</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>05</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>6</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31231549</ArticleId>
<ArticleId IdType="doi">10.1038/s41420-019-0181-7</ArticleId>
<ArticleId IdType="pii">181</ArticleId>
<ArticleId IdType="pmc">PMC6549181</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Pathol. 2003 Aug;34(8):743-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14506633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pediatrics. 2004 Jan;113(1 Pt 1):e7-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14702488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Mar 12;303(5664):1666-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14752165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respirology. 2003 Nov;8 Suppl:S6-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15018126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2003 Dec;1(3):209-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15035025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Dec;10(12 Suppl):S88-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15577937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2005 Feb;75(2):185-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15602737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2006 Oct 10;354(1):132-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16876844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2006 Nov;210(3):288-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17031779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2007 Aug;274(16):4211-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17645546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Dec;81(24):13876-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17928347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Jul 24;454(7203):455-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18650916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Apr;1793(4):664-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18706940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2009 May 10;387(2):402-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19304306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jul 24;325(5939):473-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19556463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2010 May;11(5):404-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2010 Oct;10(10):688-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20847744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2011 Feb;13(2):179-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21035562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Jun 17;332(6036):1429-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21617040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 2012 Mar;151(3):217-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22210905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2012 Jan 29;13(3):255-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22286270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Microbiol. 2012 Jan;35(1):1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22378548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jun 1;287(23):19687-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22518844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(8):e1002857</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22916014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2012 Oct 17;4(10):2218-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23202461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2012 Nov 07;4(11):2902-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23202509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013;9(5):e1003392</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23737748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jul;42(Web Server issue):W301-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24848016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2014 Sep 15;193(6):3080-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25135833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2015 Mar;17(3):288-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25720963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2015;11(8):1408-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26114578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2015 Oct 1;29(19):2010-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26404941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2016;12(1):1-222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26799652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2016 Mar 1;35(5):479-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26813791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2016 Feb 10;19(2):181-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26867177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2016 Oct 1;1648(Pt B):658-666</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27037184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2016 Aug 2;12(8):1240-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27171064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Discov. 2016 Apr 04;2:16019</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27551512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2016 Dec;41(12):1012-1021</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27669650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2017 Jan;31(1):5-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28049155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Immunol. 2017 Jun;86:10-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28249679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yale J Biol Med. 2017 Jun 23;90(2):301-315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28656016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2018 Feb;515:165-175</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29294448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Dis. 2018 Sep 5;9(9):904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30185776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2018 Dec;564(7734):71-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30487600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2019 Mar 1;202(5):1510-1520</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30683698</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000894 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000894 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:31231549
   |texte=   SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:31231549" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021