Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dual-Functional Plasmonic Photothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection.

Identifieur interne : 000203 ( PubMed/Curation ); précédent : 000202; suivant : 000204

Dual-Functional Plasmonic Photothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection.

Auteurs : Guangyu Qiu [Suisse] ; Zhibo Gai [Suisse] ; Yile Tao [Suisse] ; Jean Schmitt [Suisse] ; Gerd A. Kullak-Ublick [Suisse] ; Jing Wang [Suisse]

Source :

RBID : pubmed:32281785

Abstract

The ongoing outbreak of the novel coronavirus disease (COVID-19) has spread globally and poses a threat to public health in more than 200 countries. Reliable laboratory diagnosis of the disease has been one of the foremost priorities for promoting public health interventions. The routinely used reverse transcription polymerase chain reaction (RT-PCR) is currently the reference method for COVID-19 diagnosis. However, it also reported a number of false-positive or -negative cases, especially in the early stages of the novel virus outbreak. In this work, a dual-functional plasmonic biosensor combining the plasmonic photothermal (PPT) effect and localized surface plasmon resonance (LSPR) sensing transduction provides an alternative and promising solution for the clinical COVID-19 diagnosis. The two-dimensional gold nanoislands (AuNIs) functionalized with complementary DNA receptors can perform a sensitive detection of the selected sequences from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through nucleic acid hybridization. For better sensing performance, the thermoplasmonic heat is generated on the same AuNIs chip when illuminated at their plasmonic resonance frequency. The localized PPT heat is capable to elevate the in situ hybridization temperature and facilitate the accurate discrimination of two similar gene sequences. Our dual-functional LSPR biosensor exhibits a high sensitivity toward the selected SARS-CoV-2 sequences with a lower detection limit down to the concentration of 0.22 pM and allows precise detection of the specific target in a multigene mixture. This study gains insight into the thermoplasmonic enhancement and its applicability in the nucleic acid tests and viral disease diagnosis.

DOI: 10.1021/acsnano.0c02439
PubMed: 32281785

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:32281785

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dual-Functional Plasmonic Photothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection.</title>
<author>
<name sortKey="Qiu, Guangyu" sort="Qiu, Guangyu" uniqKey="Qiu G" first="Guangyu" last="Qiu">Guangyu Qiu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Environmental Engineering, ETH Zürich, Zürich 8093</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Gai, Zhibo" sort="Gai, Zhibo" uniqKey="Gai Z" first="Zhibo" last="Gai">Zhibo Gai</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zürich, Zürich 8091, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zürich, Zürich 8091</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Tao, Yile" sort="Tao, Yile" uniqKey="Tao Y" first="Yile" last="Tao">Yile Tao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Environmental Engineering, ETH Zürich, Zürich 8093</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Schmitt, Jean" sort="Schmitt, Jean" uniqKey="Schmitt J" first="Jean" last="Schmitt">Jean Schmitt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Environmental Engineering, ETH Zürich, Zürich 8093</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kullak Ublick, Gerd A" sort="Kullak Ublick, Gerd A" uniqKey="Kullak Ublick G" first="Gerd A" last="Kullak-Ublick">Gerd A. Kullak-Ublick</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zürich, Zürich 8091, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zürich, Zürich 8091</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jing" sort="Wang, Jing" uniqKey="Wang J" first="Jing" last="Wang">Jing Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Environmental Engineering, ETH Zürich, Zürich 8093</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32281785</idno>
<idno type="pmid">32281785</idno>
<idno type="doi">10.1021/acsnano.0c02439</idno>
<idno type="wicri:Area/PubMed/Corpus">000203</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000203</idno>
<idno type="wicri:Area/PubMed/Curation">000203</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000203</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Dual-Functional Plasmonic Photothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection.</title>
<author>
<name sortKey="Qiu, Guangyu" sort="Qiu, Guangyu" uniqKey="Qiu G" first="Guangyu" last="Qiu">Guangyu Qiu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Environmental Engineering, ETH Zürich, Zürich 8093</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Gai, Zhibo" sort="Gai, Zhibo" uniqKey="Gai Z" first="Zhibo" last="Gai">Zhibo Gai</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zürich, Zürich 8091, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zürich, Zürich 8091</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Tao, Yile" sort="Tao, Yile" uniqKey="Tao Y" first="Yile" last="Tao">Yile Tao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Environmental Engineering, ETH Zürich, Zürich 8093</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Schmitt, Jean" sort="Schmitt, Jean" uniqKey="Schmitt J" first="Jean" last="Schmitt">Jean Schmitt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Environmental Engineering, ETH Zürich, Zürich 8093</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kullak Ublick, Gerd A" sort="Kullak Ublick, Gerd A" uniqKey="Kullak Ublick G" first="Gerd A" last="Kullak-Ublick">Gerd A. Kullak-Ublick</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zürich, Zürich 8091, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zürich, Zürich 8091</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jing" sort="Wang, Jing" uniqKey="Wang J" first="Jing" last="Wang">Jing Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Environmental Engineering, ETH Zürich, Zürich 8093</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">ACS nano</title>
<idno type="eISSN">1936-086X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The ongoing outbreak of the novel coronavirus disease (COVID-19) has spread globally and poses a threat to public health in more than 200 countries. Reliable laboratory diagnosis of the disease has been one of the foremost priorities for promoting public health interventions. The routinely used reverse transcription polymerase chain reaction (RT-PCR) is currently the reference method for COVID-19 diagnosis. However, it also reported a number of false-positive or -negative cases, especially in the early stages of the novel virus outbreak. In this work, a dual-functional plasmonic biosensor combining the plasmonic photothermal (PPT) effect and localized surface plasmon resonance (LSPR) sensing transduction provides an alternative and promising solution for the clinical COVID-19 diagnosis. The two-dimensional gold nanoislands (AuNIs) functionalized with complementary DNA receptors can perform a sensitive detection of the selected sequences from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through nucleic acid hybridization. For better sensing performance, the thermoplasmonic heat is generated on the same AuNIs chip when illuminated at their plasmonic resonance frequency. The localized PPT heat is capable to elevate the
<i>in situ</i>
hybridization temperature and facilitate the accurate discrimination of two similar gene sequences. Our dual-functional LSPR biosensor exhibits a high sensitivity toward the selected SARS-CoV-2 sequences with a lower detection limit down to the concentration of 0.22 pM and allows precise detection of the specific target in a multigene mixture. This study gains insight into the thermoplasmonic enhancement and its applicability in the nucleic acid tests and viral disease diagnosis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32281785</PMID>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1936-086X</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Apr</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>ACS nano</Title>
<ISOAbbreviation>ACS Nano</ISOAbbreviation>
</Journal>
<ArticleTitle>Dual-Functional Plasmonic Photothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/acsnano.0c02439</ELocationID>
<Abstract>
<AbstractText>The ongoing outbreak of the novel coronavirus disease (COVID-19) has spread globally and poses a threat to public health in more than 200 countries. Reliable laboratory diagnosis of the disease has been one of the foremost priorities for promoting public health interventions. The routinely used reverse transcription polymerase chain reaction (RT-PCR) is currently the reference method for COVID-19 diagnosis. However, it also reported a number of false-positive or -negative cases, especially in the early stages of the novel virus outbreak. In this work, a dual-functional plasmonic biosensor combining the plasmonic photothermal (PPT) effect and localized surface plasmon resonance (LSPR) sensing transduction provides an alternative and promising solution for the clinical COVID-19 diagnosis. The two-dimensional gold nanoislands (AuNIs) functionalized with complementary DNA receptors can perform a sensitive detection of the selected sequences from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through nucleic acid hybridization. For better sensing performance, the thermoplasmonic heat is generated on the same AuNIs chip when illuminated at their plasmonic resonance frequency. The localized PPT heat is capable to elevate the
<i>in situ</i>
hybridization temperature and facilitate the accurate discrimination of two similar gene sequences. Our dual-functional LSPR biosensor exhibits a high sensitivity toward the selected SARS-CoV-2 sequences with a lower detection limit down to the concentration of 0.22 pM and allows precise detection of the specific target in a multigene mixture. This study gains insight into the thermoplasmonic enhancement and its applicability in the nucleic acid tests and viral disease diagnosis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Qiu</LastName>
<ForeName>Guangyu</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gai</LastName>
<ForeName>Zhibo</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zürich, Zürich 8091, Switzerland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tao</LastName>
<ForeName>Yile</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schmitt</LastName>
<ForeName>Jean</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kullak-Ublick</LastName>
<ForeName>Gerd A</ForeName>
<Initials>GA</Initials>
<AffiliationInfo>
<Affiliation>Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zürich, Zürich 8091, Switzerland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel 4002, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-2078-137X</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>ACS Nano</MedlineTA>
<NlmUniqueID>101313589</NlmUniqueID>
<ISSNLinking>1936-0851</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">LSPR</Keyword>
<Keyword MajorTopicYN="N">RNA virus</Keyword>
<Keyword MajorTopicYN="N">biosensors</Keyword>
<Keyword MajorTopicYN="N">coronavirus disease</Keyword>
<Keyword MajorTopicYN="N">nuclei acids</Keyword>
<Keyword MajorTopicYN="N">plasmonic photothermal effect</Keyword>
<Keyword MajorTopicYN="N">severe acute respiratory syndrome coronavirus 2</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32281785</ArticleId>
<ArticleId IdType="doi">10.1021/acsnano.0c02439</ArticleId>
<ArticleId IdType="pmc">PMC7158889</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>ACS Nano. 2012 Mar 27;6(3):2452-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22305011</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Mater. 2008 Jun;7(6):442-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18497851</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>ACS Nano. 2010 Feb 23;4(2):709-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20055439</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Environ Sci Technol. 2020 Feb 4;54(3):1353-1362</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31909609</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Phys Chem. 2007;58:267-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17067281</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Eur Radiol. 2020 Mar 19;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32193638</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Phys Chem B. 2006 Aug 24;110(33):16393-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16913768</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2020 Feb 15;395(10223):497-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31986264</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Sci (Weinh). 2019 Jul 22;6(17):1900471</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31508273</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>ACS Sens. 2017 Jan 27;2(1):16-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28722437</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2020 Mar 13;367(6483):1260-1263</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32075877</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>ACS Nano. 2015 Dec 22;9(12):11574-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26435320</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Euro Surveill. 2020 Feb;25(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32070465</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2020 Feb 22;395(10224):565-574</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32007145</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chem Rev. 2009 Mar 11;109(3):839-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19196002</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Euro Surveill. 2020 Jan;25(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31992387</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2020 Feb 20;382(8):727-733</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31978945</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Commun. 2017 Mar 21;8:14902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28322227</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet Infect Dis. 2020 Apr;20(4):411-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32105638</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chem Rev. 2019 Jul 10;119(13):8087-8130</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31125213</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Chem. 2012 Jan 22;4(3):208-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22354435</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Radiology. 2020 Feb 12;:200343</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32049601</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Mater. 2013 Jun 11;25(22):3055-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23404693</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Chem. 2018 Jan;10(1):91-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29256499</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMJ. 2020 Feb 18;368:m641</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32071063</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Am Chem Soc. 2017 Jun 21;139(24):8054-8057</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28457135</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Opt Lett. 2015 May 1;40(9):1924-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25927749</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Expert Rev Mol Diagn. 2019 Jan;19(1):71-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30513011</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nano Lett. 2008 Feb;8(2):619-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18220441</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Virol. 2019 Feb;34:79-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30665189</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2020 Mar 5;382(10):970-971</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32003551</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Am Chem Soc. 2005 Feb 23;127(7):2264-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15713105</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000203 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000203 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:32281785
   |texte=   Dual-Functional Plasmonic Photothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:32281785" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021