Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Oligomerization of the SARS-CoV S glycoprotein: dimerization of the N-terminus and trimerization of the ectodomain.

Identifieur interne : 002C14 ( PubMed/Corpus ); précédent : 002C13; suivant : 002C15

Oligomerization of the SARS-CoV S glycoprotein: dimerization of the N-terminus and trimerization of the ectodomain.

Auteurs : Xiaodong Xiao ; Yang Feng ; Samitabh Chakraborti ; Dimiter S. Dimitrov

Source :

RBID : pubmed:15313178

English descriptors

Abstract

Viral envelope glycoproteins are oligomeric and the quaternary structure is critical for their membrane fusion activity. Typically the transmembrane glycoproteins of class I fusion proteins contain the oligomerization domains and the surface glycoproteins (SU) are monomeric. However, it has been previously demonstrated [J. Biol. Chem. 277 (2002) 19727] that the SU of a murine hepatitis coronavirus (MHV) forms dimers, the dimerization domain overlaps the receptor-binding domain (RBD) and that this dimeric state is important for binding to receptor molecules that initiates entry into cells. We have previously expressed various soluble fragments of the SARS-CoV SU and identified stably folded fragments (residues 272-537) that contain the RBD [Biochem. Biophys. Res. Commun. 312 (2003) 1159]. Here, we further characterize these and other fragments in an attempt to identify possible dimerization domains and their role for membrane fusion. We demonstrate that the SU and a shorter 260-amino acid N-terminal fragment (residues 17-276), which folds independently, form dimers. In contrast to the previously characterized MHV SU dimerization, this fragment is upstream and distinct from the RBD. Its deletion abolished S-mediated cell membrane fusion but retained the SU-receptor-binding function indicating the possibility for a role in post-receptor binding steps of the virus entry mechanism. Interestingly, the whole soluble S ectodomain (Se) that contains the dimerization domain but not the transmembrane domain and the cytoplasmic tail forms trimers suggesting the existence of a trimerization domain in the TM subunit in its prefusion state that may lead to a conformation unfavorable for formation of higher-order multimeric structures. These results demonstrate the existence of SU dimers and Se trimers, and indicate the possibility for an unknown mechanism of their role in entry. They also further characterize the S-mediated membrane fusion and could be important for understanding the mechanisms of virus entry, and in the development of therapeutics and vaccines.

DOI: 10.1016/j.bbrc.2004.07.084
PubMed: 15313178

Links to Exploration step

pubmed:15313178

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Oligomerization of the SARS-CoV S glycoprotein: dimerization of the N-terminus and trimerization of the ectodomain.</title>
<author>
<name sortKey="Xiao, Xiaodong" sort="Xiao, Xiaodong" uniqKey="Xiao X" first="Xiaodong" last="Xiao">Xiaodong Xiao</name>
<affiliation>
<nlm:affiliation>Protein Interactions Group, LECB, CCR, NCI-Frederick, NIH, Frederick, MD 21702-1201, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Feng, Yang" sort="Feng, Yang" uniqKey="Feng Y" first="Yang" last="Feng">Yang Feng</name>
</author>
<author>
<name sortKey="Chakraborti, Samitabh" sort="Chakraborti, Samitabh" uniqKey="Chakraborti S" first="Samitabh" last="Chakraborti">Samitabh Chakraborti</name>
</author>
<author>
<name sortKey="Dimitrov, Dimiter S" sort="Dimitrov, Dimiter S" uniqKey="Dimitrov D" first="Dimiter S" last="Dimitrov">Dimiter S. Dimitrov</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15313178</idno>
<idno type="pmid">15313178</idno>
<idno type="doi">10.1016/j.bbrc.2004.07.084</idno>
<idno type="wicri:Area/PubMed/Corpus">002C14</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002C14</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Oligomerization of the SARS-CoV S glycoprotein: dimerization of the N-terminus and trimerization of the ectodomain.</title>
<author>
<name sortKey="Xiao, Xiaodong" sort="Xiao, Xiaodong" uniqKey="Xiao X" first="Xiaodong" last="Xiao">Xiaodong Xiao</name>
<affiliation>
<nlm:affiliation>Protein Interactions Group, LECB, CCR, NCI-Frederick, NIH, Frederick, MD 21702-1201, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Feng, Yang" sort="Feng, Yang" uniqKey="Feng Y" first="Yang" last="Feng">Yang Feng</name>
</author>
<author>
<name sortKey="Chakraborti, Samitabh" sort="Chakraborti, Samitabh" uniqKey="Chakraborti S" first="Samitabh" last="Chakraborti">Samitabh Chakraborti</name>
</author>
<author>
<name sortKey="Dimitrov, Dimiter S" sort="Dimitrov, Dimiter S" uniqKey="Dimitrov D" first="Dimiter S" last="Dimitrov">Dimiter S. Dimitrov</name>
</author>
</analytic>
<series>
<title level="j">Biochemical and biophysical research communications</title>
<idno type="ISSN">0006-291X</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binding Sites</term>
<term>Dimerization</term>
<term>Macromolecular Substances</term>
<term>Membrane Glycoproteins (chemistry)</term>
<term>Polymers (chemistry)</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>Protein Structure, Tertiary</term>
<term>SARS Virus (metabolism)</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Viral Envelope Proteins (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Polymers</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Macromolecular Substances</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Dimerization</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>Protein Structure, Tertiary</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Viral envelope glycoproteins are oligomeric and the quaternary structure is critical for their membrane fusion activity. Typically the transmembrane glycoproteins of class I fusion proteins contain the oligomerization domains and the surface glycoproteins (SU) are monomeric. However, it has been previously demonstrated [J. Biol. Chem. 277 (2002) 19727] that the SU of a murine hepatitis coronavirus (MHV) forms dimers, the dimerization domain overlaps the receptor-binding domain (RBD) and that this dimeric state is important for binding to receptor molecules that initiates entry into cells. We have previously expressed various soluble fragments of the SARS-CoV SU and identified stably folded fragments (residues 272-537) that contain the RBD [Biochem. Biophys. Res. Commun. 312 (2003) 1159]. Here, we further characterize these and other fragments in an attempt to identify possible dimerization domains and their role for membrane fusion. We demonstrate that the SU and a shorter 260-amino acid N-terminal fragment (residues 17-276), which folds independently, form dimers. In contrast to the previously characterized MHV SU dimerization, this fragment is upstream and distinct from the RBD. Its deletion abolished S-mediated cell membrane fusion but retained the SU-receptor-binding function indicating the possibility for a role in post-receptor binding steps of the virus entry mechanism. Interestingly, the whole soluble S ectodomain (Se) that contains the dimerization domain but not the transmembrane domain and the cytoplasmic tail forms trimers suggesting the existence of a trimerization domain in the TM subunit in its prefusion state that may lead to a conformation unfavorable for formation of higher-order multimeric structures. These results demonstrate the existence of SU dimers and Se trimers, and indicate the possibility for an unknown mechanism of their role in entry. They also further characterize the S-mediated membrane fusion and could be important for understanding the mechanisms of virus entry, and in the development of therapeutics and vaccines.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15313178</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>09</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0006-291X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>322</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2004</Year>
<Month>Sep</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>Biochemical and biophysical research communications</Title>
<ISOAbbreviation>Biochem. Biophys. Res. Commun.</ISOAbbreviation>
</Journal>
<ArticleTitle>Oligomerization of the SARS-CoV S glycoprotein: dimerization of the N-terminus and trimerization of the ectodomain.</ArticleTitle>
<Pagination>
<MedlinePgn>93-9</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Viral envelope glycoproteins are oligomeric and the quaternary structure is critical for their membrane fusion activity. Typically the transmembrane glycoproteins of class I fusion proteins contain the oligomerization domains and the surface glycoproteins (SU) are monomeric. However, it has been previously demonstrated [J. Biol. Chem. 277 (2002) 19727] that the SU of a murine hepatitis coronavirus (MHV) forms dimers, the dimerization domain overlaps the receptor-binding domain (RBD) and that this dimeric state is important for binding to receptor molecules that initiates entry into cells. We have previously expressed various soluble fragments of the SARS-CoV SU and identified stably folded fragments (residues 272-537) that contain the RBD [Biochem. Biophys. Res. Commun. 312 (2003) 1159]. Here, we further characterize these and other fragments in an attempt to identify possible dimerization domains and their role for membrane fusion. We demonstrate that the SU and a shorter 260-amino acid N-terminal fragment (residues 17-276), which folds independently, form dimers. In contrast to the previously characterized MHV SU dimerization, this fragment is upstream and distinct from the RBD. Its deletion abolished S-mediated cell membrane fusion but retained the SU-receptor-binding function indicating the possibility for a role in post-receptor binding steps of the virus entry mechanism. Interestingly, the whole soluble S ectodomain (Se) that contains the dimerization domain but not the transmembrane domain and the cytoplasmic tail forms trimers suggesting the existence of a trimerization domain in the TM subunit in its prefusion state that may lead to a conformation unfavorable for formation of higher-order multimeric structures. These results demonstrate the existence of SU dimers and Se trimers, and indicate the possibility for an unknown mechanism of their role in entry. They also further characterize the S-mediated membrane fusion and could be important for understanding the mechanisms of virus entry, and in the development of therapeutics and vaccines.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Xiao</LastName>
<ForeName>Xiaodong</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Protein Interactions Group, LECB, CCR, NCI-Frederick, NIH, Frederick, MD 21702-1201, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Feng</LastName>
<ForeName>Yang</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chakraborti</LastName>
<ForeName>Samitabh</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dimitrov</LastName>
<ForeName>Dimiter S</ForeName>
<Initials>DS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochem Biophys Res Commun</MedlineTA>
<NlmUniqueID>0372516</NlmUniqueID>
<ISSNLinking>0006-291X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046911">Macromolecular Substances</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011108">Polymers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019281" MajorTopicYN="N">Dimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046911" MajorTopicYN="N">Macromolecular Substances</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011108" MajorTopicYN="N">Polymers</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2004</Year>
<Month>06</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>8</Month>
<Day>18</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>10</Month>
<Day>2</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>8</Month>
<Day>18</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15313178</ArticleId>
<ArticleId IdType="doi">10.1016/j.bbrc.2004.07.084</ArticleId>
<ArticleId IdType="pii">S0006-291X(04)01554-2</ArticleId>
<ArticleId IdType="pmc">PMC7092807</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2004 May 14;279(20):20836-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14996844</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Dec 26;312(4):1159-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14651994</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4240-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15010527</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6641-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15096611</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2003 Aug;77(16):8801-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12885899</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Virus Res. 1997;48:1-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9233431</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2004 Feb;2(2):109-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15043007</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 1;101(22):8455-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15150417</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1948-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12748314</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2004 Jan 30;279(5):3197-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14670965</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Jun 18;319(1):283-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15158473</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):14877-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752436</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2004 Mar 20;363(9413):938-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15043961</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2002 May 31;277(22):19727-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11912215</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2000 May;74(10):4448-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10775580</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 May;78(9):4552-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15078936</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>AIDS Res Hum Retroviruses. 1993 Jul;9(7):589-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8369163</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C14 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002C14 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:15313178
   |texte=   Oligomerization of the SARS-CoV S glycoprotein: dimerization of the N-terminus and trimerization of the ectodomain.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:15313178" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021