Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Retroviruses pseudotyped with the severe acute respiratory syndrome coronavirus spike protein efficiently infect cells expressing angiotensin-converting enzyme 2.

Identifieur interne : 002B53 ( PubMed/Corpus ); précédent : 002B52; suivant : 002B54

Retroviruses pseudotyped with the severe acute respiratory syndrome coronavirus spike protein efficiently infect cells expressing angiotensin-converting enzyme 2.

Auteurs : Michael J. Moore ; Tatyana Dorfman ; Wenhui Li ; Swee Kee Wong ; Yanhan Li ; Jens H. Kuhn ; James Coderre ; Natalya Vasilieva ; Zhongchao Han ; Thomas C. Greenough ; Michael Farzan ; Hyeryun Choe

Source :

RBID : pubmed:15367630

English descriptors

Abstract

Infection of receptor-bearing cells by coronaviruses is mediated by their spike (S) proteins. The coronavirus (SARS-CoV) that causes severe acute respiratory syndrome (SARS) infects cells expressing the receptor angiotensin-converting enzyme 2 (ACE2). Here we show that codon optimization of the SARS-CoV S-protein gene substantially enhanced S-protein expression. We also found that two retroviruses, simian immunodeficiency virus (SIV) and murine leukemia virus, both expressing green fluorescent protein and pseudotyped with SARS-CoV S protein or S-protein variants, efficiently infected HEK293T cells stably expressing ACE2. Infection mediated by an S-protein variant whose cytoplasmic domain had been truncated and altered to include a fragment of the cytoplasmic tail of the human immunodeficiency virus type 1 envelope glycoprotein was, in both cases, substantially more efficient than that mediated by wild-type S protein. Using S-protein-pseudotyped SIV, we found that the enzymatic activity of ACE2 made no contribution to S-protein-mediated infection. Finally, we show that a soluble and catalytically inactive form of ACE2 potently blocked infection by S-protein-pseudotyped retrovirus and by SARS-CoV. These results permit studies of SARS-CoV entry inhibitors without the use of live virus and suggest a candidate therapy for SARS.

DOI: 10.1128/JVI.78.19.10628-10635.2004
PubMed: 15367630

Links to Exploration step

pubmed:15367630

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Retroviruses pseudotyped with the severe acute respiratory syndrome coronavirus spike protein efficiently infect cells expressing angiotensin-converting enzyme 2.</title>
<author>
<name sortKey="Moore, Michael J" sort="Moore, Michael J" uniqKey="Moore M" first="Michael J" last="Moore">Michael J. Moore</name>
<affiliation>
<nlm:affiliation>Partners AIDS Research Center, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dorfman, Tatyana" sort="Dorfman, Tatyana" uniqKey="Dorfman T" first="Tatyana" last="Dorfman">Tatyana Dorfman</name>
</author>
<author>
<name sortKey="Li, Wenhui" sort="Li, Wenhui" uniqKey="Li W" first="Wenhui" last="Li">Wenhui Li</name>
</author>
<author>
<name sortKey="Wong, Swee Kee" sort="Wong, Swee Kee" uniqKey="Wong S" first="Swee Kee" last="Wong">Swee Kee Wong</name>
</author>
<author>
<name sortKey="Li, Yanhan" sort="Li, Yanhan" uniqKey="Li Y" first="Yanhan" last="Li">Yanhan Li</name>
</author>
<author>
<name sortKey="Kuhn, Jens H" sort="Kuhn, Jens H" uniqKey="Kuhn J" first="Jens H" last="Kuhn">Jens H. Kuhn</name>
</author>
<author>
<name sortKey="Coderre, James" sort="Coderre, James" uniqKey="Coderre J" first="James" last="Coderre">James Coderre</name>
</author>
<author>
<name sortKey="Vasilieva, Natalya" sort="Vasilieva, Natalya" uniqKey="Vasilieva N" first="Natalya" last="Vasilieva">Natalya Vasilieva</name>
</author>
<author>
<name sortKey="Han, Zhongchao" sort="Han, Zhongchao" uniqKey="Han Z" first="Zhongchao" last="Han">Zhongchao Han</name>
</author>
<author>
<name sortKey="Greenough, Thomas C" sort="Greenough, Thomas C" uniqKey="Greenough T" first="Thomas C" last="Greenough">Thomas C. Greenough</name>
</author>
<author>
<name sortKey="Farzan, Michael" sort="Farzan, Michael" uniqKey="Farzan M" first="Michael" last="Farzan">Michael Farzan</name>
</author>
<author>
<name sortKey="Choe, Hyeryun" sort="Choe, Hyeryun" uniqKey="Choe H" first="Hyeryun" last="Choe">Hyeryun Choe</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15367630</idno>
<idno type="pmid">15367630</idno>
<idno type="doi">10.1128/JVI.78.19.10628-10635.2004</idno>
<idno type="wicri:Area/PubMed/Corpus">002B53</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002B53</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Retroviruses pseudotyped with the severe acute respiratory syndrome coronavirus spike protein efficiently infect cells expressing angiotensin-converting enzyme 2.</title>
<author>
<name sortKey="Moore, Michael J" sort="Moore, Michael J" uniqKey="Moore M" first="Michael J" last="Moore">Michael J. Moore</name>
<affiliation>
<nlm:affiliation>Partners AIDS Research Center, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dorfman, Tatyana" sort="Dorfman, Tatyana" uniqKey="Dorfman T" first="Tatyana" last="Dorfman">Tatyana Dorfman</name>
</author>
<author>
<name sortKey="Li, Wenhui" sort="Li, Wenhui" uniqKey="Li W" first="Wenhui" last="Li">Wenhui Li</name>
</author>
<author>
<name sortKey="Wong, Swee Kee" sort="Wong, Swee Kee" uniqKey="Wong S" first="Swee Kee" last="Wong">Swee Kee Wong</name>
</author>
<author>
<name sortKey="Li, Yanhan" sort="Li, Yanhan" uniqKey="Li Y" first="Yanhan" last="Li">Yanhan Li</name>
</author>
<author>
<name sortKey="Kuhn, Jens H" sort="Kuhn, Jens H" uniqKey="Kuhn J" first="Jens H" last="Kuhn">Jens H. Kuhn</name>
</author>
<author>
<name sortKey="Coderre, James" sort="Coderre, James" uniqKey="Coderre J" first="James" last="Coderre">James Coderre</name>
</author>
<author>
<name sortKey="Vasilieva, Natalya" sort="Vasilieva, Natalya" uniqKey="Vasilieva N" first="Natalya" last="Vasilieva">Natalya Vasilieva</name>
</author>
<author>
<name sortKey="Han, Zhongchao" sort="Han, Zhongchao" uniqKey="Han Z" first="Zhongchao" last="Han">Zhongchao Han</name>
</author>
<author>
<name sortKey="Greenough, Thomas C" sort="Greenough, Thomas C" uniqKey="Greenough T" first="Thomas C" last="Greenough">Thomas C. Greenough</name>
</author>
<author>
<name sortKey="Farzan, Michael" sort="Farzan, Michael" uniqKey="Farzan M" first="Michael" last="Farzan">Michael Farzan</name>
</author>
<author>
<name sortKey="Choe, Hyeryun" sort="Choe, Hyeryun" uniqKey="Choe H" first="Hyeryun" last="Choe">Hyeryun Choe</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="ISSN">0022-538X</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Carboxypeptidases (genetics)</term>
<term>Carboxypeptidases (metabolism)</term>
<term>Cell Line</term>
<term>HIV-1 (genetics)</term>
<term>Humans</term>
<term>Leukemia Virus, Murine (genetics)</term>
<term>Leukemia Virus, Murine (metabolism)</term>
<term>Leukemia Virus, Murine (physiology)</term>
<term>Membrane Glycoproteins (genetics)</term>
<term>Membrane Glycoproteins (metabolism)</term>
<term>Molecular Sequence Data</term>
<term>Peptidyl-Dipeptidase A</term>
<term>Receptors, Virus (metabolism)</term>
<term>SARS Virus (genetics)</term>
<term>Simian Immunodeficiency Virus (genetics)</term>
<term>Simian Immunodeficiency Virus (metabolism)</term>
<term>Simian Immunodeficiency Virus (physiology)</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Viral Envelope Proteins (genetics)</term>
<term>Viral Envelope Proteins (metabolism)</term>
<term>Virion (chemistry)</term>
<term>Virion (metabolism)</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Carboxypeptidases</term>
<term>Membrane Glycoproteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carboxypeptidases</term>
<term>Membrane Glycoproteins</term>
<term>Receptors, Virus</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Virion</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>HIV-1</term>
<term>Leukemia Virus, Murine</term>
<term>SARS Virus</term>
<term>Simian Immunodeficiency Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Leukemia Virus, Murine</term>
<term>Simian Immunodeficiency Virus</term>
<term>Virion</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Leukemia Virus, Murine</term>
<term>Simian Immunodeficiency Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Cell Line</term>
<term>Humans</term>
<term>Molecular Sequence Data</term>
<term>Peptidyl-Dipeptidase A</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Virus Replication</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Infection of receptor-bearing cells by coronaviruses is mediated by their spike (S) proteins. The coronavirus (SARS-CoV) that causes severe acute respiratory syndrome (SARS) infects cells expressing the receptor angiotensin-converting enzyme 2 (ACE2). Here we show that codon optimization of the SARS-CoV S-protein gene substantially enhanced S-protein expression. We also found that two retroviruses, simian immunodeficiency virus (SIV) and murine leukemia virus, both expressing green fluorescent protein and pseudotyped with SARS-CoV S protein or S-protein variants, efficiently infected HEK293T cells stably expressing ACE2. Infection mediated by an S-protein variant whose cytoplasmic domain had been truncated and altered to include a fragment of the cytoplasmic tail of the human immunodeficiency virus type 1 envelope glycoprotein was, in both cases, substantially more efficient than that mediated by wild-type S protein. Using S-protein-pseudotyped SIV, we found that the enzymatic activity of ACE2 made no contribution to S-protein-mediated infection. Finally, we show that a soluble and catalytically inactive form of ACE2 potently blocked infection by S-protein-pseudotyped retrovirus and by SARS-CoV. These results permit studies of SARS-CoV entry inhibitors without the use of live virus and suggest a candidate therapy for SARS.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15367630</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>10</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0022-538X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>78</Volume>
<Issue>19</Issue>
<PubDate>
<Year>2004</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Retroviruses pseudotyped with the severe acute respiratory syndrome coronavirus spike protein efficiently infect cells expressing angiotensin-converting enzyme 2.</ArticleTitle>
<Pagination>
<MedlinePgn>10628-35</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Infection of receptor-bearing cells by coronaviruses is mediated by their spike (S) proteins. The coronavirus (SARS-CoV) that causes severe acute respiratory syndrome (SARS) infects cells expressing the receptor angiotensin-converting enzyme 2 (ACE2). Here we show that codon optimization of the SARS-CoV S-protein gene substantially enhanced S-protein expression. We also found that two retroviruses, simian immunodeficiency virus (SIV) and murine leukemia virus, both expressing green fluorescent protein and pseudotyped with SARS-CoV S protein or S-protein variants, efficiently infected HEK293T cells stably expressing ACE2. Infection mediated by an S-protein variant whose cytoplasmic domain had been truncated and altered to include a fragment of the cytoplasmic tail of the human immunodeficiency virus type 1 envelope glycoprotein was, in both cases, substantially more efficient than that mediated by wild-type S protein. Using S-protein-pseudotyped SIV, we found that the enzymatic activity of ACE2 made no contribution to S-protein-mediated infection. Finally, we show that a soluble and catalytically inactive form of ACE2 potently blocked infection by S-protein-pseudotyped retrovirus and by SARS-CoV. These results permit studies of SARS-CoV entry inhibitors without the use of live virus and suggest a candidate therapy for SARS.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Moore</LastName>
<ForeName>Michael J</ForeName>
<Initials>MJ</Initials>
<AffiliationInfo>
<Affiliation>Partners AIDS Research Center, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dorfman</LastName>
<ForeName>Tatyana</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Wenhui</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wong</LastName>
<ForeName>Swee Kee</ForeName>
<Initials>SK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Yanhan</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kuhn</LastName>
<ForeName>Jens H</ForeName>
<Initials>JH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Coderre</LastName>
<ForeName>James</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vasilieva</LastName>
<ForeName>Natalya</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Han</LastName>
<ForeName>Zhongchao</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Greenough</LastName>
<ForeName>Thomas C</ForeName>
<Initials>TC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Farzan</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Choe</LastName>
<ForeName>Hyeryun</ForeName>
<Initials>H</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578553">MHV surface projection glycoprotein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011991">Receptors, Virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.-</RegistryNumber>
<NameOfSubstance UI="D002268">Carboxypeptidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.15.1</RegistryNumber>
<NameOfSubstance UI="D007703">Peptidyl-Dipeptidase A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.17.-</RegistryNumber>
<NameOfSubstance UI="C413524">angiotensin converting enzyme 2</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002268" MajorTopicYN="N">Carboxypeptidases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015497" MajorTopicYN="N">HIV-1</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009052" MajorTopicYN="N">Leukemia Virus, Murine</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007703" MajorTopicYN="N">Peptidyl-Dipeptidase A</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011991" MajorTopicYN="N">Receptors, Virus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015302" MajorTopicYN="N">Simian Immunodeficiency Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014771" MajorTopicYN="N">Virion</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>9</Month>
<Day>16</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>10</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>9</Month>
<Day>16</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15367630</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.78.19.10628-10635.2004</ArticleId>
<ArticleId IdType="pii">78/19/10628</ArticleId>
<ArticleId IdType="pmc">PMC516384</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Virology. 2000 Mar 30;269(1):212-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Oct 1;274(40):28745-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10497246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2002 Oct 9;124(40):11852-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12358520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 May 2;278(18):15532-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12606557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 May 15;423(6937):240</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12748632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2003 Jun;11(6):286-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12823946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Jul 25;114(2):161-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12887918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Jul 26;362(9380):263-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Dec 26;312(4):1159-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14651994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Mar 5;315(2):439-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14766227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2536-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14983044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Apr;78(7):3572-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15016880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Apr 1;428(6982):561-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15024391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 Sep;87(17):6743-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2204064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1994 Aug;68(8):5216-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7913510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1995 Jun;69(6):3824-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7745730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 Jun 28;85(7):1135-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8674119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1996 Mar 1;6(3):315-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8805248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1999 Mar 5;96(5):667-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10089882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Dec;74(23):10984-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11069993</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B53 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002B53 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:15367630
   |texte=   Retroviruses pseudotyped with the severe acute respiratory syndrome coronavirus spike protein efficiently infect cells expressing angiotensin-converting enzyme 2.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:15367630" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021