Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Programmed ribosomal frameshifting in decoding the SARS-CoV genome.

Identifieur interne : 002917 ( PubMed/Corpus ); précédent : 002916; suivant : 002918

Programmed ribosomal frameshifting in decoding the SARS-CoV genome.

Auteurs : Pavel V. Baranov ; Clark M. Henderson ; Christine B. Anderson ; Raymond F. Gesteland ; John F. Atkins ; Michael T. Howard

Source :

RBID : pubmed:15680415

English descriptors

Abstract

Programmed ribosomal frameshifting is an essential mechanism used for the expression of orf1b in coronaviruses. Comparative analysis of the frameshift region reveals a universal shift site U_UUA_AAC, followed by a predicted downstream RNA structure in the form of either a pseudoknot or kissing stem loops. Frameshifting in SARS-CoV has been characterized in cultured mammalian cells using a dual luciferase reporter system and mass spectrometry. Mutagenic analysis of the SARS-CoV shift site and mass spectrometry of an affinity tagged frameshift product confirmed tandem tRNA slippage on the sequence U_UUA_AAC. Analysis of the downstream pseudoknot stimulator of frameshifting in SARS-CoV shows that a proposed RNA secondary structure in loop II and two unpaired nucleotides at the stem I-stem II junction in SARS-CoV are important for frameshift stimulation. These results demonstrate key sequences required for efficient frameshifting, and the utility of mass spectrometry to study ribosomal frameshifting.

DOI: 10.1016/j.virol.2004.11.038
PubMed: 15680415

Links to Exploration step

pubmed:15680415

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Programmed ribosomal frameshifting in decoding the SARS-CoV genome.</title>
<author>
<name sortKey="Baranov, Pavel V" sort="Baranov, Pavel V" uniqKey="Baranov P" first="Pavel V" last="Baranov">Pavel V. Baranov</name>
<affiliation>
<nlm:affiliation>Department of Human Genetics, University of Utah, 15 N 2030 E, Room 7410, Salt Lake City, UT 84112-5330, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Henderson, Clark M" sort="Henderson, Clark M" uniqKey="Henderson C" first="Clark M" last="Henderson">Clark M. Henderson</name>
</author>
<author>
<name sortKey="Anderson, Christine B" sort="Anderson, Christine B" uniqKey="Anderson C" first="Christine B" last="Anderson">Christine B. Anderson</name>
</author>
<author>
<name sortKey="Gesteland, Raymond F" sort="Gesteland, Raymond F" uniqKey="Gesteland R" first="Raymond F" last="Gesteland">Raymond F. Gesteland</name>
</author>
<author>
<name sortKey="Atkins, John F" sort="Atkins, John F" uniqKey="Atkins J" first="John F" last="Atkins">John F. Atkins</name>
</author>
<author>
<name sortKey="Howard, Michael T" sort="Howard, Michael T" uniqKey="Howard M" first="Michael T" last="Howard">Michael T. Howard</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15680415</idno>
<idno type="pmid">15680415</idno>
<idno type="doi">10.1016/j.virol.2004.11.038</idno>
<idno type="wicri:Area/PubMed/Corpus">002917</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002917</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Programmed ribosomal frameshifting in decoding the SARS-CoV genome.</title>
<author>
<name sortKey="Baranov, Pavel V" sort="Baranov, Pavel V" uniqKey="Baranov P" first="Pavel V" last="Baranov">Pavel V. Baranov</name>
<affiliation>
<nlm:affiliation>Department of Human Genetics, University of Utah, 15 N 2030 E, Room 7410, Salt Lake City, UT 84112-5330, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Henderson, Clark M" sort="Henderson, Clark M" uniqKey="Henderson C" first="Clark M" last="Henderson">Clark M. Henderson</name>
</author>
<author>
<name sortKey="Anderson, Christine B" sort="Anderson, Christine B" uniqKey="Anderson C" first="Christine B" last="Anderson">Christine B. Anderson</name>
</author>
<author>
<name sortKey="Gesteland, Raymond F" sort="Gesteland, Raymond F" uniqKey="Gesteland R" first="Raymond F" last="Gesteland">Raymond F. Gesteland</name>
</author>
<author>
<name sortKey="Atkins, John F" sort="Atkins, John F" uniqKey="Atkins J" first="John F" last="Atkins">John F. Atkins</name>
</author>
<author>
<name sortKey="Howard, Michael T" sort="Howard, Michael T" uniqKey="Howard M" first="Michael T" last="Howard">Michael T. Howard</name>
</author>
</analytic>
<series>
<title level="j">Virology</title>
<idno type="ISSN">0042-6822</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence</term>
<term>Cell Line</term>
<term>Coronavirus (genetics)</term>
<term>Frameshifting, Ribosomal (genetics)</term>
<term>Genes, Reporter</term>
<term>Genome, Viral</term>
<term>Humans</term>
<term>Luciferases (genetics)</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Nucleic Acid Conformation</term>
<term>RNA, Viral (chemistry)</term>
<term>RNA, Viral (genetics)</term>
<term>SARS Virus (genetics)</term>
<term>Sequence Alignment</term>
<term>Spectrometry, Mass, Electrospray Ionization</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Luciferases</term>
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Coronavirus</term>
<term>Frameshifting, Ribosomal</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Cell Line</term>
<term>Genes, Reporter</term>
<term>Genome, Viral</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Nucleic Acid Conformation</term>
<term>Sequence Alignment</term>
<term>Spectrometry, Mass, Electrospray Ionization</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Programmed ribosomal frameshifting is an essential mechanism used for the expression of orf1b in coronaviruses. Comparative analysis of the frameshift region reveals a universal shift site U_UUA_AAC, followed by a predicted downstream RNA structure in the form of either a pseudoknot or kissing stem loops. Frameshifting in SARS-CoV has been characterized in cultured mammalian cells using a dual luciferase reporter system and mass spectrometry. Mutagenic analysis of the SARS-CoV shift site and mass spectrometry of an affinity tagged frameshift product confirmed tandem tRNA slippage on the sequence U_UUA_AAC. Analysis of the downstream pseudoknot stimulator of frameshifting in SARS-CoV shows that a proposed RNA secondary structure in loop II and two unpaired nucleotides at the stem I-stem II junction in SARS-CoV are important for frameshift stimulation. These results demonstrate key sequences required for efficient frameshifting, and the utility of mass spectrometry to study ribosomal frameshifting.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15680415</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>04</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0042-6822</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>332</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2005</Year>
<Month>Feb</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>Virology</Title>
<ISOAbbreviation>Virology</ISOAbbreviation>
</Journal>
<ArticleTitle>Programmed ribosomal frameshifting in decoding the SARS-CoV genome.</ArticleTitle>
<Pagination>
<MedlinePgn>498-510</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Programmed ribosomal frameshifting is an essential mechanism used for the expression of orf1b in coronaviruses. Comparative analysis of the frameshift region reveals a universal shift site U_UUA_AAC, followed by a predicted downstream RNA structure in the form of either a pseudoknot or kissing stem loops. Frameshifting in SARS-CoV has been characterized in cultured mammalian cells using a dual luciferase reporter system and mass spectrometry. Mutagenic analysis of the SARS-CoV shift site and mass spectrometry of an affinity tagged frameshift product confirmed tandem tRNA slippage on the sequence U_UUA_AAC. Analysis of the downstream pseudoknot stimulator of frameshifting in SARS-CoV shows that a proposed RNA secondary structure in loop II and two unpaired nucleotides at the stem I-stem II junction in SARS-CoV are important for frameshift stimulation. These results demonstrate key sequences required for efficient frameshifting, and the utility of mass spectrometry to study ribosomal frameshifting.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Baranov</LastName>
<ForeName>Pavel V</ForeName>
<Initials>PV</Initials>
<AffiliationInfo>
<Affiliation>Department of Human Genetics, University of Utah, 15 N 2030 E, Room 7410, Salt Lake City, UT 84112-5330, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Henderson</LastName>
<ForeName>Clark M</ForeName>
<Initials>CM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Anderson</LastName>
<ForeName>Christine B</ForeName>
<Initials>CB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gesteland</LastName>
<ForeName>Raymond F</ForeName>
<Initials>RF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Atkins</LastName>
<ForeName>John F</ForeName>
<Initials>JF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Howard</LastName>
<ForeName>Michael T</ForeName>
<Initials>MT</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM048152</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM48152</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Virology</MedlineTA>
<NlmUniqueID>0110674</NlmUniqueID>
<ISSNLinking>0042-6822</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012367">RNA, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.13.12.-</RegistryNumber>
<NameOfSubstance UI="D008156">Luciferases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="N">Coronavirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018965" MajorTopicYN="N">Frameshifting, Ribosomal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017930" MajorTopicYN="N">Genes, Reporter</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016679" MajorTopicYN="Y">Genome, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008156" MajorTopicYN="N">Luciferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009690" MajorTopicYN="N">Nucleic Acid Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012367" MajorTopicYN="N">RNA, Viral</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021241" MajorTopicYN="N">Spectrometry, Mass, Electrospray Ionization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2004</Year>
<Month>08</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2004</Year>
<Month>09</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2004</Year>
<Month>11</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>2</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>4</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>2</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15680415</ArticleId>
<ArticleId IdType="pii">S0042-6822(04)00813-X</ArticleId>
<ArticleId IdType="doi">10.1016/j.virol.2004.11.038</ArticleId>
<ArticleId IdType="pmc">PMC7111862</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Virus Genes. 1990 Jul;4(2):121-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2402881</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14234-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10588689</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1992 Sep 20;227(2):463-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1404364</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 1998 Mar 15;26(6):1369-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9490779</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Soc Trans. 2002 Nov;30(Pt 6):1126-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12440988</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cold Spring Harb Symp Quant Biol. 2001;66:233-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12762025</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2003 Sep;84(Pt 9):2305-2315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917450</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1995 Apr 14;247(5):963-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7723043</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):4899-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11296253</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>RNA. 2002 Jan;8(1):16-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11871658</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1996 May 31;259(1):135-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8648641</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>RNA. 2004 Feb;10(2):221-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14730021</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 2001 Jul 27;106(2):233-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11511350</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2000 Apr 28;298(2):167-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10764589</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1999 May 7;288(3):305-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329144</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1999 May 7;288(3):321-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329145</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell. 2004 Jan 30;13(2):157-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14759362</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2004 Jun 4;339(3):495-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15147837</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jan 1;31(1):87-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12519954</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Biol. 1999 Mar;6(3):285-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10074948</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 1988 Jan 21;331(6153):280-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2447506</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1996 Jul 26;260(4):479-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8759314</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 1989 May 19;57(4):537-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2720781</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1991 Aug 20;220(4):889-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1880803</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 1997 May 15;25(10):1943-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9115361</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Biochem Sci. 2002 Apr;27(4):178-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11943544</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Gene. 2002 Mar 20;286(2):187-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11943474</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1999 May 21;288(5):911-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329189</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Virus Res. 1992;41:193-239</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1575083</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Sep 3;99(18):11676-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12189204</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3406-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824337</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2001 Jun 22;309(5):1029-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11399077</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 1995 Feb 15;14(4):842-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7882986</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>RNA. 1998 Apr;4(4):479-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9630253</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Soc Trans. 2004 Dec;32(Pt 6):1081-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15506971</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell. 2005 Jan 7;17(1):61-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15629717</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1991 Jun;65(6):2910-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1851863</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 1995 May 11;23(9):1487-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7784201</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Ann Neurol. 2000 Aug;48(2):164-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10939566</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 1993 Dec 25;21(25):5838-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8290341</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002917 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002917 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:15680415
   |texte=   Programmed ribosomal frameshifting in decoding the SARS-CoV genome.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:15680415" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021