Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The transmembrane oligomers of coronavirus protein E.

Identifieur interne : 002885 ( PubMed/Corpus ); précédent : 002884; suivant : 002886

The transmembrane oligomers of coronavirus protein E.

Auteurs : Jaume Torres ; Jifeng Wang ; Krupakar Parthasarathy ; Ding Xiang Liu

Source :

RBID : pubmed:15713601

English descriptors

Abstract

We have tested the hypothesis that severe acute respiratory syndrome (SARS) coronavirus protein E (SCoVE) and its homologs in other coronaviruses associate through their putative transmembrane domain to form homooligomeric alpha-helical bundles in vivo. For this purpose, we have analyzed the results of molecular dynamics simulations where all possible conformational and aggregational space was systematically explored. Two main assumptions were considered; the first is that protein E contains one transmembrane alpha-helical domain, with its N- and C-termini located in opposite faces of the lipid bilayer. The second is that protein E forms the same type of transmembrane oligomer and with identical backbone structure in different coronaviruses. The models arising from the molecular dynamics simulations were tested for evolutionary conservation using 13 coronavirus protein E homologous sequences. It is extremely unlikely that if any of our assumptions were not correct we would find a persistent structure for all the sequences tested. We show that a low energy dimeric, trimeric and two pentameric models appear to be conserved through evolution, and are therefore likely to be present in vivo. In support of this, we have observed only dimeric, trimeric, and pentameric aggregates for the synthetic transmembrane domain of SARS protein E in SDS. The models obtained point to residues essential for protein E oligomerization in the life cycle of the SARS virus, specifically N15. In addition, these results strongly support a general model where transmembrane domains transiently adopt many aggregation states necessary for function.

DOI: 10.1529/biophysj.104.051730
PubMed: 15713601

Links to Exploration step

pubmed:15713601

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The transmembrane oligomers of coronavirus protein E.</title>
<author>
<name sortKey="Torres, Jaume" sort="Torres, Jaume" uniqKey="Torres J" first="Jaume" last="Torres">Jaume Torres</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, Nanyang Technological University, Singapore. jtorres@ntu.edu.sg</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jifeng" sort="Wang, Jifeng" uniqKey="Wang J" first="Jifeng" last="Wang">Jifeng Wang</name>
</author>
<author>
<name sortKey="Parthasarathy, Krupakar" sort="Parthasarathy, Krupakar" uniqKey="Parthasarathy K" first="Krupakar" last="Parthasarathy">Krupakar Parthasarathy</name>
</author>
<author>
<name sortKey="Liu, Ding Xiang" sort="Liu, Ding Xiang" uniqKey="Liu D" first="Ding Xiang" last="Liu">Ding Xiang Liu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15713601</idno>
<idno type="pmid">15713601</idno>
<idno type="doi">10.1529/biophysj.104.051730</idno>
<idno type="wicri:Area/PubMed/Corpus">002885</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002885</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The transmembrane oligomers of coronavirus protein E.</title>
<author>
<name sortKey="Torres, Jaume" sort="Torres, Jaume" uniqKey="Torres J" first="Jaume" last="Torres">Jaume Torres</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, Nanyang Technological University, Singapore. jtorres@ntu.edu.sg</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jifeng" sort="Wang, Jifeng" uniqKey="Wang J" first="Jifeng" last="Wang">Jifeng Wang</name>
</author>
<author>
<name sortKey="Parthasarathy, Krupakar" sort="Parthasarathy, Krupakar" uniqKey="Parthasarathy K" first="Krupakar" last="Parthasarathy">Krupakar Parthasarathy</name>
</author>
<author>
<name sortKey="Liu, Ding Xiang" sort="Liu, Ding Xiang" uniqKey="Liu D" first="Ding Xiang" last="Liu">Ding Xiang Liu</name>
</author>
</analytic>
<series>
<title level="j">Biophysical journal</title>
<idno type="ISSN">0006-3495</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binding Sites</term>
<term>Cell Membrane (chemistry)</term>
<term>Computer Simulation</term>
<term>Dimerization</term>
<term>Lipid Bilayers (chemistry)</term>
<term>Models, Chemical</term>
<term>Models, Molecular</term>
<term>Multiprotein Complexes (analysis)</term>
<term>Multiprotein Complexes (chemistry)</term>
<term>Multiprotein Complexes (ultrastructure)</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>Viral Envelope Proteins (analysis)</term>
<term>Viral Envelope Proteins (chemistry)</term>
<term>Viral Envelope Proteins (ultrastructure)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Multiprotein Complexes</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Lipid Bilayers</term>
<term>Multiprotein Complexes</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Cell Membrane</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="ultrastructure" xml:lang="en">
<term>Multiprotein Complexes</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Computer Simulation</term>
<term>Dimerization</term>
<term>Models, Chemical</term>
<term>Models, Molecular</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have tested the hypothesis that severe acute respiratory syndrome (SARS) coronavirus protein E (SCoVE) and its homologs in other coronaviruses associate through their putative transmembrane domain to form homooligomeric alpha-helical bundles in vivo. For this purpose, we have analyzed the results of molecular dynamics simulations where all possible conformational and aggregational space was systematically explored. Two main assumptions were considered; the first is that protein E contains one transmembrane alpha-helical domain, with its N- and C-termini located in opposite faces of the lipid bilayer. The second is that protein E forms the same type of transmembrane oligomer and with identical backbone structure in different coronaviruses. The models arising from the molecular dynamics simulations were tested for evolutionary conservation using 13 coronavirus protein E homologous sequences. It is extremely unlikely that if any of our assumptions were not correct we would find a persistent structure for all the sequences tested. We show that a low energy dimeric, trimeric and two pentameric models appear to be conserved through evolution, and are therefore likely to be present in vivo. In support of this, we have observed only dimeric, trimeric, and pentameric aggregates for the synthetic transmembrane domain of SARS protein E in SDS. The models obtained point to residues essential for protein E oligomerization in the life cycle of the SARS virus, specifically N15. In addition, these results strongly support a general model where transmembrane domains transiently adopt many aggregation states necessary for function.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15713601</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>07</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0006-3495</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>88</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2005</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Biophysical journal</Title>
<ISOAbbreviation>Biophys. J.</ISOAbbreviation>
</Journal>
<ArticleTitle>The transmembrane oligomers of coronavirus protein E.</ArticleTitle>
<Pagination>
<MedlinePgn>1283-90</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>We have tested the hypothesis that severe acute respiratory syndrome (SARS) coronavirus protein E (SCoVE) and its homologs in other coronaviruses associate through their putative transmembrane domain to form homooligomeric alpha-helical bundles in vivo. For this purpose, we have analyzed the results of molecular dynamics simulations where all possible conformational and aggregational space was systematically explored. Two main assumptions were considered; the first is that protein E contains one transmembrane alpha-helical domain, with its N- and C-termini located in opposite faces of the lipid bilayer. The second is that protein E forms the same type of transmembrane oligomer and with identical backbone structure in different coronaviruses. The models arising from the molecular dynamics simulations were tested for evolutionary conservation using 13 coronavirus protein E homologous sequences. It is extremely unlikely that if any of our assumptions were not correct we would find a persistent structure for all the sequences tested. We show that a low energy dimeric, trimeric and two pentameric models appear to be conserved through evolution, and are therefore likely to be present in vivo. In support of this, we have observed only dimeric, trimeric, and pentameric aggregates for the synthetic transmembrane domain of SARS protein E in SDS. The models obtained point to residues essential for protein E oligomerization in the life cycle of the SARS virus, specifically N15. In addition, these results strongly support a general model where transmembrane domains transiently adopt many aggregation states necessary for function.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Torres</LastName>
<ForeName>Jaume</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, Nanyang Technological University, Singapore. jtorres@ntu.edu.sg</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Jifeng</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Parthasarathy</LastName>
<ForeName>Krupakar</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Ding Xiang</ForeName>
<Initials>DX</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D023362">Evaluation Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biophys J</MedlineTA>
<NlmUniqueID>0370626</NlmUniqueID>
<ISSNLinking>0006-3495</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C501689">E protein, SARS coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008051">Lipid Bilayers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019281" MajorTopicYN="N">Dimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008051" MajorTopicYN="N">Lipid Bilayers</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008956" MajorTopicYN="Y">Models, Chemical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="Y">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="Y">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="Y">ultrastructure</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>2</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>2</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15713601</ArticleId>
<ArticleId IdType="pii">S0006-3495(05)73194-5</ArticleId>
<ArticleId IdType="doi">10.1529/biophysj.104.051730</ArticleId>
<ArticleId IdType="pmc">PMC1305130</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1999 Sep;73(9):7853-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10438879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Mar;74(5):2333-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10666264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 May;74(9):4319-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10756047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Sep;74(17):8127-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10933723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jan 19;305(3):567-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2001 Mar 15;281(2):163-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11277690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 May 18;276(20):17515-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11278557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2001 Aug 15;44(3):370-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11455610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2001 Nov;81(5):2681-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11606281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Feb;76(3):1273-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11773403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2001;494:615-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11774534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2002 Feb 15;316(2):375-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11851345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2002 Jun;82(6):3063-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12023229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2002 Jul 26;320(5):1109-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12126629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2003 Jan;13(1):32-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12480338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2004 Feb 24;43(7):2049-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14967045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 May;78(10):5500-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15113929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Aug 13;341(3):769-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15288785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Dec 3;325(1):374-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15522242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 1988 Mar 1;110(6):1657-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27557051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1985 Sep;55(3):836-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2991600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1982 May 5;157(1):105-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7108955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1995 Oct;131(2):339-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7593163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 1995 Feb;2(2):154-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7749920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1994 Aug 1;202(2):1018-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8030202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1996 Apr 1;218(1):52-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8615041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Apr 15;15(8):2020-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8617249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Oct;72(10):7885-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9733825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9757107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Nov;72(11):8636-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9765403</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002885 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002885 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:15713601
   |texte=   The transmembrane oligomers of coronavirus protein E.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:15713601" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021