Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal.

Identifieur interne : 002751 ( PubMed/Corpus ); précédent : 002750; suivant : 002752

A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal.

Auteurs : Ewan P. Plant ; Gabriela C. Pérez-Alvarado ; Jonathan L. Jacobs ; Bani Mukhopadhyay ; Mirko Hennig ; Jonathan D. Dinman

Source :

RBID : pubmed:15884978

English descriptors

Abstract

A wide range of RNA viruses use programmed -1 ribosomal frameshifting for the production of viral fusion proteins. Inspection of the overlap regions between ORF1a and ORF1b of the SARS-CoV genome revealed that, similar to all coronaviruses, a programmed -1 ribosomal frameshift could be used by the virus to produce a fusion protein. Computational analyses of the frameshift signal predicted the presence of an mRNA pseudoknot containing three double-stranded RNA stem structures rather than two. Phylogenetic analyses showed the conservation of potential three-stemmed pseudoknots in the frameshift signals of all other coronaviruses in the GenBank database. Though the presence of the three-stemmed structure is supported by nuclease mapping and two-dimensional nuclear magnetic resonance studies, our findings suggest that interactions between the stem structures may result in local distortions in the A-form RNA. These distortions are particularly evident in the vicinity of predicted A-bulges in stems 2 and 3. In vitro and in vivo frameshifting assays showed that the SARS-CoV frameshift signal is functionally similar to other viral frameshift signals: it promotes efficient frameshifting in all of the standard assay systems, and it is sensitive to a drug and a genetic mutation that are known to affect frameshifting efficiency of a yeast virus. Mutagenesis studies reveal that both the specific sequences and structures of stems 2 and 3 are important for efficient frameshifting. We have identified a new RNA structural motif that is capable of promoting efficient programmed ribosomal frameshifting. The high degree of conservation of three-stemmed mRNA pseudoknot structures among the coronaviruses suggests that this presents a novel target for antiviral therapeutics.

DOI: 10.1371/journal.pbio.0030172
PubMed: 15884978

Links to Exploration step

pubmed:15884978

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal.</title>
<author>
<name sortKey="Plant, Ewan P" sort="Plant, Ewan P" uniqKey="Plant E" first="Ewan P" last="Plant">Ewan P. Plant</name>
<affiliation>
<nlm:affiliation>Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Perez Alvarado, Gabriela C" sort="Perez Alvarado, Gabriela C" uniqKey="Perez Alvarado G" first="Gabriela C" last="Pérez-Alvarado">Gabriela C. Pérez-Alvarado</name>
</author>
<author>
<name sortKey="Jacobs, Jonathan L" sort="Jacobs, Jonathan L" uniqKey="Jacobs J" first="Jonathan L" last="Jacobs">Jonathan L. Jacobs</name>
</author>
<author>
<name sortKey="Mukhopadhyay, Bani" sort="Mukhopadhyay, Bani" uniqKey="Mukhopadhyay B" first="Bani" last="Mukhopadhyay">Bani Mukhopadhyay</name>
</author>
<author>
<name sortKey="Hennig, Mirko" sort="Hennig, Mirko" uniqKey="Hennig M" first="Mirko" last="Hennig">Mirko Hennig</name>
</author>
<author>
<name sortKey="Dinman, Jonathan D" sort="Dinman, Jonathan D" uniqKey="Dinman J" first="Jonathan D" last="Dinman">Jonathan D. Dinman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15884978</idno>
<idno type="pmid">15884978</idno>
<idno type="doi">10.1371/journal.pbio.0030172</idno>
<idno type="wicri:Area/PubMed/Corpus">002751</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002751</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal.</title>
<author>
<name sortKey="Plant, Ewan P" sort="Plant, Ewan P" uniqKey="Plant E" first="Ewan P" last="Plant">Ewan P. Plant</name>
<affiliation>
<nlm:affiliation>Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Perez Alvarado, Gabriela C" sort="Perez Alvarado, Gabriela C" uniqKey="Perez Alvarado G" first="Gabriela C" last="Pérez-Alvarado">Gabriela C. Pérez-Alvarado</name>
</author>
<author>
<name sortKey="Jacobs, Jonathan L" sort="Jacobs, Jonathan L" uniqKey="Jacobs J" first="Jonathan L" last="Jacobs">Jonathan L. Jacobs</name>
</author>
<author>
<name sortKey="Mukhopadhyay, Bani" sort="Mukhopadhyay, Bani" uniqKey="Mukhopadhyay B" first="Bani" last="Mukhopadhyay">Bani Mukhopadhyay</name>
</author>
<author>
<name sortKey="Hennig, Mirko" sort="Hennig, Mirko" uniqKey="Hennig M" first="Mirko" last="Hennig">Mirko Hennig</name>
</author>
<author>
<name sortKey="Dinman, Jonathan D" sort="Dinman, Jonathan D" uniqKey="Dinman J" first="Jonathan D" last="Dinman">Jonathan D. Dinman</name>
</author>
</analytic>
<series>
<title level="j">PLoS biology</title>
<idno type="eISSN">1545-7885</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Chlorocebus aethiops</term>
<term>Frameshift Mutation</term>
<term>Molecular Sequence Data</term>
<term>Nucleic Acid Conformation</term>
<term>Open Reading Frames</term>
<term>RNA, Messenger (chemistry)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Viral (chemistry)</term>
<term>RNA, Viral (genetics)</term>
<term>SARS Virus (genetics)</term>
<term>Vero Cells</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>RNA, Messenger</term>
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Messenger</term>
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Chlorocebus aethiops</term>
<term>Frameshift Mutation</term>
<term>Molecular Sequence Data</term>
<term>Nucleic Acid Conformation</term>
<term>Open Reading Frames</term>
<term>Vero Cells</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A wide range of RNA viruses use programmed -1 ribosomal frameshifting for the production of viral fusion proteins. Inspection of the overlap regions between ORF1a and ORF1b of the SARS-CoV genome revealed that, similar to all coronaviruses, a programmed -1 ribosomal frameshift could be used by the virus to produce a fusion protein. Computational analyses of the frameshift signal predicted the presence of an mRNA pseudoknot containing three double-stranded RNA stem structures rather than two. Phylogenetic analyses showed the conservation of potential three-stemmed pseudoknots in the frameshift signals of all other coronaviruses in the GenBank database. Though the presence of the three-stemmed structure is supported by nuclease mapping and two-dimensional nuclear magnetic resonance studies, our findings suggest that interactions between the stem structures may result in local distortions in the A-form RNA. These distortions are particularly evident in the vicinity of predicted A-bulges in stems 2 and 3. In vitro and in vivo frameshifting assays showed that the SARS-CoV frameshift signal is functionally similar to other viral frameshift signals: it promotes efficient frameshifting in all of the standard assay systems, and it is sensitive to a drug and a genetic mutation that are known to affect frameshifting efficiency of a yeast virus. Mutagenesis studies reveal that both the specific sequences and structures of stems 2 and 3 are important for efficient frameshifting. We have identified a new RNA structural motif that is capable of promoting efficient programmed ribosomal frameshifting. The high degree of conservation of three-stemmed mRNA pseudoknot structures among the coronaviruses suggests that this presents a novel target for antiviral therapeutics.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15884978</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>03</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1545-7885</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>3</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2005</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>PLoS biology</Title>
<ISOAbbreviation>PLoS Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal.</ArticleTitle>
<Pagination>
<MedlinePgn>e172</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>A wide range of RNA viruses use programmed -1 ribosomal frameshifting for the production of viral fusion proteins. Inspection of the overlap regions between ORF1a and ORF1b of the SARS-CoV genome revealed that, similar to all coronaviruses, a programmed -1 ribosomal frameshift could be used by the virus to produce a fusion protein. Computational analyses of the frameshift signal predicted the presence of an mRNA pseudoknot containing three double-stranded RNA stem structures rather than two. Phylogenetic analyses showed the conservation of potential three-stemmed pseudoknots in the frameshift signals of all other coronaviruses in the GenBank database. Though the presence of the three-stemmed structure is supported by nuclease mapping and two-dimensional nuclear magnetic resonance studies, our findings suggest that interactions between the stem structures may result in local distortions in the A-form RNA. These distortions are particularly evident in the vicinity of predicted A-bulges in stems 2 and 3. In vitro and in vivo frameshifting assays showed that the SARS-CoV frameshift signal is functionally similar to other viral frameshift signals: it promotes efficient frameshifting in all of the standard assay systems, and it is sensitive to a drug and a genetic mutation that are known to affect frameshifting efficiency of a yeast virus. Mutagenesis studies reveal that both the specific sequences and structures of stems 2 and 3 are important for efficient frameshifting. We have identified a new RNA structural motif that is capable of promoting efficient programmed ribosomal frameshifting. The high degree of conservation of three-stemmed mRNA pseudoknot structures among the coronaviruses suggests that this presents a novel target for antiviral therapeutics.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Plant</LastName>
<ForeName>Ewan P</ForeName>
<Initials>EP</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pérez-Alvarado</LastName>
<ForeName>Gabriela C</ForeName>
<Initials>GC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jacobs</LastName>
<ForeName>Jonathan L</ForeName>
<Initials>JL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mukhopadhyay</LastName>
<ForeName>Bani</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hennig</LastName>
<ForeName>Mirko</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dinman</LastName>
<ForeName>Jonathan D</ForeName>
<Initials>JD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>RefSeq</DataBankName>
<AccessionNumberList>
<AccessionNumber>NC_001451</AccessionNumber>
<AccessionNumber>NC_001846</AccessionNumber>
<AccessionNumber>NC_002306</AccessionNumber>
<AccessionNumber>NC_002645</AccessionNumber>
<AccessionNumber>NC_003045</AccessionNumber>
<AccessionNumber>NC_003436</AccessionNumber>
<AccessionNumber>NC_004718</AccessionNumber>
<AccessionNumber>NC_005147</AccessionNumber>
<AccessionNumber>NC_005831</AccessionNumber>
<AccessionNumber>NC_006577</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM058859</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM58859</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>05</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Biol</MedlineTA>
<NlmUniqueID>101183755</NlmUniqueID>
<ISSNLinking>1544-9173</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012367">RNA, Viral</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016368" MajorTopicYN="Y">Frameshift Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009690" MajorTopicYN="N">Nucleic Acid Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016366" MajorTopicYN="N">Open Reading Frames</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012367" MajorTopicYN="N">RNA, Viral</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2005</Year>
<Month>01</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2005</Year>
<Month>03</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>5</Month>
<Day>12</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>3</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>5</Month>
<Day>12</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15884978</ArticleId>
<ArticleId IdType="pii">05-PLBI-RA-0064R2</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pbio.0030172</ArticleId>
<ArticleId IdType="pmc">PMC1110908</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 1988 Jan 21;331(6153):283-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3336440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6606-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9192612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2003 Aug;9(8):982-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12869709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 1995 Apr;5(3):327-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22911506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 1995 Nov;6(3):277-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8520220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jan;78(2):669-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14694098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jul;78(14):7846-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15220462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jan 1;31(1):87-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12519954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 Nov 15;29(22):4724-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11713323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Oct 8;395(6702):567-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9783582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1995 Aug;76 ( Pt 8):1885-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7636469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 1998 Apr;4(4):479-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9630253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Jan;136(1):75-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8138178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14234-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10588689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 1998 Apr;16(4):190-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9586242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1989 May 19;57(4):537-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2720781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2005 Feb 20;332(2):498-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15680415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2003 Feb;9(2):168-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12554858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Jan 1;28(1):10-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10592169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1993 Dec 25;21(25):5838-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8290341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2000;132:185-219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10547837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1996;65:741-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8811194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(20):e160</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15561995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 1994 Sep;4(5):603-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22911360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1995 Apr 14;156(1):119-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7737504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Aug 15;331(3):571-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12899829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Feb 5;285(5):2053-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9925784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Sci. 2003 Nov-Dec;10(6 Pt 2):664-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14631105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Jan;19(1):384-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9858562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2003 Jul 30;125(30):8998-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15369340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1988 Jan 21;331(6153):280-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2447506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1990 Nov 30;96(1):23-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2265755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):174-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1986362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 May 7;288(3):305-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2004 Dec;32(Pt 6):1081-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15506971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14147-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9826668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1996 Aug;12(4):357-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8902363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2003 Sep;84(Pt 9):2305-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2002 Aug 27;41(34):10665-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12186552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1995;261:300-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8569501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2003 Apr 23;125(16):4676-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12696863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1996 Mar;60(1):103-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8852897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1991 Aug 20;220(4):889-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1880803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2003 Aug;9(8):1019-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12869712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):4899-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11296253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2002 Sep 20;322(3):621-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12225754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11133-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12149516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1987 Nov 11;15(21):8783-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3684574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1995 Feb 1;206(2):817-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7856095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1983 Jan;153(1):163-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6336730</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002751 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002751 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:15884978
   |texte=   A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:15884978" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021