Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A molecular docking model of SARS-CoV S1 protein in complex with its receptor, human ACE2.

Identifieur interne : 002670 ( PubMed/Corpus ); précédent : 002669; suivant : 002671

A molecular docking model of SARS-CoV S1 protein in complex with its receptor, human ACE2.

Auteurs : Yuan Zhang ; Nan Zheng ; Pei Hao ; Ying Cao ; Yang Zhong

Source :

RBID : pubmed:15979045

English descriptors

Abstract

The exact residues within severe acute respiratory syndrome coronavirus (SARS-CoV) S1 protein and its receptor, human ACE2, involved in their interaction still remain largely undetermined. Identification of exact amino acid residues that are crucial for the interaction of S1 with ACE2 could provide working hypotheses for experimental studies and might be helpful for the development of antiviral inhibitor. In this paper, a molecular docking model of SARS-CoV S1 protein in complex with human ACE2 was constructed. The interacting residue pairs within this complex model and their contact types were also identified. Our model, supported by significant biochemical evidence, suggested receptor-binding residues were concentrated in two segments of S1 protein. In contrast, the interfacial residues in ACE2, though close to each other in tertiary structure, were found to be widely scattered in the primary sequence. In particular, the S1 residue ARG453 and ACE2 residue LYS341 might be the key residues in the complex formation.

DOI: 10.1016/j.compbiolchem.2005.04.008
PubMed: 15979045

Links to Exploration step

pubmed:15979045

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A molecular docking model of SARS-CoV S1 protein in complex with its receptor, human ACE2.</title>
<author>
<name sortKey="Zhang, Yuan" sort="Zhang, Yuan" uniqKey="Zhang Y" first="Yuan" last="Zhang">Yuan Zhang</name>
<affiliation>
<nlm:affiliation>School of Life Sciences, Fudan University, Shanghai 200433, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Nan" sort="Zheng, Nan" uniqKey="Zheng N" first="Nan" last="Zheng">Nan Zheng</name>
</author>
<author>
<name sortKey="Hao, Pei" sort="Hao, Pei" uniqKey="Hao P" first="Pei" last="Hao">Pei Hao</name>
</author>
<author>
<name sortKey="Cao, Ying" sort="Cao, Ying" uniqKey="Cao Y" first="Ying" last="Cao">Ying Cao</name>
</author>
<author>
<name sortKey="Zhong, Yang" sort="Zhong, Yang" uniqKey="Zhong Y" first="Yang" last="Zhong">Yang Zhong</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15979045</idno>
<idno type="pmid">15979045</idno>
<idno type="doi">10.1016/j.compbiolchem.2005.04.008</idno>
<idno type="wicri:Area/PubMed/Corpus">002670</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002670</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A molecular docking model of SARS-CoV S1 protein in complex with its receptor, human ACE2.</title>
<author>
<name sortKey="Zhang, Yuan" sort="Zhang, Yuan" uniqKey="Zhang Y" first="Yuan" last="Zhang">Yuan Zhang</name>
<affiliation>
<nlm:affiliation>School of Life Sciences, Fudan University, Shanghai 200433, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Nan" sort="Zheng, Nan" uniqKey="Zheng N" first="Nan" last="Zheng">Nan Zheng</name>
</author>
<author>
<name sortKey="Hao, Pei" sort="Hao, Pei" uniqKey="Hao P" first="Pei" last="Hao">Pei Hao</name>
</author>
<author>
<name sortKey="Cao, Ying" sort="Cao, Ying" uniqKey="Cao Y" first="Ying" last="Cao">Ying Cao</name>
</author>
<author>
<name sortKey="Zhong, Yang" sort="Zhong, Yang" uniqKey="Zhong Y" first="Yang" last="Zhong">Yang Zhong</name>
</author>
</analytic>
<series>
<title level="j">Computational biology and chemistry</title>
<idno type="ISSN">1476-9271</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Carboxypeptidases (chemistry)</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>Peptidyl-Dipeptidase A</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>Receptors, Virus (chemistry)</term>
<term>SARS Virus (chemistry)</term>
<term>Viral Proteins (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Carboxypeptidases</term>
<term>Receptors, Virus</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>Peptidyl-Dipeptidase A</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The exact residues within severe acute respiratory syndrome coronavirus (SARS-CoV) S1 protein and its receptor, human ACE2, involved in their interaction still remain largely undetermined. Identification of exact amino acid residues that are crucial for the interaction of S1 with ACE2 could provide working hypotheses for experimental studies and might be helpful for the development of antiviral inhibitor. In this paper, a molecular docking model of SARS-CoV S1 protein in complex with human ACE2 was constructed. The interacting residue pairs within this complex model and their contact types were also identified. Our model, supported by significant biochemical evidence, suggested receptor-binding residues were concentrated in two segments of S1 protein. In contrast, the interfacial residues in ACE2, though close to each other in tertiary structure, were found to be widely scattered in the primary sequence. In particular, the S1 residue ARG453 and ACE2 residue LYS341 might be the key residues in the complex formation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15979045</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>08</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1476-9271</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>29</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2005</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Computational biology and chemistry</Title>
<ISOAbbreviation>Comput Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>A molecular docking model of SARS-CoV S1 protein in complex with its receptor, human ACE2.</ArticleTitle>
<Pagination>
<MedlinePgn>254-7</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The exact residues within severe acute respiratory syndrome coronavirus (SARS-CoV) S1 protein and its receptor, human ACE2, involved in their interaction still remain largely undetermined. Identification of exact amino acid residues that are crucial for the interaction of S1 with ACE2 could provide working hypotheses for experimental studies and might be helpful for the development of antiviral inhibitor. In this paper, a molecular docking model of SARS-CoV S1 protein in complex with human ACE2 was constructed. The interacting residue pairs within this complex model and their contact types were also identified. Our model, supported by significant biochemical evidence, suggested receptor-binding residues were concentrated in two segments of S1 protein. In contrast, the interfacial residues in ACE2, though close to each other in tertiary structure, were found to be widely scattered in the primary sequence. In particular, the S1 residue ARG453 and ACE2 residue LYS341 might be the key residues in the complex formation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yuan</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences, Fudan University, Shanghai 200433, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>Nan</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hao</LastName>
<ForeName>Pei</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cao</LastName>
<ForeName>Ying</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhong</LastName>
<ForeName>Yang</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Comput Biol Chem</MedlineTA>
<NlmUniqueID>101157394</NlmUniqueID>
<ISSNLinking>1476-9271</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011991">Receptors, Virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.-</RegistryNumber>
<NameOfSubstance UI="D002268">Carboxypeptidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.15.1</RegistryNumber>
<NameOfSubstance UI="D007703">Peptidyl-Dipeptidase A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.17.-</RegistryNumber>
<NameOfSubstance UI="C413524">angiotensin converting enzyme 2</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002268" MajorTopicYN="N">Carboxypeptidases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007703" MajorTopicYN="N">Peptidyl-Dipeptidase A</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011991" MajorTopicYN="N">Receptors, Virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2005</Year>
<Month>04</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2005</Year>
<Month>04</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2005</Year>
<Month>04</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>6</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>6</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15979045</ArticleId>
<ArticleId IdType="pii">S1476-9271(05)00044-7</ArticleId>
<ArticleId IdType="doi">10.1016/j.compbiolchem.2005.04.008</ArticleId>
<ArticleId IdType="pmc">PMC7106554</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 Oct;78(19):10628-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15367630</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Pharmacol Sin. 2003 Oct;24(10):1051-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14531951</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Microbiol. 2004 Oct;12(10):466-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15381196</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2000 Jan 1;28(1):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10592235</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proteins. 2003 Jul 1;52(1):80-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12784371</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Bioinformatics. 2004 Aug 09;5:107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15301693</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Hypertension. 2004 Dec;44(6):903-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15492138</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Jan 30;314(1):235-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14715271</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proteins. 2003 Jul 1;52(1):68-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12784369</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proteins. 2003 May 15;51(3):397-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12696051</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2004 Apr 23;279(17):17996-8007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14754895</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biomol Struct Dyn. 2004 Aug;22(1):65-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15214807</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Pharmacol Sin. 2003 Jun;24(6):481-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12791172</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2004 Jan 30;279(5):3197-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14670965</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Oct 10;310(1):78-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14511651</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chin Sci Bull. 2004;49(12):1311-1313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32214711</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proteins. 2002 May 15;47(3):281-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11948782</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2004 Sep 1;20(13):2145-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15073001</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 May;78(9):4552-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15078936</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 Oct;78(20):11429-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15452268</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002670 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002670 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:15979045
   |texte=   A molecular docking model of SARS-CoV S1 protein in complex with its receptor, human ACE2.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:15979045" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021