Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glycosylation of the severe acute respiratory syndrome coronavirus triple-spanning membrane proteins 3a and M.

Identifieur interne : 002347 ( PubMed/Corpus ); précédent : 002346; suivant : 002348

Glycosylation of the severe acute respiratory syndrome coronavirus triple-spanning membrane proteins 3a and M.

Auteurs : M. Oostra ; C A M. De Haan ; R J De Groot ; P J M. Rottier

Source :

RBID : pubmed:16474139

English descriptors

Abstract

The severe acute respiratory syndrome coronavirus (SARS-CoV) open reading frame 3a protein has recently been shown to be a structural protein. The protein is encoded by one of the so-called group-specific genes and has no sequence homology with any of the known structural or group-specific proteins of coronaviruses. It does, however, have several similarities to the coronavirus M proteins; (i) they are triple membrane spanning with the same topology, (ii) they have similar intracellular localizations (predominantly Golgi), (iii) both are viral structural proteins, and (iv) they appear to interact with the E and S proteins, as well as with each other. The M protein plays a crucial role in coronavirus assembly and is glycosylated in all coronaviruses, either by N-linked or by O-linked oligosaccharides. The conserved glycosylation of the coronavirus M proteins and the resemblance of the 3a protein to them led us to investigate the glycosylation of these two SARS-CoV membrane proteins. The proteins were expressed separately using the vaccinia virus T7 expression system, followed by metabolic labeling. Pulse-chase analysis showed that both proteins were modified, although in different ways. While the M protein acquired cotranslationally oligosaccharides that could be removed by PNGaseF, the 3a protein acquired its modifications posttranslationally, and they were not sensitive to the N-glycosidase enzyme. The SARS-CoV 3a protein, however, was demonstrated to contain sialic acids, indicating the presence of oligosaccharides. O-glycosylation of the 3a protein was indeed confirmed using an in situ O-glycosylation assay of endoplasmic reticulum-retained mutants. In addition, we showed that substitution of serine and threonine residues in the ectodomain of the 3a protein abolished the addition of the O-linked sugars. Thus, the SARS-CoV 3a protein is an O-glycosylated glycoprotein, like the group 2 coronavirus M proteins but unlike the SARS-CoV M protein, which is N glycosylated.

DOI: 10.1128/JVI.80.5.2326-2336.2006
PubMed: 16474139

Links to Exploration step

pubmed:16474139

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glycosylation of the severe acute respiratory syndrome coronavirus triple-spanning membrane proteins 3a and M.</title>
<author>
<name sortKey="Oostra, M" sort="Oostra, M" uniqKey="Oostra M" first="M" last="Oostra">M. Oostra</name>
<affiliation>
<nlm:affiliation>Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Haan, C A M" sort="De Haan, C A M" uniqKey="De Haan C" first="C A M" last="De Haan">C A M. De Haan</name>
</author>
<author>
<name sortKey="De Groot, R J" sort="De Groot, R J" uniqKey="De Groot R" first="R J" last="De Groot">R J De Groot</name>
</author>
<author>
<name sortKey="Rottier, P J M" sort="Rottier, P J M" uniqKey="Rottier P" first="P J M" last="Rottier">P J M. Rottier</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16474139</idno>
<idno type="pmid">16474139</idno>
<idno type="doi">10.1128/JVI.80.5.2326-2336.2006</idno>
<idno type="wicri:Area/PubMed/Corpus">002347</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002347</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glycosylation of the severe acute respiratory syndrome coronavirus triple-spanning membrane proteins 3a and M.</title>
<author>
<name sortKey="Oostra, M" sort="Oostra, M" uniqKey="Oostra M" first="M" last="Oostra">M. Oostra</name>
<affiliation>
<nlm:affiliation>Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Haan, C A M" sort="De Haan, C A M" uniqKey="De Haan C" first="C A M" last="De Haan">C A M. De Haan</name>
</author>
<author>
<name sortKey="De Groot, R J" sort="De Groot, R J" uniqKey="De Groot R" first="R J" last="De Groot">R J De Groot</name>
</author>
<author>
<name sortKey="Rottier, P J M" sort="Rottier, P J M" uniqKey="Rottier P" first="P J M" last="Rottier">P J M. Rottier</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="ISSN">0022-538X</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Gene Expression</term>
<term>Glycosylation</term>
<term>Molecular Sequence Data</term>
<term>Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase (metabolism)</term>
<term>Protein Modification, Translational</term>
<term>Protein Processing, Post-Translational</term>
<term>Radioisotopes</term>
<term>SARS Virus (chemistry)</term>
<term>Sialic Acids (analysis)</term>
<term>Staining and Labeling</term>
<term>Viral Matrix Proteins (chemistry)</term>
<term>Viral Matrix Proteins (metabolism)</term>
<term>Viral Proteins (chemistry)</term>
<term>Viral Proteins (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Sialic Acids</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Viral Matrix Proteins</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase</term>
<term>Viral Matrix Proteins</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Gene Expression</term>
<term>Glycosylation</term>
<term>Molecular Sequence Data</term>
<term>Protein Modification, Translational</term>
<term>Protein Processing, Post-Translational</term>
<term>Radioisotopes</term>
<term>Staining and Labeling</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The severe acute respiratory syndrome coronavirus (SARS-CoV) open reading frame 3a protein has recently been shown to be a structural protein. The protein is encoded by one of the so-called group-specific genes and has no sequence homology with any of the known structural or group-specific proteins of coronaviruses. It does, however, have several similarities to the coronavirus M proteins; (i) they are triple membrane spanning with the same topology, (ii) they have similar intracellular localizations (predominantly Golgi), (iii) both are viral structural proteins, and (iv) they appear to interact with the E and S proteins, as well as with each other. The M protein plays a crucial role in coronavirus assembly and is glycosylated in all coronaviruses, either by N-linked or by O-linked oligosaccharides. The conserved glycosylation of the coronavirus M proteins and the resemblance of the 3a protein to them led us to investigate the glycosylation of these two SARS-CoV membrane proteins. The proteins were expressed separately using the vaccinia virus T7 expression system, followed by metabolic labeling. Pulse-chase analysis showed that both proteins were modified, although in different ways. While the M protein acquired cotranslationally oligosaccharides that could be removed by PNGaseF, the 3a protein acquired its modifications posttranslationally, and they were not sensitive to the N-glycosidase enzyme. The SARS-CoV 3a protein, however, was demonstrated to contain sialic acids, indicating the presence of oligosaccharides. O-glycosylation of the 3a protein was indeed confirmed using an in situ O-glycosylation assay of endoplasmic reticulum-retained mutants. In addition, we showed that substitution of serine and threonine residues in the ectodomain of the 3a protein abolished the addition of the O-linked sugars. Thus, the SARS-CoV 3a protein is an O-glycosylated glycoprotein, like the group 2 coronavirus M proteins but unlike the SARS-CoV M protein, which is N glycosylated.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16474139</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>03</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0022-538X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>80</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2006</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Glycosylation of the severe acute respiratory syndrome coronavirus triple-spanning membrane proteins 3a and M.</ArticleTitle>
<Pagination>
<MedlinePgn>2326-36</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The severe acute respiratory syndrome coronavirus (SARS-CoV) open reading frame 3a protein has recently been shown to be a structural protein. The protein is encoded by one of the so-called group-specific genes and has no sequence homology with any of the known structural or group-specific proteins of coronaviruses. It does, however, have several similarities to the coronavirus M proteins; (i) they are triple membrane spanning with the same topology, (ii) they have similar intracellular localizations (predominantly Golgi), (iii) both are viral structural proteins, and (iv) they appear to interact with the E and S proteins, as well as with each other. The M protein plays a crucial role in coronavirus assembly and is glycosylated in all coronaviruses, either by N-linked or by O-linked oligosaccharides. The conserved glycosylation of the coronavirus M proteins and the resemblance of the 3a protein to them led us to investigate the glycosylation of these two SARS-CoV membrane proteins. The proteins were expressed separately using the vaccinia virus T7 expression system, followed by metabolic labeling. Pulse-chase analysis showed that both proteins were modified, although in different ways. While the M protein acquired cotranslationally oligosaccharides that could be removed by PNGaseF, the 3a protein acquired its modifications posttranslationally, and they were not sensitive to the N-glycosidase enzyme. The SARS-CoV 3a protein, however, was demonstrated to contain sialic acids, indicating the presence of oligosaccharides. O-glycosylation of the 3a protein was indeed confirmed using an in situ O-glycosylation assay of endoplasmic reticulum-retained mutants. In addition, we showed that substitution of serine and threonine residues in the ectodomain of the 3a protein abolished the addition of the O-linked sugars. Thus, the SARS-CoV 3a protein is an O-glycosylated glycoprotein, like the group 2 coronavirus M proteins but unlike the SARS-CoV M protein, which is N glycosylated.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Oostra</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>de Haan</LastName>
<ForeName>C A M</ForeName>
<Initials>CA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>de Groot</LastName>
<ForeName>R J</ForeName>
<Initials>RJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rottier</LastName>
<ForeName>P J M</ForeName>
<Initials>PJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C487105">3a protein, severe acute respiratory syndrome coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011868">Radioisotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012794">Sialic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014763">Viral Matrix Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>108502-71-2</RegistryNumber>
<NameOfSubstance UI="C067997">M protein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.1.52</RegistryNumber>
<NameOfSubstance UI="D043524">Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006031" MajorTopicYN="N">Glycosylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D043524" MajorTopicYN="N">Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046188" MajorTopicYN="Y">Protein Modification, Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="Y">Protein Processing, Post-Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011868" MajorTopicYN="N">Radioisotopes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012794" MajorTopicYN="N">Sialic Acids</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013194" MajorTopicYN="N">Staining and Labeling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014763" MajorTopicYN="N">Viral Matrix Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>3</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16474139</ArticleId>
<ArticleId IdType="pii">80/5/2326</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.80.5.2326-2336.2006</ArticleId>
<ArticleId IdType="pmc">PMC1395384</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 1998;33(3):151-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9673446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Nov;72(11):8636-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9765403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1998 Sep;23(9):321-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9787635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Nov 6;273(45):29905-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9792708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Sep;73(9):7441-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10438834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Dec;78(23):13019-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15542653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2004 Dec;85(Pt 12):3715-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15557245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Jan;79(2):884-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15613317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Mar;79(5):3182-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15709039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Apr 29;330(1):286-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15781262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2005 May;86(Pt 5):1423-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15831954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Oct;79(19):12495-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16160177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14040-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Jul 30;341(1):271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15312778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1984 Apr 19-25;308(5961):751-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6325918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1984 Dec 14;226(4680):1328-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6505693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 1985 Jan;36(1):108-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2983995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 1985 May;37:203-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2992976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1986 Mar 25;25(6):1335-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3008826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1986 Nov;83(21):8122-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3095828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1987 Jun;61(6):2042-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3033331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 Sep;87(17):6743-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2204064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Feb;74(3):1566-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10627571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 May;74(9):4319-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10756047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2000 Jul;1(7):533-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11208140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Mar 23;291(5512):2364-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11269317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2002 Apr 25;296(1):177-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12036329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Jan;77(1):97-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12477814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2003 Mar 30;308(1):13-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12706086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Apr 19;361(9366):1319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Jul 26;362(9380):263-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2003 Aug 1;312(2):395-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12919744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Diagn Lab Immunol. 2004 Mar;11(2):362-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15013989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Apr;78(8):3863-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15047802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Apr;10(4):368-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6212-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15073334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2004 May 7;565(1-3):111-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15135062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Jun 11;318(4):833-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15147946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jul;78(13):6723-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15194747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2004 Jul 1;324(2):251-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15207612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2004 Oct 8;576(1-2):174-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15474033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Nov;78(22):12557-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15507643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1981 Dec;115(2):334-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7314449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1981 Nov;40(2):350-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6275093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1984 Mar;81(5):1421-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6324191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1984 Mar;3(3):665-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6325180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 1984 Mar;33(2):281-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6325194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Apr 15;15(8):2020-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8617249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 1997;32(1):1-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9063619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 1998 Jan;111 ( Pt 1):45-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9394011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Aug;72(8):6838-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9658133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 Sep;87(18):6944-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2169615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 1990;276:121-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1966402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 1990;276:91-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2103107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1992 Feb;66(2):743-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1309909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Jul 15;267(20):14094-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1629209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1994 Oct;68(10):6523-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8083990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1995 Jan;69(1):613-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7983766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1995 Aug;69(8):4668-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7609031</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002347 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002347 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:16474139
   |texte=   Glycosylation of the severe acute respiratory syndrome coronavirus triple-spanning membrane proteins 3a and M.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:16474139" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021