Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Biophysical characterization of HRC peptide analogs interaction with heptad repeat regions of the SARS-coronavirus Spike fusion protein core.

Identifieur interne : 002206 ( PubMed/Corpus ); précédent : 002205; suivant : 002207

Biophysical characterization of HRC peptide analogs interaction with heptad repeat regions of the SARS-coronavirus Spike fusion protein core.

Auteurs : Zhe Yan ; Brian Tripet ; Robert S. Hodges

Source :

RBID : pubmed:16765058

English descriptors

Abstract

The Spike (S) protein of SARS-coronavirus (SARS-CoV) mediates viral entry into host cells. It contains two heptad repeat regions, denoted HRN and HRC. We have identified the location of the two interacting HR regions that form the six-helix bundle (B. Tripet, et al, J. Biol. Chem., 279: 20836-20849, 2004). In this study, HRC peptide (1150-1185) was chosen as the region to make structure-based substitutions to design a series of HRC analogs with increased hydrophobicity, helical propensity and electrostatic interactions, or with a covalent constraint (lactam bridge) to stabilize the alpha-helical conformation. Effects of the substitutions on alpha-helical structure of HRC peptides and their abilities to interact with HRN or HRC have been examined by biophysical techniques. Our results show that the binding of the HRC analogs to HRN does not correlate with the coiled-coil stability of the HRC analogs, but their interactions with HRC does correlate with their stability, except for HRC7. This study also suggested three types of potential peptide inhibitors against viral entry can be designed, those that simultaneously inhibit interaction with HRC and HRN and those that are either HRC-specific or HRN-specific. For example, our study shows the important role of alpha-helical structure in the formation of the six-helix bundle where the lactam bridge constrained analog (HRC5) provided the best interaction with HRN. The importance of alpha-helical structure in the interaction with native HRC was demonstrated with analog HRC4 which binds best to HRC.

DOI: 10.1016/j.jsb.2006.03.024
PubMed: 16765058

Links to Exploration step

pubmed:16765058

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Biophysical characterization of HRC peptide analogs interaction with heptad repeat regions of the SARS-coronavirus Spike fusion protein core.</title>
<author>
<name sortKey="Yan, Zhe" sort="Yan, Zhe" uniqKey="Yan Z" first="Zhe" last="Yan">Zhe Yan</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tripet, Brian" sort="Tripet, Brian" uniqKey="Tripet B" first="Brian" last="Tripet">Brian Tripet</name>
</author>
<author>
<name sortKey="Hodges, Robert S" sort="Hodges, Robert S" uniqKey="Hodges R" first="Robert S" last="Hodges">Robert S. Hodges</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16765058</idno>
<idno type="pmid">16765058</idno>
<idno type="doi">10.1016/j.jsb.2006.03.024</idno>
<idno type="wicri:Area/PubMed/Corpus">002206</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002206</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Biophysical characterization of HRC peptide analogs interaction with heptad repeat regions of the SARS-coronavirus Spike fusion protein core.</title>
<author>
<name sortKey="Yan, Zhe" sort="Yan, Zhe" uniqKey="Yan Z" first="Zhe" last="Yan">Zhe Yan</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tripet, Brian" sort="Tripet, Brian" uniqKey="Tripet B" first="Brian" last="Tripet">Brian Tripet</name>
</author>
<author>
<name sortKey="Hodges, Robert S" sort="Hodges, Robert S" uniqKey="Hodges R" first="Robert S" last="Hodges">Robert S. Hodges</name>
</author>
</analytic>
<series>
<title level="j">Journal of structural biology</title>
<idno type="ISSN">1047-8477</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Circular Dichroism (methods)</term>
<term>Electrophoresis, Polyacrylamide Gel (methods)</term>
<term>Membrane Glycoproteins (chemistry)</term>
<term>Membrane Glycoproteins (genetics)</term>
<term>Membrane Glycoproteins (metabolism)</term>
<term>Molecular Sequence Data</term>
<term>Peptides (chemical synthesis)</term>
<term>Peptides (chemistry)</term>
<term>Peptides (metabolism)</term>
<term>Protein Binding</term>
<term>Protein Denaturation</term>
<term>Repetitive Sequences, Amino Acid</term>
<term>SARS Virus (genetics)</term>
<term>SARS Virus (metabolism)</term>
<term>Sequence Homology, Amino Acid</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Surface Plasmon Resonance (methods)</term>
<term>Temperature</term>
<term>Viral Envelope Proteins (chemistry)</term>
<term>Viral Envelope Proteins (genetics)</term>
<term>Viral Envelope Proteins (metabolism)</term>
<term>Viral Fusion Proteins (chemistry)</term>
<term>Viral Fusion Proteins (genetics)</term>
<term>Viral Fusion Proteins (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemical synthesis" xml:lang="en">
<term>Peptides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Peptides</term>
<term>Viral Envelope Proteins</term>
<term>Viral Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Viral Envelope Proteins</term>
<term>Viral Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Peptides</term>
<term>Viral Envelope Proteins</term>
<term>Viral Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Circular Dichroism</term>
<term>Electrophoresis, Polyacrylamide Gel</term>
<term>Surface Plasmon Resonance</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Molecular Sequence Data</term>
<term>Protein Binding</term>
<term>Protein Denaturation</term>
<term>Repetitive Sequences, Amino Acid</term>
<term>Sequence Homology, Amino Acid</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Temperature</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Spike (S) protein of SARS-coronavirus (SARS-CoV) mediates viral entry into host cells. It contains two heptad repeat regions, denoted HRN and HRC. We have identified the location of the two interacting HR regions that form the six-helix bundle (B. Tripet, et al, J. Biol. Chem., 279: 20836-20849, 2004). In this study, HRC peptide (1150-1185) was chosen as the region to make structure-based substitutions to design a series of HRC analogs with increased hydrophobicity, helical propensity and electrostatic interactions, or with a covalent constraint (lactam bridge) to stabilize the alpha-helical conformation. Effects of the substitutions on alpha-helical structure of HRC peptides and their abilities to interact with HRN or HRC have been examined by biophysical techniques. Our results show that the binding of the HRC analogs to HRN does not correlate with the coiled-coil stability of the HRC analogs, but their interactions with HRC does correlate with their stability, except for HRC7. This study also suggested three types of potential peptide inhibitors against viral entry can be designed, those that simultaneously inhibit interaction with HRC and HRN and those that are either HRC-specific or HRN-specific. For example, our study shows the important role of alpha-helical structure in the formation of the six-helix bundle where the lactam bridge constrained analog (HRC5) provided the best interaction with HRN. The importance of alpha-helical structure in the interaction with native HRC was demonstrated with analog HRC4 which binds best to HRC.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16765058</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>10</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1047-8477</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>155</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2006</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Journal of structural biology</Title>
<ISOAbbreviation>J. Struct. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Biophysical characterization of HRC peptide analogs interaction with heptad repeat regions of the SARS-coronavirus Spike fusion protein core.</ArticleTitle>
<Pagination>
<MedlinePgn>162-75</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The Spike (S) protein of SARS-coronavirus (SARS-CoV) mediates viral entry into host cells. It contains two heptad repeat regions, denoted HRN and HRC. We have identified the location of the two interacting HR regions that form the six-helix bundle (B. Tripet, et al, J. Biol. Chem., 279: 20836-20849, 2004). In this study, HRC peptide (1150-1185) was chosen as the region to make structure-based substitutions to design a series of HRC analogs with increased hydrophobicity, helical propensity and electrostatic interactions, or with a covalent constraint (lactam bridge) to stabilize the alpha-helical conformation. Effects of the substitutions on alpha-helical structure of HRC peptides and their abilities to interact with HRN or HRC have been examined by biophysical techniques. Our results show that the binding of the HRC analogs to HRN does not correlate with the coiled-coil stability of the HRC analogs, but their interactions with HRC does correlate with their stability, except for HRC7. This study also suggested three types of potential peptide inhibitors against viral entry can be designed, those that simultaneously inhibit interaction with HRC and HRN and those that are either HRC-specific or HRN-specific. For example, our study shows the important role of alpha-helical structure in the formation of the six-helix bundle where the lactam bridge constrained analog (HRC5) provided the best interaction with HRN. The importance of alpha-helical structure in the interaction with native HRC was demonstrated with analog HRC4 which binds best to HRC.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yan</LastName>
<ForeName>Zhe</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tripet</LastName>
<ForeName>Brian</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hodges</LastName>
<ForeName>Robert S</ForeName>
<Initials>RS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P01 AI059576</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01-AI059576</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>04</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Struct Biol</MedlineTA>
<NlmUniqueID>9011206</NlmUniqueID>
<ISSNLinking>1047-8477</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578553">MHV surface projection glycoprotein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014760">Viral Fusion Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002942" MajorTopicYN="N">Circular Dichroism</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004591" MajorTopicYN="N">Electrophoresis, Polyacrylamide Gel</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="N">Peptides</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="N">chemical synthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011489" MajorTopicYN="N">Protein Denaturation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020449" MajorTopicYN="Y">Repetitive Sequences, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020349" MajorTopicYN="N">Surface Plasmon Resonance</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014760" MajorTopicYN="N">Viral Fusion Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2006</Year>
<Month>01</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2006</Year>
<Month>03</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16765058</ArticleId>
<ArticleId IdType="pii">S1047-8477(06)00118-3</ArticleId>
<ArticleId IdType="doi">10.1016/j.jsb.2006.03.024</ArticleId>
<ArticleId IdType="pmc">PMC7129827</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1999 Jan 15;285(2):785-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9878444</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Sci. 1994 May;3(5):843-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8061613</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15613-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9861018</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 1988 Dec;69 ( Pt 12):2939-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3058868</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2004 Nov 19;279(47):49414-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15345712</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2005 Sep 16;309(5742):1864-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16166518</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2004 Jan 2;303(5654):26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14704402</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Anal Biochem. 1993 Aug 1;212(2):303-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8214570</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Jul 2;319(3):746-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15184046</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1994 Apr 8;237(4):500-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8151708</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 1;101(22):8455-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15150417</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2001 Feb 2;291(5505):884-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11229405</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2005 Sep 16;309(5742):1822-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16166506</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 Oct 10;302(5643):276-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12958366</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2004 May 14;279(20):20836-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14996844</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8709-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15161975</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Pept Sci. 1995 Jul-Aug;1(4):274-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9223005</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):17958-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604146</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12903-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16129831</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Biol. 1995 Dec;2(12):1075-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8846219</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2005 May 10;335(2):276-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15840526</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Drug Discov. 2003 May;2(5):345-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12755128</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1996 Sep 20;262(2):270-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8831793</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2000 Jul 7;300(2):377-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10873472</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Struct Biol. 2006 Aug;155(2):176-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16697221</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2004 Apr 30;304(5671):659-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15118129</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Jun 18;319(1):283-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15158473</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2004 Mar 20;363(9413):938-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15043961</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11187-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11572974</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 1998 May 29;93(5):681-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9630213</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2003 Jul 12;362(9378):170-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12867124</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Biochem. 2000;69:531-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10966468</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Sci. 1999 Nov;8(11):2312-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10595534</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Biochem. 2001;70:777-810</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11395423</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Sci. 2003 Jul;12(7):1395-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824486</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2006 Apr 28;281(17):11965-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16507566</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2003 Aug;77(16):8801-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12885899</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 1990 Nov 2;250(4981):646-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2237415</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2004 Nov 9;43(44):14064-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15518555</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002206 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002206 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:16765058
   |texte=   Biophysical characterization of HRC peptide analogs interaction with heptad repeat regions of the SARS-coronavirus Spike fusion protein core.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:16765058" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021