Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Congruent epidemic models for unstructured and structured populations: analytical reconstruction of a 2003 SARS outbreak.

Identifieur interne : 002130 ( PubMed/Corpus ); précédent : 002129; suivant : 002131

Congruent epidemic models for unstructured and structured populations: analytical reconstruction of a 2003 SARS outbreak.

Auteurs : John N. Bombardt

Source :

RBID : pubmed:16904134

English descriptors

Abstract

Both the threat of bioterrorism and the natural emergence of contagious diseases underscore the importance of quantitatively understanding disease transmission in structured human populations. Over the last few years, researchers have advanced the mathematical theory of scale-free networks and used such theoretical advancements in pilot epidemic models. Scale-free contact networks are particularly interesting in the realm of mathematical epidemiology, primarily because these networks may allow meaningfully structured populations to be incorporated in epidemic models at moderate or intermediate levels of complexity. Moreover, a scale-free contact network with node degree correlation is in accord with the well-known preferred mixing concept. The present author describes a semi-empirical and deterministic epidemic modeling approach that (a) focuses on time-varying rates of disease transmission in both unstructured and structured populations and (b) employs probability density functions to characterize disease progression and outbreak controls. Given an epidemic curve for a historical outbreak, this modeling approach calls for Monte Carlo calculations (that define the average new infection rate) and solutions to integro-differential equations (that describe outbreak dynamics in an aggregate population or across all network connectivity classes). Numerical results are obtained for the 2003 SARS outbreak in Taiwan and the dynamical implications of time-varying transmission rates and scale-free contact networks are discussed in some detail.

DOI: 10.1016/j.mbs.2006.05.004
PubMed: 16904134

Links to Exploration step

pubmed:16904134

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Congruent epidemic models for unstructured and structured populations: analytical reconstruction of a 2003 SARS outbreak.</title>
<author>
<name sortKey="Bombardt, John N" sort="Bombardt, John N" uniqKey="Bombardt J" first="John N" last="Bombardt">John N. Bombardt</name>
<affiliation>
<nlm:affiliation>Institute for Defense Analyses, 4850 Mark Center Drive, Alexandria, VA 22311-1882, United States. jbombard@ida.org</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16904134</idno>
<idno type="pmid">16904134</idno>
<idno type="doi">10.1016/j.mbs.2006.05.004</idno>
<idno type="wicri:Area/PubMed/Corpus">002130</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002130</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Congruent epidemic models for unstructured and structured populations: analytical reconstruction of a 2003 SARS outbreak.</title>
<author>
<name sortKey="Bombardt, John N" sort="Bombardt, John N" uniqKey="Bombardt J" first="John N" last="Bombardt">John N. Bombardt</name>
<affiliation>
<nlm:affiliation>Institute for Defense Analyses, 4850 Mark Center Drive, Alexandria, VA 22311-1882, United States. jbombard@ida.org</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mathematical biosciences</title>
<idno type="ISSN">0025-5564</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Disease Outbreaks</term>
<term>Disease Transmission, Infectious (prevention & control)</term>
<term>Humans</term>
<term>Models, Biological</term>
<term>Population Dynamics</term>
<term>SARS Virus (growth & development)</term>
<term>Severe Acute Respiratory Syndrome (epidemiology)</term>
<term>Severe Acute Respiratory Syndrome (prevention & control)</term>
<term>Severe Acute Respiratory Syndrome (transmission)</term>
<term>Taiwan (epidemiology)</term>
</keywords>
<keywords scheme="MESH" type="geographic" qualifier="epidemiology" xml:lang="en">
<term>Taiwan</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Disease Transmission, Infectious</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="en">
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Disease Outbreaks</term>
<term>Humans</term>
<term>Models, Biological</term>
<term>Population Dynamics</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Both the threat of bioterrorism and the natural emergence of contagious diseases underscore the importance of quantitatively understanding disease transmission in structured human populations. Over the last few years, researchers have advanced the mathematical theory of scale-free networks and used such theoretical advancements in pilot epidemic models. Scale-free contact networks are particularly interesting in the realm of mathematical epidemiology, primarily because these networks may allow meaningfully structured populations to be incorporated in epidemic models at moderate or intermediate levels of complexity. Moreover, a scale-free contact network with node degree correlation is in accord with the well-known preferred mixing concept. The present author describes a semi-empirical and deterministic epidemic modeling approach that (a) focuses on time-varying rates of disease transmission in both unstructured and structured populations and (b) employs probability density functions to characterize disease progression and outbreak controls. Given an epidemic curve for a historical outbreak, this modeling approach calls for Monte Carlo calculations (that define the average new infection rate) and solutions to integro-differential equations (that describe outbreak dynamics in an aggregate population or across all network connectivity classes). Numerical results are obtained for the 2003 SARS outbreak in Taiwan and the dynamical implications of time-varying transmission rates and scale-free contact networks are discussed in some detail.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16904134</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>12</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0025-5564</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>203</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2006</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Mathematical biosciences</Title>
<ISOAbbreviation>Math Biosci</ISOAbbreviation>
</Journal>
<ArticleTitle>Congruent epidemic models for unstructured and structured populations: analytical reconstruction of a 2003 SARS outbreak.</ArticleTitle>
<Pagination>
<MedlinePgn>171-203</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Both the threat of bioterrorism and the natural emergence of contagious diseases underscore the importance of quantitatively understanding disease transmission in structured human populations. Over the last few years, researchers have advanced the mathematical theory of scale-free networks and used such theoretical advancements in pilot epidemic models. Scale-free contact networks are particularly interesting in the realm of mathematical epidemiology, primarily because these networks may allow meaningfully structured populations to be incorporated in epidemic models at moderate or intermediate levels of complexity. Moreover, a scale-free contact network with node degree correlation is in accord with the well-known preferred mixing concept. The present author describes a semi-empirical and deterministic epidemic modeling approach that (a) focuses on time-varying rates of disease transmission in both unstructured and structured populations and (b) employs probability density functions to characterize disease progression and outbreak controls. Given an epidemic curve for a historical outbreak, this modeling approach calls for Monte Carlo calculations (that define the average new infection rate) and solutions to integro-differential equations (that describe outbreak dynamics in an aggregate population or across all network connectivity classes). Numerical results are obtained for the 2003 SARS outbreak in Taiwan and the dynamical implications of time-varying transmission rates and scale-free contact networks are discussed in some detail.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bombardt</LastName>
<ForeName>John N</ForeName>
<Initials>JN</Initials>
<AffiliationInfo>
<Affiliation>Institute for Defense Analyses, 4850 Mark Center Drive, Alexandria, VA 22311-1882, United States. jbombard@ida.org</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>06</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Math Biosci</MedlineTA>
<NlmUniqueID>0103146</NlmUniqueID>
<ISSNLinking>0025-5564</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D004196" MajorTopicYN="Y">Disease Outbreaks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018562" MajorTopicYN="N">Disease Transmission, Infectious</DescriptorName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="Y">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011157" MajorTopicYN="N">Population Dynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="N">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013624" MajorTopicYN="N" Type="Geographic">Taiwan</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2005</Year>
<Month>08</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2006</Year>
<Month>05</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2006</Year>
<Month>05</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>8</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>12</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>8</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16904134</ArticleId>
<ArticleId IdType="pii">S0025-5564(06)00084-8</ArticleId>
<ArticleId IdType="doi">10.1016/j.mbs.2006.05.004</ArticleId>
<ArticleId IdType="pmc">PMC7094332</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Sex Transm Dis. 2004 Jun;31(6):380-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15167650</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Biol Sci. 2001 May 7;268(1470):985-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11370974</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Dec;64(6 Pt 2):066112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11736241</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2004 Feb;10(2):201-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15030683</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Phys Rev Lett. 2000 Nov 20;85(21):4629-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11082613</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Sep;70(3 Pt 2):036106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15524586</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Jun;63(6 Pt 2):066123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11415189</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Phys Rev Lett. 2002 Nov 11;89(20):208701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12443515</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2004 May 22;363(9422):1699-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15158632</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Phys Rev Lett. 2001 Apr 2;86(14):3200-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11290142</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>MMWR Morb Mortal Wkly Rep. 2003 Jul 25;52(29):680-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12881699</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Phys Rev Lett. 2003 Jan 17;90(2):028701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12570587</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Theor Biol. 2005 Jan 7;232(1):71-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15498594</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Phys Rev Lett. 2004 Apr 30;92(17):178701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15169200</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 Jun 20;300(5627):1966-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12766207</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Mar;69(3 Pt 1):031917</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15089332</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Oct;66(4 Pt 2):047104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12443385</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 Jun 20;300(5627):1961-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12766206</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2004 Jul 29;359(1447):1091-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15306395</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Biol Sci. 2004 Nov 7;271(1554):2223-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15539347</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Epidemiol. 2004 Sep 15;160(6):509-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15353409</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6146-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15071187</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Biol Sci. 2003 Oct 7;270(1528):1979-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14561285</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Mar;65(3 Pt 2A):035108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11909143</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 1999 Oct 15;286(5439):509-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10521342</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2005 Feb;11(2):278-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15752447</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 1988 Oct 31;321(1207):565-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2907158</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2004 Jul;10(7):1258-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15324546</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2003 May 24;361(9371):1761-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12781533</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 1997 Jan 3;275(5296):65-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8974392</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Theor Biol. 2005 Jul 21;235(2):275-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15862595</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Phys Rev Lett. 2001 Dec 17;87(25):258701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11736611</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002130 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002130 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:16904134
   |texte=   Congruent epidemic models for unstructured and structured populations: analytical reconstruction of a 2003 SARS outbreak.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:16904134" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021